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Introduction: Chemical special steels are widely used in chemical equipment
manufacturing and other fields, and small defects on its surface (such as cracks
and punches) are easy to cause serious accidents in harsh environments.

Methods: In order to solve this problem, this paper proposes an improved defect
detection algorithm for chemical special steel based on YOLOv8. Firstly, in order
to effectively capture local and global information, a ParC2Net (Parallel-C2f)
structure is proposed for feature extraction, which can accurately capture the
subtle features of steel defects. Secondly, the loss function is adjusted to MPD-
IOU, and its dynamic non-monotonic focusing characteristics are used to
effectively solve the overfitting problem of the bounding box of low-quality
targets. In addition, RepGFPN is used to fuse multi-scale features, deepen the
interaction between semantics and spatial information, and significantly improve
the efficiency of cross-layer information transmission. Finally, the RexSE-Head
(ResNeXt-Squeeze-Excitation) design is adopted to enhance the positioning
accuracy of small defect targets.

Results and discussion: The experimental results show that the mAP@0.5 of the
improved model reaches 93.5%, and the number of parameters is only 3.29M,
which realizes the high precision and high response performance of the
detection of small defects in chemical special steels, and highlights the
practical application value of the model. The code is available at https://
github.com/improvment/prs-yolo.
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1 Introduction

As a key element of the stable operation and safety guarantee of chemical equipment,
chemical special steel [1] has excellent corrosion resistance and high temperature and high
pressure resistance, and its application value under extreme conditions is incomparable.
Whether it’s a delicate chemical reactor or a transport line in a harsh environment [2], these
steels are essential for efficient and safe industrial production [3]. However, it is precisely
this high-intensity application environment that makes even the smallest surface defects,
such as small cracks or hidden holes [4], enough to become a potential danger to major
safety accidents, directly threatening human safety and environmental protection.
Therefore, the development of efficient and accurate defect detection technology has
become an urgent problem to be solved, and its urgency and importance are self-evident.
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In recent years, the vigorous development of deep learning
technology has brought innovation to traditional industries,
among which the combination of image recognition technology
and deep neural networks is gradually penetrating and reshaping the
detection standards of the chemical industry [5]. Given the special
complexity of the application scenarios of chemical special steel and the
strict requirements for safe production, it is particularly critical to
achieve high accuracy in the detection of various minor defects [6]. In
practical applications, we have evaluated the existing detectionmethods
(infrared detection method, magnetic flux leakage detection method,
etc.), especially in the complex and drastically changing working
environment, the missed detection rate of small size defects by
traditional means is as high as 30%, and even for small defects less
than 1 mm, the missed detection rate rises to nearly 50%. In addition,
the traditional method cannot meet the inspection needs of more than
10 workpieces per second in the high-speed production line due to the
limitation of reaction speed, which increases the risk ofmissed detection
[7]. This situation cannot meet the needs of high-precision detection, a
high recall rate, or accurate positioning for all types of defects in
chemical special steel. Therefore, given the limitations and challenges
mentioned above, we designed a detection algorithm that can accurately
identify a variety of small defects in chemical special steels. This
algorithm has high detection accuracy, achieves real-time response
and fully meets the comprehensive performance requirements of high
identification accuracy, high recall rate, and accurate positioning
proposed for defect detection in the field of chemical special steels [8].

In summary, this paper proposes the YOLOv8-based steel defect
detection algorithm PRS-YOLO (ParC2Net-RepGFPN-RexSE-
Head-YOLO). The contributions of this paper are listed as follows.

• A novel ParC2Net parallel substructure is proposed, which can
effectively enhance the capture of local detail features and
global information of the target by the backbone network, and
improve the detection ability of the model on dense targets on
chemical special steels.

• The efficient feature fusion network RepGFPN is adopted, which
not only promotes the full interaction between high-level semantic
information and low-level spatial information, but also greatly
optimizes the transmission efficiency of defect information
between various layers and reduces the inference time of themodel.

• The MPD-IoU loss function is fused, which optimizes the
processing of targets with significant size variation and
complex attitude in chemical special steels, effectively
enhances the generalization ability of the algorithm, and
ensures the high-precision recognition and evaluation
performance of the model in complex scenarios.

• A RexSE-Head detection head mechanism is designed, which
weights the channel information while improving the parallel
processing capability of the detection head, which effectively
enhances the sensitivity of the network to small target detection.

2 Related

2.1 Target detection method

At present, defect identification methods can be summarized
into two main categories according to the characteristics of object

detection models: one-stage detection and two-stage detection
algorithms [9]. The one-stage method, represented by YOLO [10]
and SSD [11], has been widely used in industrial defect detection due
to its efficient real-time processing speed and practicability. YOLO is
particularly suitable for rapid production line monitoring [12]
because of its limitations in the identification of small defects
and the fact that the positioning accuracy of the bounding box is
slightly inferior to that of Faster R-CNN [13]. SSDs improve the
detection ability of defects of different sizes by fusing multi-scale
feature maps, but their positioning accuracy still faces challenges in
the face of extremely small or complex defects, especially in low-
contrast backgrounds. On the other hand, the two-stage algorithms,
including the R-CNN series and the Mask R-CNN [14], have
excellent performance in the accuracy and recall of defect
identification due to their step-by-step processing strategies,
especially the Faster R-CNN effectively enhances the detection
ability of multi-scale defects through RPN [15]. Mask R-CNN
introduces instance segmentation on this basis, which greatly
improves the depiction accuracy of complex and unknown defect
contours, but this improvement in fineness is accompanied by a
significant increase in computational cost, which limits its
application in scenarios with strict real-time requirements.

