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Effective exploration of the pattern dynamic behaviors of reaction–diffusion
models is a popular but difficult topic. The Schnakenberg model is a famous
reaction–diffusion system that has been widely used in many fields, such as
physics, chemistry, and biology. Herein, we explore the stability, Turing instability,
and weakly non-linear analysis of the Schnakenberg model; further, the pattern
dynamics of the fractional-in-space Schnakenberg model was simulated
numerically based on the Fourier spectral method. The patterns under
different parameters, initial conditions, and perturbations are shown, including
the target, bar, and dot patterns. It was found that the pattern not only splits and
spreads from the bar to spot pattern but also forms a bar pattern from the broken
connections of the dot pattern. The effects of the fractional Laplacian operator on
the pattern are also shown. In most cases, the diffusion rate of the fractional
model was higher than that of the integer model. By comparing with different
methods in literature, it was found that the simulated patterns were consistent
with the results obtained with other numerical methods in literature, indicating
that the Fourier spectral method can be used to effectively explore the dynamic
behaviors of the fractional Schnakenberg model. Some novel pattern dynamics
behaviors of the fractional-in-space Schnakenbergmodel are also demonstrated.
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1 Introduction

Fractional calculus can be used to better describe some natural phenomena and
engineering problems in the fields of fluid mechanics, heat conduction, electricity,
biology, and economics, among others, and many processes show non-integer-order
dynamic properties [1–6]. In this work, we consider the following fractional-in-space
Schnakenberg model:
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∂u

∂t
� d1∇

αu + γ a − u + u2v( ),
∂v

∂t
� d2∇

αv + γ b − u2v( ),
u x, y, 0( ) � u0 x, y( ), v x, y, 0( ) � v0 x, y( ), x, y ∈ R,

|u x, y, t( )|→ 0, v x, y, t( )|→ 0, |x|→ ∞, 0< t≤T,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
(1)

where ∇αu is the α-order Riesz fractional Laplacian operator; u �
u(x, y, t) and v � v(x, y, t) are unknown variables; a, b, γ, and d are
the system control parameters. Since ∇αu is the fractional Laplacian
operator with a Riesz fractional derivative, in general terms, if α � 2,
then ∇2u � ∂2u

∂x2 + ∂2u
∂y2.

The Schnakenberg model is a famous reaction–diffusion
system that has been widely used in many fields like physics,
chemistry, and biology. Theoretical and numerical analysis
methods of the Schnakenberg model have also been
continuously developed and improved. Some authors have
presented a numerical method for the Schnakenberg model
using trigonometric quadratic B-spline functions and the
finite-element method [7]. Other authors developed the
Laplace Adomian decomposition method for the fractional-
order Schnakenberg model [8] to describe an autocatalytic
chemical reaction. The Turing pattern formation for a
generalized Schnakenberg model has also been explored [9],
which shows the patterns for a wide range of non-linearities.
Din and Haider [10] studied Euler approximation
implementation for the Schnakenberg model and examined
the Neimark–Sacker and period-doubling bifurcations; they
proposed a non-standard finite-difference scheme and
implemented the chaos and bifurcation control methods.
Semi-analytical solutions have been suggested for the
Selkov–Schnakenberg reaction–diffusion system using the
Galerkin method [11]; this approach involved examination of
the influences of the diffusion coefficients on the system stability
and asymptotic analysis near the Hopf bifurcation point. Yang
et al. [12] investigated the dynamics of the Schnakenberg model
under gene expression time delay and cross-diffusion; their
study showed that cross-diffusion enlarges the Turing
instability region and that time delay can lead to
destabilization or failure of the Turing instability. A semi-
analytical approach was examined using the reversible
Schnakenberg model in a reaction–diffusion cell [13], for
which the authors presented bifurcation diagrams, steady-
state curves, and regions of the parameter space in which
bifurcations occurred. Liu et al. [14] investigated the
spatiotemporal dynamics of the Selkov–Schnakenberg system,
where they studied the stability of the positive constant steady
state as well as generation of the Hopf and Turing–Hopf
bifurcations. Xu et al. [15] examined the Schnakenberg
model with crucial reversible reactions under the Neumann
boundary conditions to show the existence and uniqueness of
the strong solution; they also determined the stability, Turing
instability, steady-state bifurcation, and Hopf bifurcation
conditions. Li et al. [16] investigated the dynamics of a
general Selkov–Schnakenberg reaction–diffusion model and
studied the global stability of the positive equilibrium
along with the existence of the Hopf and Turing–Hopf
bifurcations.

