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Due to the self-affine property of the grinding surface, the sample images with
different roughness captured by the micron-scale camera exhibit certain
similarities. This similarity affects the prediction accuracy of the deep learning
model. In this paper, we propose an illumination method that can mitigate the
impact of self-affinity using the two-scale fractal theory as a foundation. This is
followed by the establishment of a machine vision detection method that
integrates a neural network and correlation function. Initially, a neural network
is employed to categorize and forecast the microscopic image of the workpiece
surface, thereby determining its roughness category. Subsequently, the
corresponding correlation function is determined in accordance with the
established roughness category. Finally, the surface roughness of the
workpiece was calculated based on the correlation function. The experimental
results demonstrate that images obtained using this lighting method exhibit
significantly enhanced accuracy in neural network classification. In
comparison to traditional lighting methods, the accuracy of this method on
the micrometer scale has been found to have significantly increased from
approximately 50% to over 95%. Concurrently, the mean squared error (MSE)
of the surface roughness calculated by the proposed method does not exceed
0.003, and the mean relative error (MRE) does not exceed 5%. The two-scale
fractal geometry offers a novel approach to image processing and machine
learning, with significant potential for advancement.
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1 Introduction

The grinding surface exhibits a multitude of intricate geometric characteristics [1, 2],
however, when observed through the lens of an ordinary camera, the resulting image, while
displaying a random texture and weak features, fails to elucidate the distribution trend of
surface waviness. A macro scale image for surface roughness was a great start, but to really
get to grips with the surface’s geometrical properties, we need to zoom in to the micro scale.
This follows the two-scale fractal theory [3–5], which can be applied to various fractal-like
patterns [6–8], especially the fractal solitary theory, which was borne by the two-scale fractal
concept [9–12]. Surface microstructures exhibit fractal patterns [13–15], and surface
roughness on the nanoscale plays a pivotal role in the surface’s properties [16–20].
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Consequently, the ordinary camera is unsuitable for precision
measurement. The advent of machine vision [21–24] has opened
a new avenue for rapid and precise on-line measurement. Deep
learning has emerged as a valuable tool for analyzing
microscopic vision [25].

Due to the advantages of deep learning [26, 27] in detecting the
roughness of the grinding surface, including low cost, high
efficiency, non-contact, and so on, much achievement has been
obtained. Guo et al [28] used the signal features related to roughness
parameters in grinding processing as a dataset, and predicted the
roughness parameters of the grinding surface with the help of long
short-term memory network (LSTM) network. Yang et al [29]
integrated sparrow search algorithm and deep belief network to
construct a deep belief networkmodel (SSA-DBN) based on sparrow
search algorithm, and demonstrated the excellent performance of
this model in predicting the roughness of grinding surface through a
series of experiments. Xiao et al. [30] established a CAN-Network
(CAN-N) network coupled with deep learning to predict the
roughness parameters of grinding surface, which had good
prediction accuracy. EL Ghadoui et al [31] used a deep learning
method based on the Faster R-CNN architecture to recognize the
roughness of the grinding surface, and achieved a high recognition
accuracy. Huang et al [32] proposed a feature fusion approach
detection for evaluating the roughness of the grinding surface. This
method mitigates the interference of machine vision detection due
to the problems of blurred feature information and difficulty in
recognizing the roughness of the grinding surface. However, the
aforementioned studies that generally use macro-scale captured
images to construct the dataset, due to the relatively weak and
intricate texture features of the grinding surface, make the accuracy
of deep learning-based detection of the roughness of the grinding
surface to be constrained by the image texture features to a certain
extent. El-Ghadoui et al. [31] also analyzed the problem in their
study, in which they observed that the surface texture features of
machined surfaces fluctuate due to changes in the camera capturing
angle. The fluctuations in these surface texture features are
attributed to changes in the incident light source caused by
changes in camera angles. This phenomenon is particularly
evident on ground surfaces with more intricate texture
characteristics, where even minor fluctuations in the incident
light source can result in significant variations in surface texture.