In recent years, innovative detection methods have emerged one
after another to solve the problem of small target detection,
surpassing the traditional two-stage framework, and emerging
anchor-free deep models such as PP-YOLOE [16] and Gold
YOLO [17], as well as DETR [18] using Transformer
architecture. PP-YOLOE optimizes the YOLO design to improve
the detection performance of small targets. Gold YOLO’s
distribution mechanism strengthens the real-time detection
accuracy and refreshes the perspective of industrial defect
identification. DETR abandons sliding windows and anchor
frames to achieve efficient object detection in an end-to-end
manner, especially in dense target and long-distance correlation
analysis, opening up a new path for small object detection. These
cutting-edge technologies not only enrich the inspection methods of
chemical specialty steels, but also clarify the future research trend: on
the basis of ensuring accuracy, accelerate inspection and save
computing resources, and meet the high standards of industrial-
grade applications.

In view of the fact that this study focuses on practical application
requirements, especially in environments that require fast response
and limited hardware resources, the one-stage model is preferred
due to its high efficiency. Therefore, the follow-up discussion will
deepen the exploration of the optimization path of these models,
reveal their potential performance improvement in small object
detection through empirical analysis, and integrate the cutting-edge
methods mentioned above, such as the anchor-free mechanism
based model and high-performance variants, in order to bring
more comprehensive and in-depth insights to defect detection
technology.

2.2 Improved target detection method

In practical application scenarios, in order to achieve efficient,
accurate and rapid response detection of small defects (such as
cracks, punching, etc.) in chemical special steels, Therefore, to
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achieve good results with high detection accuracy and a fast response
for small defects such as cracks and punching, it is necessary to carry
out targeted optimization of existing defect detection algorithms.
Wang et al. [19] adopted the fully convolutional YOLO detection
network to conduct an in-depth study of strip surface defects and
achieved efficient end-to-end detection. However, with the
deepening of the network hierarchy and the application of down
sampling operations such as pooling layers, a fully convolutional
network may lose some of its spatial position details, resulting in a
decrease in the accuracy of fine segmentation of small objects or
boundaries. Akhyar et al. [20] optimized the SSD model to identify
possible defects on steel surfaces and introduced the RetinaNet
method for defect classification. Nevertheless, the SSD model is not
ideal for detecting small defects. The default anchor boxes often have
difficulty accurately covering and identifying such small targets after
multistage down sampling. Xia et al. [21] innovatively improved the
YOLO algorithm by adding a coordinate attention mechanism and
constructing a feature fusion structure using a multipath spatial
pyramid pooling module. Although this improvement enhances the
sensitivity of the model to the target position and the detection
performance of small targets, it still has the problem of insufficient
detection accuracy when facing targets of different scales, complex
backgrounds, and sizes.

Kou et al. [22] improved the YOLOv3 algorithm and improved
the detection accuracy by introducing a frameless mechanism to
improve the detection speed and designing a dense convolutional
module to enrich the feature information. Although dense
convolutional blocks improve the depth and breadth of feature
learning by the model, they also increase the computational
complexity and the number of model parameters, which not only
consume more storage resources but also may prolong the inference
time, especially in the deployment environment of embedded
systems with limited resources. In addition, Jiang et al. [23]
carefully optimized the YOLOv5 algorithm by using a K-means
clustering algorithm to reconfigure the preset anchor parameter to
fit the features of actual data samples and added an MA attention
mechanism to enhance feature extraction. In addition, the BiFPN
module was used to replace the PANet structure in the neck part to
achieve comprehensive multiscale feature fusion. These changes
improved the detection accuracy by 2.9% while maintaining the
lightweight model. However, poor matching between the preset
frame and the real target shape can cause defects that cannot be
effectively located and identified.

Recent studies, such as the comparative study of automatic
image detection and transfer learning [24] and image learning
algorithms for small datasets [25], provide valuable references,
especially in extracting key features from images and processing
small datasets and complex image features.

In view of the existing challenges in the field of defect detection
in chemical special steels, especially the limitations of small defect
identification, this study innovatively constructs a high-precision
multi-category defect detection model, focusing on the accurate
detection of subtle defects. By innovating feature extraction,
optimizing feature fusion and detection architecture, the model’s
ability to capture micro-defects and interact with deep features is
greatly improved, ensuring excellent positioning and identification
performance when dealing with complex defects such as
microcracks and fine holes, and fully meeting the high-precision

standards for micro-defect detection of special steel in actual
production.

3 Methodology

While maintaining the advantages of YOLOv5, YOLOv8 is
committed to model lightweight and accurate upgrades to adapt
to various real-time applications. In this design, the C3 module is
abandoned, the C2f module is adopted to strengthen feature
extraction and target positioning, and the performance is
significantly improved by optimizing the internal integration
mechanism [26]. The “head” of the model adopts a decoupled-
head design to separate classification and boundary box regression
tasks. In the regressive head part, the number of 4*reg_max channels
is set by the DFL strategy to enhance the accuracy of position and
size prediction and effectively promote the overall
prediction efficiency.

Although YOLOv8 has demonstrated powerful real-time
detection capabilities in many scenarios, it faces limitations in
detecting microscopic defects (such as cracks and punching) in
chemical specialty steels. The inherent hierarchical feature
extraction mechanism has limited ability to capture small
features in low-resolution images, insufficient mining of defect
fine morphology and texture information, coupled with the risk
of overfitting in cases of strong variability and data scarcity, and the
low attention of loss function and optimization strategy to such
defects, resulting in limited detection sensitivity and accuracy in this
application [27].

To this end, this paper proposes a defect detection model for
chemical special steel based on YOLOv8 architecture: PRS-YOLOv8.
In response to the complexity of chemical specialty steel defect
detection, we adopted histogram equalization, ParC2Net feature
extractor, efficient RepGFPN to fuse multi-scale features, and
innovative RexSE-Head inspection head design, a series of
strategies to ensure that the model can still show excellent real-
time inspection accuracy and efficiency in harsh industrial sites.
Figure 1 illustrates the comprehensive network architecture design
of the PRS-YOLOv8 model.