Although some scholars have studied the Schnakenberg
model numerically, there are very few numerical methods that
can effectively simulate the fractional Schnakenberg model.
Herein, we study the pattern dynamics of the fractional-in-
space Schnakenberg model based on the Fourier spectral
method, which is widely used in many fields, such as fluid
dynamics, quantum mechanics, and electromagnetism. Owing
to its high efficiency and accuracy, this method has become one of
the important numerical tools for solving engineering and
scientific problems as well as various fractional differential
equations. Zhang et al. [17] presented Crank–Nicolson Fourier
spectral approximations for solving the fractional-space non-
linear Schrödinger equation. Zou et al. [18] proposed a
Crank–Nicolson Fourier spectral Galerkin method for solving
the cubic fractional Schrödinger equation; they discussed the
mass and energy conservation laws, demonstrated the spectral-
order accuracy in space and second-order accuracy in time, and
applied the method to study fractional quantum mechanics in
two and three dimensions. Harris et al. [19] developed a method
to numerically solve for the population dynamics of
multicomponent and multdimensional fractional-space
systems using the Fourier spectral method for spatial
discretization and locally one-dimensional exponential time
differencing for time stepping. Lee [20] proposed a second-
order operator-splitting Fourier spectral method for fractional-
in-space reaction–diffusion equations; this method provides a
full diagonal representation of the fractional operator and
achieved spectral convergence regardless of the fractional
power. Chen and Lu [21] presented a linearized fully discrete
scheme based on the temporal finite difference method and
spatial Fourier spectral approximation to solve the generalized
fractional-time Burgers equation. Arezoomandan and Soheili
[22] investigated the numerical approximation of stochastic
partial differential equations driven by fractional Brownian
motions using Fourier spectral collocation approximation in
space and a semi-implicit Euler method in time. Qu and She
[23] proposed a Fourier spectral method with an adaptive time
step strategy for solving the fractional non-linear Schrödinger
equation with periodic initial value problems. Weng et al. [24]
introduced a fractional extension of the Cahn–Hilliard phase
field model and developed an unconditionally energy-stable
Fourier spectral scheme for solving the fractional equation
with periodic or Neumann boundary conditions; their method
was shown to have spectral accuracy in space and second-order
accuracy in time. Pindza and Owolabi [25] proposed fast and
accurate numerical solutions of the fractional-space
reaction–diffusion equations based on an exponential
integrator scheme in time and the Fourier spectral method in
space; this method could be extended to high spatial dimensions
and validated through numerical experiments. Izadi and
Shabgard [26] presented a high-order numerical scheme for
solving fourth-order fractional-time partial differential
equations using Legendre polynomials for temporal
approximation and a modified basis for space discretization;
they studied the stability and convergence as well as provided
numerical examples. Han et al. [27] used Fourier transform and
the Runge–Kutta method to solve fractional reaction–diffusion
models with spatial derivatives described by the fractional
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Laplacian; they also discussed the precision and computational
complexity of their method. Han et al. [28] also presented a novel
numerical approach to solve the space fractional Gray–Scott
model using the Runge–Kutta method and Fourier transform,
along with discussions on the precision and computational
complexity.

With the development of fractional calculus approaches,
more scholars have studied the dynamic behaviors of
fractional differential equations. Kong et al. [29] discussed
hyperchaos, multiroll behaviors, and extreme multistability
caused by memristors in fractional Hopfield neural networks
as well as their applications in image encryption and field-
programmable gate array (FPGA) implementations. Wei et al.
[30] presented a new semi-analytic method for solving the
fractional-time Fokker–Planck equation that uses neural
networks. Wu et al. [31] studied the application of multilayer
neural networks in data-driven learning of the stability,
periodicity, and chaos of fractional difference equations.
Zhang et al. [32] studied the non-negative solutions of
coupled k-Hessian systems involving Laplacian operators of
different fractional orders. Yu et al. [33] analyzed a 5D
fractional-order memristor hyperchaotic system with multiple
coexisting attractors and implemented the system on an FPGA.
Herein, we use the Fourier spectral method to study the pattern
dynamic behaviors of the fractional-in-space Schnakenberg
model and propose the stability and bifurcation analyses for
the Schnakenberg model; some novel pattern dynamics are also
shown thereafter.