In contrast to the deep learning self-extracted image features
used for roughness classification, the indicator method necessitates
the design of image feature indicators through artificial means.
However, the correlation model established based on the
indicators and roughness can predict the specific roughness
parameter values of the grinding surface, thereby conferring a
certain degree of interpretability to the image features. For
instance, Lu and colleagues [33] proposed establishing an index
relationship between surface roughness and gray level covariance
matrix (GLCM) and measuring the roughness parameters of the
grinding surface by obtaining the laser scatter image. Yi et al. [34]
proposed establishing an index relationship between the color index
of each pixel in the color image and surface roughness. This
relationship would be used to calculate the roughness value by
analyzing the change in color information. Zhang et al. [35]
proposed establishing an index relationship between the color
indices of each pixel of the color image reflected from the

machined surface and the roughness value of each pixel based on
the change in color information. The degree of red and green
blending of two colors in the reflected image of the processed
surface is used to establish an index relationship with the
roughness, and to initialize the weights of the machine learning
model using the migration fuzzy clustering method (KTFCM-NLS).

Given that the imaging method proposed in this paper
incorporates height information into the 2D image, a novel
indicator relationship must be established. This paper presents a
relationship between the average brightness of image pixel points
and surface roughness. The derivation of the evaluation mechanism
of the indicator covers the following aspects: Firstly, the shape of the
wave crest on the grinding surface is fitted to an ellipse based on
fractal analysis [36–38], with the validity of the fit being
demonstrated through experimentation. Subsequently, the
mathematical relationship between the reflected luminance and
the incident angle is determined based on the Lambert model
[39], with the final step being the mathematical relationship
between the height of the wave crest on the grinding surface and
the reflected luminance being proven based on the nature of the
ellipse. It is important to note that the use of artificially designed
feature indicators may result in the omission of certain information
[40]. Consequently, this paper proposes a novel approach to
roughness visual detection that combines the respective
advantages of metrics detection and deep learning. The proposed
method firstly classifies the photos of the grinding surface by deep
learning in order to determine the roughness category to which the
photos belong. Subsequently, an indicator function is constructed
for each category according to the classification results. This step
transforms the traditional monotonic function-type indicator into a
segmented function type, thereby enhancing the indicator function’s
fitting ability.

In summary, exploring an illumination method that can
eliminate self-affinity is not only important for improving the
accuracy of detecting the roughness of grinding surfaces based on
deep learning, but also makes the image have certain depth
information, which can then be used to calculate the specific
value of roughness using the index relationship.

2 Brightness evaluation of grinding
surface roughness

The appearance of brightness and waviness are two of the most
important criteria for the success of commercial products [41–43].
In this section, we will construct an optical imaging system capable
of eliminating interferometric signal, then establish a mathematical
model for the grinding surface, and finally establish a correlation
between image pixel point brightness and surface roughness.

2.1 Construction of an optical imaging
system capable of eliminating self-
affine features

Grinding surface images at the micrometer scale can increase the
accuracy and enhance the stability of the texture features observed in
the images. Nevertheless, only one scale will result in a reduction in
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the accuracy of the deep learning model in predicting the roughness
of the grinding surface due to the effect of the fractal nature of the
grinding surface topography.

The fractal nature of the grinding surface topography refers to
the fact that the grinding surface maintains an intrinsically similar
structure at different observation scales. However, this similarity is
approximately valid for a certain range of scales. In engineering,
two-scale fractal models were widely used for treating with
approximate similarity [44–47].

Observing the surface with only a single scale is always
unbelieving [48], two-scale observation is therefore needed.
When the observation scale (Field of view range: 30 mm ×
16 mm) on a macroscopic scale is magnified 135 times (Field of
view range: 4 mm × 2 mm) on a micrometer scale, the deep texture
that is difficult to distinguish at the macroscopic scale becomes
clearly visible at the micrometer scale. However, the degree of
similarity between these micro-texture features and macro-texture
features is not fixed, which leads to grinding surfaces with different
roughness levels. Although the morphological characteristics exhibit
certain differences at the macro scale, they may be highly similar at
the micro scale, as illustrated in Figure 1.

Figure 1 illustrates that, at the macroscopic scale, images with
different roughness levels are susceptible to light source noise, yet
there are still discernible differences between them. At the micron
scale, although the influence of light source noise is reduced, the

grinding surface images of different roughness levels may be highly
similar. This similarity presents a challenge to deep learning-based
machine vision methods, resulting in a decrease in the prediction
accuracy of the grinding surface roughness at the
microscopic scale.