3.1 Data preprocessing

In order to enhance the generalization performance and
robustness of the model in complex scenes, we adopted a series
of image preprocessing strategies. Firstly, the representation of
defects under different viewing angles and sizes is simulated by
random scaling, combined with image flipping to reveal the
anisotropic characteristics of defects, which effectively alleviates
the problem of overfitting and promotes the extensive
identification ability of the model. Secondly, the adaptive
histogram equalization technology [28] was applied to
dynamically optimize the brightness and contrast of the image,
especially for the uneven illumination, and effectively suppress the
background noise. Unlike the global approach, adaptive equalization
processes image areas separately to improve overall image quality
while maintaining local contrast, making detailed features more
prominent, which is essential for defect detection.
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Figure 2 below shows an example of an image after adaptive
histogram equalization in the algorithm, which intuitively reflects
the role of the technology in enhancing the visual effect of the image
and improving the visibility of key details.

3.2 Backbone

In the YOLOv8 framework, the backbone component is
responsible for extracting key features from the image data, a
process that is critical for subsequent defect detection [29].
Although the classical C2f architecture effectively promotes the
deep expression of features through the bottleneck building

blocks, which integrates the double-layer 3 × 3 convolution and
activation function, and enhances the learning potential of the
model through residual connection, its understanding of global
semantics may inadvertently weaken the focus on subtle local
features, which poses an obstacle to the accurate identification of
fine defects such as microcracks and punching in chemical special
steels, and affects the accuracy of positioning accuracy [30]. In
response to this limitation, we innovatively designed the ParC2Net
parallel substructure, which is designed to capture multi-scale image
details while maintaining the real-time performance of the system.

Specifically, by replacing the bottleneck convolution in the
original C2f module with the ParNet architecture, we use its
unique parallel flow design to dynamically adjust the size of the

FIGURE 1
PRS-YOLO network structure. The structures of ParC2Net, RexSE-Head, and CSPStage in the neck are explained in detail in 3.2–3.4.
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receptive field, so as to delicately grasp the local characteristics and
global structure information of the defect without sacrificing
speed. This dynamic adaptation mechanism of ParNet enables
the model to accurately focus on the key regions containing
complex details and macrostructure information, which is
particularly important for identifying cracks and punching
defects with fine local morphology and macrostructure
associations. ParNet’s core innovation also includes the
integrated SSE (Channel Squeeze and Spatial Excitation)
attention mechanism [31], which is an advanced feature
recalibration strategy. By adaptively learning the weights of
different feature channels, the SSE mechanism can enhance the
feature expression that is crucial to the detection task, while
suppressing irrelevant information, ensuring that the model can
clearly distinguish and highlight the decisive features of
microscopic defects even in a visually complex background,
which greatly improves the feature expression ability and the
accuracy of defect detection of the model [32].

As shown in Figure 3, the integration of ParNet not only
optimizes the feature extraction process, but also promotes the
efficient fusion of feature maps at different levels, realizes cross-
scale and multi-dimensional feature capture, and significantly
enhances the comprehensiveness and depth of feature extraction.
What’s more noteworthy is that ParC2Net’s simplified architecture
design not only ensures high detection accuracy, but also effectively
reduces the computing burden and memory occupation, accelerates
the inference speed, and ensures that the model can still run
efficiently in a resource-limited environment. This feature enables
ParC2Net to demonstrate excellent performance stability and
adaptability in practical applications dealing with large-scale
datasets or hardware resource constraints.

3.3 Neck

The neck is the feature pyramid network (FPN), which is
responsible for fusing multiscale features from the backbone [33].
By constructing a multiscale feature representation structure, the
FPN effectively improves the algorithm’s detection performance for
objects of different sizes and the model’s ability to understand
semantic information in complex scenes. However, there are
some limitations in the transmission of the one-way information
flow of the FPN. To improve the chemical detection ability for dense
small target defects in steel, such as cracks and punching, we used
RepGFPN [34] to fuse and transmit defect information.

Compared with the traditional FPN structure, the multiscale features
of RepGFPN are fused in the two levels of the previous layer and the
current layer, which can fully exchange high-level semantic information
and low-level spatial information. More importantly, the jump
connection of the residual layer provides more efficient information
transmission, which can transfer shallow information to deeper structural
layers, The architectural details of this process can be clearly seen in
Figure 4, which illustrates how RepGFPN optimizes information flow

FIGURE 2
Illustration of the effect of adaptive histogram equalization: (A)
raw image and (B) image after adaptive histogram equalization.

FIGURE 3
ParC2Net network structure. The deep network is built by stacking ParNet Bottleneck modules, and the key features are strengthened with the SSE
attention mechanism.
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and feature fusion. In the feature fusion process of the neck, the number
of channels in different dimensions corresponding to the feature maps of
different sizes is set. By flexibly controlling the number of channels at
different scales, higher precision can be achieved by sharing the same
channel of all sizes. In the feature fusion module, the CSP stage is used to
replace the original feature fusion based on 3x3 convolution. Next, the
CSP stage is connected by integrating the heavy parameterization
mechanism and the efficient layer aggregation network (ELAN),
which achieves higher accuracy without imposing a large additional
computational burden. Because small steel targets are usually small in
size, subtle in detail, and susceptible to background interference,
RepGFPN improves the capture and differentiation of small target
features through better feature aggregation capabilities, improving the
accuracy of small target detection. Because RepConv uses structural
reparameterization, three branches are used for training, and three
branches are fused for inference, greatly reducing the inference time.
In real-time scenarios, RepGFPN not only achieves efficient frame rates
but also improves detection performance, which is particularly important
in industrial inspection environments, especially when it is necessary to
accurately detect small, fast-moving targets on the production line.