The remainder of this paper is organized as follows: Section 2
shows the stability and bifurcation analyses. Section 3 details the
weakly non-linear analysis. Section 4 briefly describes the
numerical algorithm and numerical simulation results of the
system as well as discusses the minimum order and dynamic
behaviors of the system. Section 5 presents the numerical
simulation results. Finally, Section 6 presents the conclusions
of this work.

2 Stability and bifurcation analyses

First, we study the dynamic behaviors of the fractional-order
Schnakenberg model without the diffusion terms.

Dβ
t u � γ a − u + u2v( ),

Dβ
t v � γ b − u2v( ).{ (2)

We denote

f u, v( ) � γ a − u + u2v( ),
g u, v( ) � γ b − u2v( ).{ (3)

The Jacobian matrix for the system in Equation 2 is

γ
2uv − 1 u2

−2uv −u2( ). (4)

Let γ(a − u + u2v) � γ(b − u2v) � 0, so that the model in Equation 2
has a unique positive equilibrium point E = (uo, vo) � (a + b, b

(a+b)2),
where b> 0, a + b> 0. The derivatives at the equilibrium point E are
given by

fu � γ
b − a

a + b
, fv � γ a + b( )2 , gu � −γ 2b

a + b
, gv � −γ a + b( )2 ,

fuu � 2γ
b

a + b( )2 , fuv � γ2 a + b( ), fvv � 0, fuuu � 0, fuuv � 2γ, fuvv � 0, fvvv � 0,

guu � −γ b

a + b( )2 , guv � −2γ a + b( ), gvv � 0, guuu � 0, guuv � −2γ, guvv � 0, gvvv � 0.

(5)

The Jacobian matrix of Equation 2 at the equilibrium point E is thus

J � fu fv

gu gv
( ) � γ

b − a

a + b
a + b( )2

− 2b
a + b

− a + b( )2
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠. (6)

The corresponding characteristic equation at the equilibrium point
E is given by

λ2 − Trλ +Det � 0, (7)
where

Tr � γ
b − a( ) − a + b( )3

a + b
, Det � γ2 a + b( )2,

Δ � Tr2 − 4Det � γ2
b − a( ) − a + b( )3( )2 − 4 a + b( )4

a + b( )2 .

(8)

Supposing that 0< a< b, for the Schnakenberg model of Equation
2 without diffusion terms, we have the conclusions shown
in Table 1.

Next, by setting a � 0.5, b � 0.8, γ � 1, the initial condition is
x0 � [a + b − 0.1, b/((a + b)2) − 0.1] and the numerical solution of
the model in Equation 2 is as shown in Figure 1. From Figure 1, we
can see that the numerical solution of Equation 2 at the equilibrium
point E is asymptotically stable.

3 Weakly non-linear analysis

Herein, we study the dynamic behaviors of the Schnakenberg
model of Equation 1 with a diffusion term at α � 2. The Jacobian
matrix of Equation 2 at the equilibrium point E is then given by

Jk � γ
γ
b − a

a + b
− k2d1 γ2 a + b( )2

−γ 2b
a + b

−γ a + b( )2 − k2d2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠. (9)

The corresponding characteristic equation of the Schnakenberg
model of Equation 1 with a diffusion term at α � 2 and
equilibrium point E is given by

λ2 − Trkλ +Detk � 0, (10)
where

Trk � γ
b − a( ) − a + b( )3

a + b
− k2 d1 + d2( ),

Detk � γ2 a + b( )2 − γ
d2 b − a( ) − d1 a + b( )3

a + b
k2 + d1d2k

4.