In order to eliminate the fractal interference to visual detection
as much as possible, the position of the light source is changed. In
this method, a strip light source is placed in close proximity to the
grinding surface, and the position of the light source and the imaging
position are fixed. As illustrated in Figure 2, �n represents the plane
surface normal vector, �h denotes the rough surface normal vector, �μ
signifies the tangent of the rough surface, θorigini is the angle between
the incident light and the surface normal of the plane, θi is the angle
between the incident light direction and the rough surface normal,
and θo is the angle between the reflected light and the rough surface
normal. Due to the distinctive topography of the grinding surface,
comprising both high and low peaks, the varying wave peaks will
result in occlusion. Only those surface wave peaks in a specific
incidence angle range (θimin, θimax) and height range (hmin, hmax)
will reflect light at the imaging position. Consequently, the image
acquired at the microscopic scale contains height information,
which serves to eliminate the influence of the fractal-like surface
on the imaging image. Figure 3 illustrates the topography image of
the grinding surface acquired by the proposed optical imaging
method at the microscopic scale.

FIGURE 1
Images acquired at macroscopic and microscopic scales using conventional imaging methods, respectively. (A) Macroscopic scale (Field of view
range: 30 mm × 16 mm); (B) Micron scale (Field of view range: 4 mm × 2 mm).
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In order to gain a deeper understanding of the image height
information obtained by the aforementioned method, and thus
elucidate the mechanism of brightness evaluation of grinding
surface roughness, this paper will commence the construction of
a mathematical model for the grinding surface topography and a
surface reflection model. This will be followed by a mathematical
derivation to prove that there is a certain relationship between
surface height and image brightness. This will lay the foundation for
subsequent visual inspection research.

2.2 Mathematical modeling of
grinding surface

The grinding surface exhibits similarity property, that is the
image on a macro scale is similar to that on a micron scale. In order
to construct a grinding surface model that can eliminate fractal
interference and highlight the main wave peak topography, this
paper proposes an ellipse based on the samemajor andminor axes to
fit the grinding surface topography features. The schematic diagram

FIGURE 2
The proposed optical imaging method. 1) All possible specular reflections at the point; 2) All possible diffuse rays at the point; 3) All possible incident
rays at the point; 4) Industrial microscope; 5) Strip light source; 6) Sample; 7) Computer; 8) Collected results.

FIGURE 3
Images were acquired at the micron scale (Field of view range: 4 mm × 2 mm) using the proposed method (A) Real images; (B) The inverse value of
the gray value of the real image.
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of the model is presented in Figure 4. When the surface is smooth, as
illustrated in Figure 4A, the angle between the incident light and the
plane surface normal �n is designated as θorigini . When the surface
becomes rough in order to form a grinding surface, the angle

between the incident light and the rough surface normal �h is
expressed as θi. The wave peak of a single rough surface is
shown in Figure 4B. The subsequent step involves fitting the
rough crest to an ellipse shape that is raised up by the horizontal

FIGURE 4
Principle of the proposed model for grinding surface topography. (A) Smooth initial surface; (B) Rough surface after grinding processing; (C) Rough
surface after peak fitting.

FIGURE 5
The highest value points among the self-affine points. (A) Themeasured 2D point cloud data of the transverse section of the grindingworkpiece Ra =
0.447 μm; (B) Identification of the highest point in the self-affine point cloud.
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face, as illustrated in Figure 4C. In this model, a higher crest
corresponds to a larger upward bulge of the ellipse. In this
manner, the fitting can negate the impact of wave peaks with
self-affine characteristics, thereby reflecting the incidence angle of
the primary wave peak.

In order to demonstrate the rationality of this method, this paper
initially identified the self-affine points in the two-dimensional point
cloud data of the transverse section of the grinding surface obtained
by BRUKER Contour X-200 white light interferometer through
fractal analysis [36], and then deleted them in order to retain the
highest value point in the self-affine point group, as illustrated in
Figure 5. Subsequently, the point cloud was clustered using the
K-means algorithm [49] in order to ascertain the height of each wave
peak. Finally, each cluster was fitted to an ellipse shape with the same
major and minor axes by means of the ellipse fitting algorithm. As
illustrated in Figure 6, the greater the height of the wave peak, the
closer the ellipse’s center was to the peak.

After fitting and analyzing the grinding surfaces with different
roughness parameters, the errors of the aforementioned
mathematical model for various roughness surfaces are obtained
in this paper, and the detailed data are shown in Table 1. In this
table, MRE represents the average relative error between the crest
point and the fitted ellipse. As can be observed in Table 1, the

average relative error of the proposed mathematical model does
not exceed 30%. This result indicates that the model has
some validity.