3.4 Head

The head is responsible for generating target detection results based
on the fused feature map. The head of YOLOv8 consists of multiple
output layers, each of which is responsible for detecting objects of
different sizes. Due to the low accuracy of defect recognition with

small and inconspicuous features, it is necessary to replace the
detection head with a more suitable head on a dataset rich in small
defects. The RexSE-Head head proposed in this paper improves the
detection ability of the model for dense and small targets, especially in
scenes where precise capture of microdefects, such as the surface of
chemical special steel, is needed.

The core of the RexSE-Head detection head architecture is that the
head structure incorporates the ResNeXt [35] and squeeze-and-
excitation (SE) attention mechanisms [36]. The specific structure is
shown in Figure 5. First, ResNeXt increases the number and width of
parallel paths in the network through packet convolution, which
improves the parallel processing capability of the detection head and
reduces the consumption of computing resources while maintaining
high precision. Second, the SEmodule weights the channel features after
each residual block, generates the attention weights of each channel by
global average pooling of the feature map, and then learns and adjusts
these weights using a two-layer fully connected network. In this way, the
model can dynamically adjust the channel contribution degree of the
feature graph according to the importance of different parts of the input
data, which is conducive to strengthening the attention given to the
subtle characteristics of chemical special steel defects and improving the
detection performance.

3.5 Loss function

The loss function is the core of model training, which quantifies
the difference between the predicted output of the model and the

FIGURE 4
RepGFPN structure diagram. The feature information extracted from the backbone network is input to CSPStage, which includes branch, fusion and
convolution operations. The Rep module implements the basic RepBlock in the RepVGG and includes training and deployment states.
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actual label, and guides the optimization direction of the model
parameters. Specifically, we use a loss function that takes into
account a number of key aspects, and its overall framework is
defined by Equation 1:

Lall � λαlobj + λβlcls + λδlbox (1)

Among them, Lall represents the total loss, which is composed of
the confidence loss lobj, the categorical loss lcls, and the regression
loss lbox which are constituted by the weighted summation of the
balance coefficients λα, λβ 和λδ to ensure the balanced contribution
of each component of the loss.

Confidence loss (lobj) Binary cross-entropy is used to
measure the degree to which the confidence of each
prediction box matches the true existence, and the
expression is shown in Equation 2, where pi represents the
true confidence level and p̂i is the confidence probability
predicted by the model.

lobj � −∑N

i�1p̂ilog pi( ) + 1 − p̂i( )log 1 − pi( ) (2)

ification loss (lcls) also uses the form of binary cross-entropy to
evaluate the fit between the predicted class probability distribution
and the real class label, as shown in Equation 3, where yi refers to the
actual class label and ŷi is the class probability distribution predicted
by the model.

lcls � −∑N

i�1ŷilog yi( ) + 1 − ŷi( )log 1 − yi( ) (3)

In the regression loss (lbox) design, we adopted MPDIOULoss

[37] to precisely adjust the position and shape
errType equation here.or of the predicted bounding box and the
actual labeling box. The mathematical formulation ofMPDIOULoss

is detailed in Equations 4–7|. By introducing the concept of
MPDIOU (Equation 5), the traditional IoU index is creatively
extended to include two distance terms (Equations 6, 7)| based
on the normalized bounding box size, i.e., diagonal distance squared
d21 and d

2
2, so as to quantify the deviation between the prediction box

and the actual box in terms of spatial layout, and significantly
enhance the performance of the model in precise positioning.

MPDIOULoss � 1 −MPDIOU (4)

MPDIOU � IOU − d2
1

h2 + w2
− d2

2

h2 + w2
(5)

d2
1 � xprd1 − xgt1( )2 + yprd1 − ygt1( )2 (6)

d2
2 � xprd2 − xgt2( )2 + yprd2 − ygt2( )2 (7)

Among them, (xprd
1 , yprd

1 )and(xprd
2 , yprd

2 )are the diagonal vertex
coordinates of the prediction box, while(xgt

1 , ygt
1 )and(x

gt
2 , ygt

2 )
correspond to the corresponding coordinates of the actual box, as
shown in Figure 6.

FIGURE 5
RexSE-Head network structure. RexSE-Head is a detection head that is specially designed for chemical special steel defect detection models.
RexSE-Head integrates the above ResNeXt bottleneck layer structure with the SE module to improve the network’s ability to learn the interactive
information between channels to improve the model performance.
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Compared to the standard IoU, MPDIOU is unique in its
mathematical form of non-monotonic focusing, which not only
takes into account the measurement of overlapping regions, but also
dynamically emphasizes the importance of differences between
bounding boxes of different sizes and shapes through the
introduction of distance terms. This design allows the loss
function to pay more attention to the difficult-to-classify
bounding boxes (especially the low-quality target boxes, such as
extreme tilt or partial occlusion) during the training process, and
effectively alleviates the overfitting problem through a non-uniform
loss allocation strategy. Specifically, when the prediction box
deviates greatly from the actual box, the MPDIOULoss will
increase significantly due to the increase of the distance term,
which forces the model to focus more on the optimization of
these difficult cases, and ultimately improves the positioning
accuracy and stability of the model on the target boundary in
complex scenarios.