(11)

The minimum value of the perturbation kc to the system is

k2c � γ
d2 b − a( ) − d1 a + b( )3

2d1d2 a + b( ) .
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Thus, we obtain the eigenroot as

λ1,2 � Trk ±
����������
Trk − 4Detk

√
2Trk

. (12)

The Schnakenberg model of Equation 1 experiences a Turing
bifurcation when the following conditions are met:

b − a( ) − a + b( )3 > 0,
d2 b − a( ) − d1 a + b( )3( )2 > 4d2 a + b( )4. (13)

Figure 2 shows the stability and Turing instability at different
values of k and the diffusion coefficient. The real part of the
eigenvalue greater than 0 corresponds to the Turing instability as
well as stability domains.Using the methods proposed by Gao
et al. as well as Chen and Zheng [34–36], we obtain the
amplitude equation of the Schnakenberg model of Equation 1
at α � 2 as

ϕ + φ

dc
2k

2
c

∂A1

∂t
� d2 − dc

2

dc
2

A1 − 2
h1 + φh2
dc
2k

2
c

A2A3

− Q1 + φQ3

dc
2k

2
c

|A1|2 + Q2 + φQ4

dc
2k

2
c

|A2|2 + |A3 |2( )[ ]A1 ,

ϕ + φ

dc
2k

2
c

∂A2

∂t
� d2 − dc

2

dc
2

A2 − 2
h1 + φh2
dc
2k

2
c

A1A3

− Q1 + φQ3

dc
2k

2
c

|A2|2 + Q2 + φQ4

dc
2k

2
c

|A1|2 + |A3 |2( )[ ]A2 ,

ϕ + φ

dc
2k

2
c

∂A3

∂t
� d2 − dc

2

dc
2

A3 − 2
h1 + φh2
dc
2k

2
c

A1A2

− Q1 + φQ3

dc
2k

2
c

|A3|2 + Q2 + φQ4

dc
2k

2
c

|A1|2 + |A2 |2( )[ ]A3 ,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(14)

where

k2c � γ
fud2 + gvd1

2d1d2
� γ

d2 b − a( ) − d1 a + b( )3
2d1d2 a + b( ) ,

ϕ � fv

d1k
2
c − fu

� − 2d2 a + b( )3
d2 b − a( ) + d1 a + b( )3,

φ � d1k
2
c − fu

gu
� −d2 b − a( ) + d1 a + b( )3

4bd2
,

h1 � fuu

2
ϕ2 + fuvϕ + fvv

2
� γ

b

a + b( )2ϕ
2 + 2γ a + b( )

ϕ, h2 � guu

2
ϕ2 + guvϕ + gvv

2
� −γ b

a + b( )2ϕ
2 − 2γ a + b( )

ϕ, u00 � 2
fvh2 − gvh1
fugv − fvgu

, v00 � 2
guh1 − fuh2
fugv − fvgu

,

u11 � fvh2 − gv − 4dc
2k

2
c( )h1

fu − 4d1k
2
c( ) gv − 4dc

2k
2
c( ) −fvgu),

v11 � gvh1 − fu − 4d1k
2
c( )h2

fu − 4d1k
2
c( ) gv − 4dc

2k
2
c( ) −fvgu),

u22 � 2
fvh2 − gv − 3dc

2k
2
c( )h1

fu − 3d1k
2
c( ) gv − 3dc

2k
2
c( )−fvgu),

v22 � 2
gvh1 − fu − 3d1k

2
c( )h2

fu − 3d1k
2
c( ) gv − 4dc

2k
2
c( ) −fvgu),

Q1 � ϕfuu + fuv( ) u00 + u11( ) + ϕfuv + fvv( ) v00 + v11( ) + 3γϕ2,

Q2 � ϕfuu + fuv( ) u00 + u22( ) + ϕfuv + fvv( ) v00 + v22( ) + 6γϕ2,

Q3 � ϕguu + guv( ) u00 + u11( ) + ϕguv + gvv( ) v00 + v11( ) − 3γϕ2,

Q4 � ϕguu + fuv( ) u00 + u22( ) + ϕguv + fvv( ) v00 + v22( ) − 6γϕ2.