4 Experimental results and analysis

4.1 Experimental dataset

In order to ensure the rigor and reliability of the experimental
results, the public dataset GC-DET10 was selected as the benchmark
for defect detection of chemical special steels. The dataset contains
more than 6,500 images, covering a wide range of defect sizes and
balanced number of categories, from tiny defects of less than 1 mm
tomore obvious damages, while also considering the orientation and
orientation of different defects to ensure the diversity of the dataset.
The images cover ten common micro-defect types, including
Punching (Pu), Weld Line (Wl), Crescent-shaped Gap (Cg),
Water Spot (Ws), Oil Stain (Os), Striae (Ss), Inclusions (In),
Rolling Pits (Rp), Crease (Cr), and Waist Fold (Wf). It is worth
noting that the shape, size and distribution location of defects in the
dataset are different, which puts forward high requirements for
defect detection algorithms, which need to have excellent
generalization ability and robustness to effectively cope with the
complex changes of defects under actual working conditions.

In addition, considering the complex lighting conditions that
may be encountered in the actual production environment and to

further enhance the robustness of the model, we used a variety of
data augmentation techniques during the training process. These
techniques include, but are not limited to, random rotation, flipping,
color dithering, brightness adjustment, and scale shifts to simulate
the changes that may be encountered in a real-world production
environment. These measures help the model better understand the
nature of defect features and maintain high detection accuracy even
on unseen samples.

The dataset is scientifically divided into a training set, a
validation set, and a test set, with a ratio of 8:1:1, which ensures
the rationality of model training, adjustment, and evaluation.
Figure 7 visualizes example images of the multiple defect types in
the dataset.

4.2 Experimental setup

This study relies on a deep learning environment based on a
cloud server, with Linux operating system, RTX A6000 GPU, and
51 GB of video memory. The deep learning framework used is
Pytorch 2.0, the coding environment runs on Ubuntu 18.04, uses
Python 3.10, and uses CUDA version 11.3.

Refer to the official guide of YOLOv8 for the experimental setup,
and adopt the free anchor strategy. Table 1 shows the specific
parameters.

For the training strategy, we set the initial learning rate to be
0.01, the weight attenuation coefficient to be 0.05, the maximum
number of iterations to be 32, and the intersection and union
threshold (IoU) to be 0.7. The training process is extended to
200 iterations, and the system automatically performs
performance evaluation on the validation set for each epoch
learned, so as to continuously monitor the progress of the model
and guide the optimization path.

At the same time, in order to ensure the reliability of the training
results and effectively reduce the potential bias caused by the
randomness of a single experiment, we adopted the following
strategies: firstly, the dataset was randomly divided multiple
times to generate multiple independent training/validation set
combinations; Subsequently, for each division, a complete
experimental process and evaluation are rigorously implemented.
Finally, the evaluation indicators obtained from each experiment
were summarized, and the average value was calculated to obtain a
more robust and representative final evaluation result, so as to
significantly improve the credibility of data evaluation.

4.3 Evaluation metrics

In this article, two key metrics are used to measure model
performance: detection accuracy and model size. A number of
criteria are used to evaluate detection accuracy, including Recall
(R), Precision (P), Average Precision (AP), and mean Average
Precision (mAP). Among them, the recall rate reflects the ratio
of the identified target to the actual total, The specific mathematical
expression is shown in Equation 8:

R � TP
TP + FN

× 100% (8)

FIGURE 6
Border box crossover ratio -MPDIou.
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Here, TP refers to the number of positive samples that are
correctly identified (true positives), while FN means the number of
positive samples that are not detected (false negatives).

Precision measures the accuracy of a positive sample in a test
result and is calculated as shown in Equation 9:

P � TP
TP + FP

× 100% (9)

TP is still a true positive, while FP is a negative sample that has
been incorrectly classified as a positive sample (false positive).

Average precision (AP) is a comprehensive measure of accuracy
at different recall levels, which is obtained by integrating the
accuracy within the recall interval, as shown in Equation 10:

AP � ∫1

0
P R( )dR (10)

where P(R) represents the precision of a particular recall level R and dR
represents the increment of the recall rate. The process involves
determining precision and recall one by one at multiple confidence
thresholds, then plotting an accuracy-recall curve and comprehensively
evaluating model performance by integrating the region below
the curve.

mAP further expands the concept of AP by calculating the
arithmetic average of AP values across all classes, ensuring
consistency of performance across classes and the validity of the
overall evaluation, It is calculated as shown in Equation 11:

mAP � ∑N
t�1APt

N
(11)

Here, N stands for the number of categories, emphasizing
consistency and overall effectiveness of performance across categories.

F-Score is a commonly used performance metric for detection
models, which is designed to combine precision and recall metrics.

Provide a score that balances the performance of both. It is
calculated as shown in Equation 12:

F − Score � 2 ×
Precision × Recall
Precision + Recall

(12)

Here, Precision and Recall represent the accuracy of predicting
as positive examples and the ability of the model to capture all
positive examples, respectively. The F-Score is placed between 0 and
1, and the closer the value is to 1, the better the overall performance
of the model.

In addition to evaluating detection accuracy, this paper
examines a number of key performance and efficiency metrics
such as model size, computational requirements (as measured by
Flops), and frame processing speed (Fps). These multiple evaluation
dimensions provide valuable insight into the complexity of the
model, its computational burden, and its ability to make real-
time inferences. In the experimental section of this paper, the
methods adopted and the results obtained are described, and the
indicators of the model are analyzed and verified.

4.4 Test results analysis

4.4.1 Model training
During model training, the convergence speed of the loss

function slightly represents the performance of the model. We
compare the loss function fitting between PRS-YOLOv8 and
YOLOv8, and the comparison curves of the two models are
shown in Figure 8. With an increase in the number of training
iterations, the training curve of the PRS-YOLOv8n model is
relatively smooth and can converge to a lower loss level at a
faster rate with the same number of iterations. When the loss
function value does not change, the training ends, and the loss
value of the PRSYOLOv8n model is lower than that of the
YOLOv8 model. This finding indicates that the improved model
in this paper has better performance than the original model and can
more accurately locate and identify target defects.

In order to compare the performance of the model before and
after the improvement more clearly, we observed the change trend of
Precision, mAP@0.5, Recall, andmAP@0.95 performance indicators
with the progress of the training epoch in real time. As shown in
Figure 9, the PRS-YOLOv8n has increased accuracy and recall,
meaning that it is both accurate and broadly covered when
identifying targets, avoiding missed detections. In addition, the
significant improvement of the model on mAP, whether it is
within the IoU threshold of 0.5 or the range of 0.5–0.95,

FIGURE 7
Partial types of defects in the dataset: (A) half-moon defect, (B) inclusions, (C) wear defect, (D) scratch defect, and (E) pitting defect.

TABLE 1 Experimental parameter settings.

Experimental parameters Specific values

Learning rate 0.01

Weight decay factor 0.05

Batch Size 32

Epoch 200

IoU threshold 0.7
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confirms that the model can still maintain excellent detection effect
under the diverse matching rigor, highlighting the strong
adaptability of the model to scenarios with different accuracy
requirements, especially in the early and middle stages of the
training cycle, and the superiority of PRS-YOLOv8n is
more prominent.

In general, the improved YOLOv8n detection model in this
paper has high accuracy and good detection performance, which can
better meet the application requirements of chemical special steel
defect detection.

4.4.2 Detection effect of different defects
To verify the ability of the model to detect ten common minor

defects in chemical special steel, the performances of the
YOLOv8 model and PRSYOLOv8 model were evaluated in
terms of the mAP@0.5, precision, mAP@0.95, and recall. A
comparison of the performances of the two models is shown
in Figure 10.

Experiments show that compared with the YOLOv8 model,
PRS-YOLOv8 can significantly improve the precision and recall
of punching, crescent-shaped gap, water spot, waist fold, and
other small target defects. This finding indicates that the PRS-
YOLOv8 model has greater localization and recognition ability
for small target defects in chemical special steel. When dealing
with defect categories with high texture similarity, such as Oil
Stain and Striae, the model shows a significant improvement in
detection accuracy, which strongly proves that it has stronger
resolution and accuracy in the recognition and classification of
defects of the same nature. This improvement not only improves
the accuracy of the detection algorithm, but also demonstrates the
excellent performance of the model in complex texture
recognition and fine classification.

4.4.3 Ablation experiment
To verify the validity of each component of the proposed

method, corresponding ablation experiments are performed on
each branch in this paper. The experimental results are shown in
Table 1, among which ParC2Net represents the designed parallel
architecture, RepGFPN represents the feature pyramid network
used by the neck, and RexSE-Head represents the designed
detection head mechanism. The baseline network model that was
adopted is the YOLOv8n network.

Table 2 shows that the proposed method significantly improves
the detection performance when it gradually introduces the
ParC2Net, RepGFPN, and RexSE-Head structures. Compared
with that of YOLOv8n, the precision of ParC2Net increases by
3.7%, indicating that the parallel flow design of this structure can
improve the backbone network’s ability to extract minor defect
information by 1.2% mAP@0.5% and 2.1% mAP@0.95. This finding
indicates that the average precision of the model increased under
different IoU thresholds, especially the high threshold, confirming
that ParC2Net can improve the model’s ability to identify and locate
small targets by increasing attention to important features. Second,
when the RepGFPNmodule is introduced, the recall rate is increased
by 3.1%, and the precision is increased by 1.9%, which indicate that
the deep fusion of semantic information can effectively reduce the
probability of missing small and medium defects of chemical special
steel and has a positive effect on improving the identification
accuracy of the detection model. The application of the RexSE-
Head detection head achieved a performance improvement with an
accuracy of 1.2% and a recall rate of 2.3%, which highlighted the
ability of the algorithm to efficiently capture targets of different
scales, especially small defects, and confirmed that by widening the
parallel path and adjusting the weight of the output feature channel,
the algorithm can effectively improve the accuracy of locating and

FIGURE 8
Line chart of training loss of PRS-YOLOv8n and YOLOv8n models.
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classifying defects. Combining the two indices mAP@0.5 andmAP@
0.95, the three modules increase mAP@0.5 by 1.2%, 1.7%, and 0.9%
and mAP@0.95 by 2.1%, 2.2%, and 1.1%, which proves the
effectiveness of these components once again.

To further understand how these components affect model
performance, we used Grad-CAM technology to visualize the key
areas of focus of the model. Figure 11 shows the Grad-CAM heat
map, where the red areas indicate the parts of the model that are of
focus when performing small defect detection. From these heat
maps, we can observe how ParC2Net, RepGFPN, and RexSE-Head
work together to guide the model to focus on those feature regions
that are critical for small object detection.

From these heat maps, it can be seen that the ParC2Net structure
can effectively capture the subtle features around the defect, the
RepGFPN module helps the model understand the global context of
the defect, and the RexSE-Head strengthens the model’s ability to
identify the key features of the defect. These heat maps provide
visual evidence of the important role these three components play in
improving small defect detection performance.

4.4.4 Comparative test
To evaluate the defect detection performance, the PRS-YOLOv8

algorithm is compared with five target detection algorithms: SSD,
YOLOv5, YOLOXs, DETR, and Faster R-CNN. To verify the
superiority of the model from multiple angles, the experiment

adopts three model sizes of n, s, and m for comparison. Standard
evaluation indices such as parameter number, average accuracy
(mAP), recall, and FPS were selected to comprehensively evaluate
the performance of different algorithms in chemical steel defect
detection. The hardware facilities and datasets used were consistent.
The final experimental results are shown in Table 3.

The experimental data show that compared with common target
detection algorithms, the PRS-YOLOv8 model has distinct
advantages in defect detection for chemical special steel. First,
compared with that of YOLOv8n, the parameter number of PRS-
YOLOv8n increased by only approximately 0.14 M, but the index of
mAP@0.5 increased by 2.1%. Notably, when the IoU threshold is
0.95, the mAP increases by 3.4%. This finding indicates that the
improved model not only achieves higher detection accuracy with a
small number of parameters but also greatly improves the detection
and positioning accuracy of small objects.