(15)
A stable Turing spot map corresponds to a stable steady-state

solution to Equation 14. Each amplitude in Equation 14 can now be
decomposed into a magnitude ηi � |Ai| and a phase angle Ψi.
Substituting Ai � ηie

iΦi into Equation 14 and dividing the real
and imaginary parts gives a differential equation with four real
variables as follows:

ϕ + φ

dc
2k

2
c

∂Ψ
∂t

� 2
h1 + φh2
dc
2k

2
c

η21η
2
2 + η21η

2
3 + η22η

2
3

η1η2η3
sinΨ,

ϕ + φ

dc
2k

2
c

∂η1
∂t

� d2 − dc
2

dc
2

η1 − 2
h1 + φh2
dc
2k

2
c

η2η3 cosΨ − Q1 + φQ3

dc
2k

2
c

η31 −
Q2 + φQ4

dc
2k

2
c

η22 + η23( )η1 ,
ϕ + φ

dc
2k

2
c

∂η2
∂t

� d2 − dc
2

dc
2

η2 − 2
h1 + φh2
dc
2k

2
c

η1η3 cosΨ − Q1 + φQ3

dc
2k

2
c

η32 −
Q2 + φQ4

dc
2k

2
c

η21 + η23( )η2 ,
ϕ + φ

dc
2k

2
c

∂η3
∂t

� d2 − dc
2

dc
2

η3 − 2
h1 + φh2
dc
2k

2
c

η1η2 cosΨ − Q1 + φQ3

dc
2k

2
c

η33 −
Q2 + φQ4

dc
2k

2
c

η21 + η22( )η3 ,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
(16)

TABLE 1 Stability conditions of the model represented by Equation 2 at the
equilibrium point E.

Conditions Conclusion

β � 1, and (b − a) − (a + b)3 > 0 Stable

β � 1, (b − a) − (a + b)3 ≤ 0, and Tr2 − 4Det≥ 0 Asymptotically stable

Tr2 − 4Det< 0, and π
2 β< |tan−1(

������
4Det−Tr2√

Tr )| Stable

Tr2 − 4Det< 0, and π
2 β> |tan−1(

������
4Det−Tr2√

Tr )| Unstable

α � 2, (b − a) − (a + b)3 > 0,
and (d(b − a) − (a + b)3)2 − 4d(a + d)4 > 0

Turing bifurcation
occurs

FIGURE 1
Numerical solution with a � 0.5, b � 0.8 and initial condition x0 � [a + b − 0.1,b/((a + b)2) − 0.1].
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where Ψ � Ψ1 + Ψ2 + Ψ3. Equation 16 shows that when the system
is in the steady state, the amplitude phase diagram of the combined
phase can assume only two steady states as Ψ � 0 and Ψ � π. If we
consider only the stable solution of Equation 16, then the magnitude
equation has the form

ϕ + φ

dc
2k

2
c

∂η1
∂t

� μη1 + |h|η2η3 − g1η31 − g2 η22 + η23( )η1,
ϕ + φ

dc
2k

2
c

∂η2
∂t

� μη2 + |h|η1η3 − g1η32 − g2 η21 + η23( )η2,
ϕ + φ

dc
2k

2
c

∂η3
∂t

� μη3 + |h|η1η2 − g1η33 − g2 η21 + η22( )η3,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩
(17)

where

μ � d2 − dc
2

dc
2

, h � −2 h1 + φh2
dc
2k

2
c

, τ0 � ϕ + φ

dc
2k

2
c

, g1 � Q1 + φQ3

dc
2k

2
c

,

g2 � Q2 + φQ4

dc
2k

2
c

. (18)

Since the second-order coefficients |h| are always positive and
destabilizing factors of the equation, the third-order terms
g1, g2must be positive to maintain the steady-state solution of
the mode equation. Thus, Equation 17 has four classes of steady-
state solutions, as shown in Table 2.