Secondly, as shown in Figure 12, in the horizontal comparison of
various size models, the PRS-YOLOv8 series designed by us
surpasses the basic YOLOv8 model in the n, s, m, and l versions,
demonstrating better mAP performance. Although PRS-YOLOv8
has made some concessions in terms of operating speed (FPS), it still
has a significant advantage in competition with traditional
algorithms such as Faster R-CNN, and has achieved significant
growth in the high-precision standards, namely, mAP@0.5 and
mAP@0.95, which highlights the deep optimization of detection

FIGURE 9
Comparison chart of the real-time performance of YOLOv8n and PRS-YOLOv8 training. (A) Precision comparison chart. (B)mAP@0.5 Comparison
chart. (C) Recall comparison chart. (D) Comparative chart mAP@0.95.
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accuracy by PRS-YOLOv8 while maintaining efficient inference
rates. In order to further verify the advantages of the PRS-
YOLOv8 model over other advanced object detection algorithms,
we compare it with recent algorithms designed for small object

detection, including Gold YOLO [17], EfficientDet-D0 [40], and the
latest DAMO-YOLO-L [34] and PP-YOLOE-L [16] models. A
relatively low computational complexity (measured in GFLOPs)
is maintained. This means that PRS-YOLOv8 can achieve better

FIGURE 10
Comparison of the detection results for different types of defects between YOLOv8 and PRS-YOLOv8: (A) comparison chart of mAP@0.5, (B)
precision comparison chart, (C) mAP@0.95 precision chart, and (D) recall comparison chart.

TABLE 2 Results of the ablation experiment.

Model Precision Recall mAP@0.5 mAP@0.95

YOLOv8n 84.1% 81.1% 87.5% 53.8%

YOLOv8n + ParC2Net 87.8% (+3.7) 81.7% 88.7% 55.9%

YOLOv8n + RepGFPN 86.0% 84.2% 89.2% 56.0%

YOLOv8n + RexSE-Head 85.3% 83.4% 88.4% 54.9%

PRS-YOLOv8n 87.9% 84.7% (+3.6) 89.6% (+2.1) 57.2% (+3.4)

The best experimental results are marked in bold, and the values in parentheses reflect the gain of the comparison base model.

FIGURE 11
The area of focus for each component when detecting small defects. (A) Original image of steel Striae. (B) Feature heat map using ParC2Net. (C)
Characteristic heat map using RepGFPN. (D) Feature heat map using RexSE-Head.
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detection results with lower resource overhead in actual deployment
scenarios, which undoubtedly lays a solid foundation for its
application in resource-constrained environments, and fully
reflects the excellent design of the model in terms of balance
between efficiency and accuracy.

In summary, the PRS-YOLO model has shown strong
competitiveness and wide application potential in defect
detection of chemical special steel products from the perspective
of detection accuracy, computational complexity, and real-time
performance.

4.4.5 Visual result analysis
In this study, a heat map was utilized to visualize the results of

defect detection. By observing the highlighted areas in the heat map,
you can visually assess the detection capability of the model and the

accuracy of target positioning. The experimental results are shown
in Figure 13.

According to a comparison of the defect heatmaps of the
YOLOv8 model and the PRSYOLOv8 model in Figure 13, the
PRS-YOLOv8 model shows more obvious attention to the defect
target. In addition, the comparison results demonstrate the accurate
location and identification of the defect object. This finding shows
that the PRS-YOLOv8 model effectively captures the key features of
the special steel defect detection task, thus achieving accurate
boundary box prediction.

4.4.6 Test results
The purpose of this experiment is to comprehensively evaluate

the performance of the PRS-YOLOv8model on the test dataset, with
special attention to its ability to identify different defect categories,

TABLE 3 Comparative experimental results.

Model Backbone Params (M) GFLOPs FPS mAP@0.5 mAP@0.95

YOLOv5-n [38] — 2.5 7.2 121.6 84.8% 51.1%

YOLOv5-s — 9.15 24.2 122.0 90.6% 64.4%

YOLOv5-m — 25.1 64.6 102.8 93.7% 72.4%

YOLOv5-l — 46.5 119.6 96.5 94.2% 73.6%

YOLOv8-n — 3.15 8.7 111.2 87.5% 53.8%

YOLOv8-s — 11.16 28.6 133.1 91.9% 65.2%

YOLOv8-m — 25.9 78.9 107.2 95.6% 74.4%

YOLOv8-l — 43.7 165.2 92.3 96.2% 75.6%

YOLOX-s [39] — 9.0 26.8 137.5 78.9% 44.7%

YOLOX-m — 25.3 73.8 150.3 90.5% 56.8%

YOLOX-l — 54.2 155.6 112.0 92.1% 62.0%

YOLOX-x — 99.1 281.9 98.2 93.8% 67.5%

Gold YOLO-n [17] — 5.6 12.1 — 82.5% 54.9%

Gold YOLO-s — 21.5 46.0 — 90.1% 57.5%

Gold YOLO-m — 41.3 87.5 — 93.5% 63.4%

Gold YOLO-l — 75.1 151.7 — 95.7% 70.5%

PRS-YOLOv8-n — 3.29 9.2 57.4 89.6% (+2.1) 57.2% (+3.4)

PRS-YOLOv8-s — 12.2 29.7 77.9 94.9% (+3.0) 67.7% (+2.5)

PRS-YOLOv8-m — 29.5 82.6 78.9 96.9% (+1.3) 75.0% (+0.6)

PRS-YOLOv8-l — 37.4 143.5 65.2 97.3% (+1.1) 78.2% (+2.6)

SSD [11] — 2.4 59.6 98.7 76.4% 39.1%

Faster RCNN [13] R50-FPN 42.0 930.7 18.5 85.2% 48.7%

DETR [18] R50 41.0 187 - 83.2% 43.3%

DAMO-YOLO-L [34] — 42.1 97.3 126 87.5% 65.5%

PP-YOLOE-L [16] — 52 110 94 88.9% 67.6%

EfficientDet-D0 [40] — 3.9 7.8 — 83.0% 52.1%

The results of the multi-size (n, s, m, l,) experiments of the designmodel in this paper are highlighted in bold, and the values in parentheses show the performance improvement compared to the

base model.

Frontiers in Physics frontiersin.org13

Wang et al. 10.3389/fphy.2024.1451165

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2024.1451165


FIGURE 12
This article compares the model with the most advanced real-time object detectors.

FIGURE 13
Thermal maps of some defect types in the dataset: (A) raw image of a steel oil spot,(B) heatmap of steel oil spot in YOLOv8, (C) heatmap of steel oil
spots in PRS-YOLOv8, (D)original image of pitting defects, (E) thermal map of the pitted defect of the YOLOv8model, (F) thermal map of pitted defects in
PRS-YOLO, (G) raw image of steel inclusions, (H) thermal map of steel inclusions in YOLOv8, and (I) thermal map of steel inclusions in PRS-YOLOv8.
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including but not limited to punching, scratching, half-moon
defects, etc. (see Figure 14). In order to ensure the fairness and
comprehensiveness of the evaluation, the test dataset used in this
paper is consistent, and the test dataset covers a variety of defect
types, different sizes, complexities, and diverse background
environments, aiming to simulate real industrial application
scenarios and ensure the diversity and representativeness of the
dataset. In this way, we validated the model’s ability to detect not
only pervasive defects, but also its accuracy in distinguishing highly
similar defects (e.g., the missed detection problem of Inclusions, and
the high false detection rate between Crescent-shaped Gap
and Striae).

YOLOv8 encounters several challenges in the defect detection
task of chemical special steels, especially when it comes to
identifying defects containing inclusions, and it is easy to be
confused in distinguishing defects with similar shapes (such as
crescent-shaped gaps and stripes), revealing its limitations in
dealing with defect categories with similar features. In contrast,
the PRS-YOLOv8 model has significantly improved these problems
through a series of innovative designs, not only greatly reducing the
occurrence of missed and false detection events, but also showing
excellent recognition accuracy when dealing with defect types that
are difficult to accurately identify by YOLOv8. In addition, the PRS-
YOLOv8 exhibits higher precision and positioning accuracy in the
detection of all defect types, which greatly enhances the reliability
and efficiency of the inspection results.

Overall, PRS-YOLOv8 has achieved significant progress in the
field of defect detection compared to YOLOv8, showing stronger
performance and accuracy both in small defect identification
problems and in conventional defect detection.

4.4.7 Application deployment
In order to ensure the robustness and reliability of the PRS-

YOLOv8 model in an actual industrial inspection system,
we discuss several key factors in the model integration
process, including hardware compatibility and strategies for
handling changes in production line image acquisition
conditions.

In real-world deployments, the hardware compatibility of the
model is critical. Given the small number of parameters (only
3.29M) of the PRS-YOLOv8 model, this makes it easy to deploy on
embedded devices such as industrial cameras and edge computing
units. We chose a computing platform that supports the ARM
architecture, ensuring that the model can run on a low-cost, low-
power device while maintaining real-time processing power.

On the production line, changes in lighting conditions, camera
position, and other factors can have an impact on inspection results. In
order to alleviate the influence of these factors, we use adaptive
histogram equalization technology to dynamically optimize the
image contrast in image preprocessing, so as to improve the model’s
perception of the target defect area. This strategy effectively enhances
the robustness of the model in complex environments, ensuring stable
detection performance even under changing conditions.

5 Conclusion

In order to solve the problem that it is difficult to detect multi-
category micro defects in chemical special steels, an enhanced
YOLOv8 network architecture is proposed: PRS-YOLOv8. By
introducing the adaptive histogram equalization technology, the
algorithm dynamically optimizes the image contrast and improves
the model’s perception of the target defect area. The application of
MPD-IOU loss function solves the problem of overfitting low-quality
bounding boxes and improves the robustness of the model in complex
scenarios. In addition, the addition of the ParC2Net module, the
RepGFPN structure, and the RexSE-Head detection head effectively
enhance the situational understanding and detection accuracy of the
model, especially the capture of subtle features.

The experimental results show that compared with the most
advanced small target detection algorithms Gold YOLO and
EfficientDet-D0, PRS-YOLOv8 has excellent performance in
small defect detection, with a score of mAP@0.5 as high as
93.5%, which significantly reduces the rate of missed detection
and false alarm. In addition, the number of parameters of the
model is only 3.29 MB, which is very suitable for resource-

FIGURE 14
Comparison of test results: (A) YOLOv8 defect detection diagram and (B) PRS-YOLOv8 defect detection diagram.
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constrained real-time application scenarios. However, the proposed
method still has some limitations. Specifically, there is room for
improvement in narrow defect detection, and the model’s ability to
generalize on unseen data or under different lighting conditions may
be limited. Future work will focus on enhancing the detection ability
of narrow defects by introducing strategies such as attention
mechanism and serpentine convolution, and improving the
adaptability of the model to diverse scenarios through transfer
learning and increasing training data.

In summary, PRS-YOLOv8 has several key advantages over
existing methods, including enhanced small target detection
capabilities, good robustness to complex scenarios, and high
efficiency and scalability. These advantages make it a promising
solution for practical applications, while its limitations point the way
for subsequent research and development.
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