For g2
g1
< 1, the fringe pattern will be unstable. In Equation 17, to

obtain the steady-state solution of (δη1, δη2, δη3) with perturbation,

the original equation is applied and high-order items are removed to
derive the linear perturbation equation. Thus, the matrix form of the
equation is given as

(μ − 3g1η21 − g2 η22 + η23( )|h|η3 − 2g2η1η2|h|η2 − 2g2η1η3
|h|ρ3 − 2g2η1η2μ − 3g1η

2
2 − g2 η21 + η23( )|h|η1 − 2g2η2η3

|h|η2 − 2g2η1η3|h|η1 − 2g2η2η3μ − 3g1η
2
3 − g2 η21 + η22( )). (19)

The linear stability of the bar pattern is studied next. By
substituting the steady-state solution (ρ, 0, 0) into the
perturbation expression of Equation 19, we get

τ0
d

dt

δη1
δη2
δη3

⎛⎜⎝ ⎞⎟⎠ �
μ − 3g1η

2 0 0
0 μ − g2η

2 |h|η
0 |h|η μ − g2η

2

⎛⎜⎜⎝ ⎞⎟⎟⎠ δη1
δη2
δη3

⎛⎜⎝ ⎞⎟⎠. (20)

Because η �
��
μ
g1

√
, the corresponding matrix eigenvalue

si of Equation 20 is obtained using the following

characteristic equation:

−2μ − s( ) μ − g2

g1
− s( )2

− |h|2
g1

μ( ) � 0. (21)

The three eigenvalues are then obtained as

s1 � −2μ, s2 � s3 � μ 1 − g2

g1
( ) ± |h|

��
μ

g1

√
. (22)

FIGURE 2
Stability and Turing instability curves at different perturbation values k.

TABLE 2 Relationships between pattern shapes and steady-state solutions.

Pattern shape Solution Conditions

Uniform steady-state solution η1 � η2 � η3 � 0 —

Strip pattern diagram η1 �
��
μ
g1

√
, η2 � η3 � 0 —

Two hexagonal spots diagram η1 � ρ2 � η3 � |h|±
����������
h2+4(g1+2g2)μ

√
2(g1+2g2)

μ> μ1 � −h2
4(g1+2g2)

Mixed-structure solution
η1 � |h|

g2−g1 , η2 � ρ3 �
�����
μ−g1ρ21
g1+g2

√
g2 >g1 , μ>g1ρ21
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Since μ> 0, g2

g1
> 1, the condition for which all three eigenvalues are

simultaneously less than 0 is μ> μ3 � h2g1

(g1−g2)2. Under this condition,
the perturbation of the stripe pattern will disappear with time.

4 Brief description of the
numerical algorithm

The Fourier spectral method is a numerical approach for
solving partial differential equations based on the Fourier

series expansion and Fourier transform. In this work, we
apply the fast Fourier transform to the Schnakenberg model
of Equation 1 to obtain the following ordinary
differential equations:

d~u

dt
� |κ|α~u + γ a − ~u + F u2v( )( ),

d~v

dt
� d|κ|α~v + γ b − F u2v( )( ),

~u κ, 0( ) � ~u0 κ( ), ~v κ, 0( ) � ~v0 κ( ), κ ∈ R.

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
(23)

TABLE 3 Condition selection and numerical simulation results.

Initial conditions Perturbation Numerical simulation results

Equation 25 u(N2 , N2 ) � 1, v(N2 , N2 ) � 1 Figure 3

Equation 25 u(N4 : 3N
4 ,

N
4 :

3N
4 ) � 1

2, v((N4 : 3N
4 ,

N
4 :

3N
4 ) � 1

4
Figure 4

u(x, y, 0) � 0, v(x, y, 0) � 1 u(N2 , N2 ) � 1, v(N2 , N2 ) � 1 Figure 5

FIGURE 3
Comparison of the numerical results at different fractional orders with d1 � 0.05,d2 � 1, γ � 100, a � 0.1305, b � 0.7695 and the initial conditions in
Equation 25 for Experiment 1.
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FIGURE 4
Comparison of the numerical results at different fractional orders with perturbations u(N4: 3N

4 ,
N
4:

3N
4 ) � 1

2, v(N4: 3N
4 ,

N
4:

3N
4 ) � 1

4 for Experiment 1.

FIGURE 5
Comparison of the numerical results at different fractional orders with initial conditions of u(x, y,0) � 0, v(x, y,0) � 1 for Experiment 1.
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Then, the fourth-order Runge–Kutta method is used to solve the
ordinary differential equations in Equation 23. This can greatly
simplify the calculations and help solve the Schnakenberg model of
Equation 1 effectively.

5 Numerical simulation

In the numerical simulations, the spatial domain is given by
(x, y) ∈ [−2, 2] × [−2, 2], and the spatial step size is h � 4/256
with a time step of 0.01. In this work, we only show the pattern
for u.

Experiment 1 Consider the following Schnakenberg model:

∂1
∂t

� du∇
αu + γ a − u + u2v( ),

∂2
∂t

� dv∇
αv + γ b − u2v( ),

⎧⎪⎪⎪⎨⎪⎪⎪⎩ (24)

with the following initial conditions [37]:

u x, y, 0( ) � a + b + 10−3 exp−100 x−1
3( )2+ y−1

2( )2[ ],
v x, y, 0( ) � b

a + b( )2.
⎧⎪⎪⎨⎪⎪⎩ (25)

We set the parameters as
d1 � 0.05, d2 � 1, γ � 100, a � 0.1305, b � 0.7695, and the
equilibrium point is (uo, vo) � (0.9, 0.95). Next, we observe
different pattern dynamic behaviors by setting the perturbation
and initial conditions as shown in Table 3. The corresponding
numerical simulation results are shown in Figures 3–5.

Figure 3 shows different Turing patterns by setting the value of α
over a certain period of time. We observe from the pattern that as
time elapses, the reaction substance diffuses in this region, and the
more the reaction order is closer to an integer value, the slower is the
diffusion rate. We also observe that the fractional pattern is
composed of several irregular polygons. The figure shows
that when α is reduced, this pattern is dynamic; when α is closer
to 1, the pattern splits faster, which is an overdiffusion
process. We thus retain the parameters and initial
conditions unchanged while changing the perturbation to
u(N4 : 3N

4 ,
N
4 :

3N
4 ) � 1

2, v(N4 : 3N
4 ,

N
4 :

3N
4 ) � 1

4, for which the pattern
dynamic behaviors of the fractional-in-space Schnakenberg model
are shown in Figure 4.

From Figure 4, it is observed that the perturbation has a huge
impact on the spot pattern. Figures 3, 4 have the same parameters
and initial conditions, and changing the perturbation results in a
large difference between the initial state and final spot pattern.
However, these two figures have almost similar diffusion rates;
thus, as α decreases, the diffusion is more intense and the small
ring is more crowded.Next, after setting the different parameters
and adjusting the initial conditions as u(x, y, 0) � 0, v(x, y, 0) �
1 and u(N2 , N2 ) � 1, the target model produces the results shown in
Figure 5. Figure 5 is a typical target-type pattern that is also
symmetrical during diffusion. This pattern consists of small to
large rings, which expand gradually with time and then break into
smaller rings.

From Figures 3–5, we note that the formation of the pattern of
the Schnakenberg model of Eq. Equation 24 depends on the
selected parameters. Only those parameters that meet certain
conditions produce the Turing pattern, and the fractional order
affects the diffusion speed of this pattern. Variations in the initial
conditions and perturbations will lead to differences in the
pattern. The present numerical simulation results are in good
agreement with the conclusions reported by Arafa et al. [37]
using homotopy analysis for the fractional-order
Schnakenberg model.

Experiment 2 Consider the Schnakenberg model of Equation 24
with periodic boundary conditions [38] as follows:

u x, y, 0( ) � 0.919145 + 0.0016 cos 2π x + y( )( ) + 0.01∑8
j�1

cos 2πjx( ),
v x, y, 0( ) � 0.937903 + 0.0016 cos 2π x + y( )( ) + 0.01∑8

j�1
cos 2πjx( ).

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
(26)

By setting the parameters as
du � 1, dv � 10, γ � 1000, a � 0.126779, b � 0.792366, and
Ω � [0, 1] × [0, 1], we simulated a Turing pattern with
periodic boundary conditions [38] and different initial
conditions. The numerical simulation results for Equation 24
using the Fourier spectral method are shown in Figures 6–8.
Furthermore, Table 4 shows the corresponding spot patterns for
different fractional orders.By setting α � 1.9 and the
perturbations to u(N2 , N2 ) � 1, v(N2 , N2 ) � 1 in Equation 26, we
observe the distortion instability of the bar pattern in
Figure 6. Once the distortion instability occurs, the local
wavelength of the system gradually reduces, and the
amplitude of the modulated wave will saturate under the
action of the higher-order terms. The warped instability
results in a new symmetry breakdown, producing a warped
bar pattern as shown in Figure 6, which has a lower
symmetry than the original pattern. Next, by maintaining the
parameters and initial conditions unchanged in Equation 26, we
obtain the numerical simulation results under different
fractional orders, and the corresponding pattern dynamic
behaviors of the fractional-in-space Schnakenberg model are
shown in Figure 7.In Figure 7, when α � 1.7, 1.6, it is observed
from the graphs that the spot chart that is initially in the form of
pipes changes so that each pipe splits into small circles. An
ordered arrangement is formed, and as the value of α decreases,
the small rings in the pipe change from two to three columns
while the speed of splitting also decreases. From Figures 6, 7, we
can confirm that the initial conditions of the strip produce a spot
pattern after a series of diffusions. This is consistent with the
conclusions noted by Vivek et al. [38] using a new implicit-
explicit Runge–Kutta method to calculate the Schnakenberg
model of Equation 1. Next, we maintain the parameters
unchanged while altering the initial conditions to u(x, y, 0) �
0, v(x, y, 0) � 1 and perturbations to v(N2 , N2 ) � 1; these
simulation results are shown in Figure 7. It is seen from
Figure 8 that when α decreases, the Turing pattern spreads
more violently and is arranged more neatly.

Frontiers in Physics frontiersin.org08

Wang et al. 10.3389/fphy.2024.1452077

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2024.1452077


FIGURE 6
Comparison of the numerical results with d1 � 1,d2 � 10, γ � 1000, a � 0.126779, b � 0.792366, α � 1.9, and the initial conditions in Equation 26 for
Experiment 2.

FIGURE 7
Comparison of the pattern dynamic behaviors with d1 � 1,d2 � 10, γ � 1000, a � 0.126779, b � 0.792366, α � 1.9, and the initial conditions in
Equation 26 for Experiment 2.
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6 Conclusion

In this work, the Fourier spectral method was used to study the
pattern dynamic behaviors of the fractional-in-space Schnakenberg
model using multiple sets of parameters, initial conditions,
perturbations, and fractional orders. After counting, different
types of patterns were obtained, including the target, dot, and
strip patterns. During the numerical simulations, we observed
that the patterns not only diffused from a single point to a dense
spot pattern but also split from the bar pattern into a spot pattern;
further, it was observed that the point pattern could also merge into
a bar pattern. We noted that the Turing model was very sensitive to
the parameters and that the influences of the initial conditions on
pattern formation cannot be ignored. The numerical results are in
good agreement with findings based on other methods reported in
literature. Some novel patterns were also observed in this work.

The theoretical analysis and numerical simulation results of the
fractional-in-space Schnakenberg model presented herein
contribute to a broader understanding of the formation and
dynamic behaviors of the Schnakenberg pattern. The roles of
fractional operators in promoting diffusion are also better
understood. In the future, we intend to develop hybrid methods
by combining the Fourier spectral method with other numerical
techniques to study some fractional-order partial differential
equations [39, 40].

Data availability statement

The original contributions presented in the study are included in
the article/Supplementary Material, and any further inquiries may
be directed to the corresponding authors.

FIGURE 8
Comparison of the pattern dynamic behaviors at different fractional orders with d1 � 1,d2 � 10, γ � 1000, a � 0.126779, b � 0.792366 and initial
conditions of u(x, y,0) � 0, v(x, y,0) � 1 for Experiment 2.

TABLE 4 Fractional-order selection and numerical simulation results.

Fractional order α Perturbation term Numerical simulation results

1.9 Equation 26 u(N2 , N2 ) � 1, v(N2 , N2 ) � 1 Figure 6A−H

2 Equation 26 u(N2 , N2 ) � 1, v(N2 , N2 ) � 1 Figure 7A−D

1.6 Equation 26 u(N2 , N2 ) � 1, v(N2 , N2 ) � 1 Figure 7E−H

2 u(x, y, 0) � 0, v(x, y, 0) � 1 v(N2 , N2 ) � 1 Figure 8A−D

1.8 u(x, y, 0) � 0, v(x, y, 0) � 1 v(N2 , N2 ) � 1 Figure 8E−H
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