2.3 Correlation between image pixel point
brightness and surface roughness

In order to accurately simulate the change of the reflected light
intensity with the roughness of the grinding surface, the Lambert
illumination model [50] is selected to construct the surface reflection
model in this paper. The Lambert model is a commonly used optical
reflection model that is particularly suited to simulating the diffuse
reflection effect of an object’s surface, thereby enabling the accurate
reflection of the influence of varying roughness on the reflected light
intensity. In the Lambert model, the reflected light intensity at a
given point on the surface is expressed as Eq. 1:

I � Iipkdp cos θi( ) (1)

Here, Ii represents the incident light intensity, kd represents the
diffuse reflection coefficient, and θi represents the Angle between the
incident light and the surface normal.

FIGURE 6
The ellipse model of grinding surface with the long axis of 30 μm and the short axis of 1.0394 μm.

TABLE 1 Surface fitting errors for different roughness parameters.

No Ra/(μm) MRE (%) Ra/(μm) MRE (%) Ra/(μm) MRE (%) Ra/(μm) MRE (%)

1 0.347 24.76 0.516 11.72 0.835 27.63 1.278 28.37

2 0.402 22.29 0.581 22.62 0.814 22.35 1.452 26.35

3 0.469 23.29 0.632 26.57 0.964 26.37 1.505 22.48

4 0.495 22.71 0.600 29.96 1.035 19.35 1.373 15.38

5 0.464 28.35 0.533 23.72 1.073 23.96 1.291 21.63
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In the Lambert model, the intensity of the reflected light is
directly affected by the incidence angle, while the magnitude of the
incidence angle depends on the distribution of the surface normal.
Moreover, the shape of the wave peaks on the grinding surface
determines the specific distribution of these normal. Based on the
illuminationmethod proposed in this paper and the grinding surface
fitting model, further assumptions are made: 1) Due to the small
imaging area in this paper, at the micrometer level, it can be assumed
that the illumination intensity of the incident light and the incident
angle on the horizontal plane are constant. This implies that the light
source is assumed to be parallel light. 2) As a result of the topography
fitting model eliminating smaller self-affine peaks, the height
difference between retained peaks is limited to the micron level.
Therefore, it is reasonable to assume that there is no mutual
occlusion between the wave peaks. Subsequently, the relationship
between the reflected light intensity of a single wave peak and the
height of the wave peak is derived as follows.

As shown in Figure 7, when a single parallel ray hits the plane,
the angle between its incident ray and the plane normal is θorigin, and
the incidence angle of parallel lights is unchanged. When the plane
becomes an elliptic crest, the angle between its incident ray and the
normal of the elliptic surface is θi. The angle between the surface
normal of the ellipse and the Y-axis is φ, which can be expressed as
Eq. 2.

φi � θorigin − θi (2)

In Section 2.2, it is introduced that this article employs the ellipse
fitting algorithm to fit the peaks. The ellipses fitted by this fitting
method are typically represented in the form of standard ellipse
equations. In this context, this article employs the standard equation
of an ellipse centered on the y-axis as a case study to illustrate the
mathematical relationship between the reflected light intensity of a
single ray and the relative position of the wave peak.

y2

a2
+ x2

b2
� 1 (3)

Let P(x0, y0) be a point on the elliptic sphere and the angle
between its normal and the X-axis be 90° − φi, then the slope of the
normal is k � − tan(90° − φi) and the slope of the tangent is −1/k �
tan(φi).

According to Eq. 3, we have

y′ x0( ) � −b
2x0

a2y0
� tan φi( ) (4)

Additionally, we have

y2
0

a2
+ x2

0

b2
� 1 x0 ≥ 0, y0 ≥ 0( ) (5)

Solving the above equations simultaneous, we have

y0 � ab3������������
a6 tan φi( ) + b6

√ (6)

When multiple parallel lights are incident, the total reflected
light intensity of the wave peak is the sum of the reflected intensity of
all rays illuminating on the wave peak. The height difference
between different peaks can be expressed as follows.

Δy � ∑N
i�1

ab3���������������������������
a6 tan θorigin − arccos I

kdIi
( )( ) + b6

√

− ∑N−Δ

i�1

ab3���������������������������
a6 tan θorigin − arccos I

kdIi
( )( ) + b6

√ (7)

whereΔmeans thatΔ bars are not illuminated on this wave peak due
to the height difference. Since a higher wave peak has more incident
light, the intensity of the reflected light is also greater, as shown
in Figure 8.

The above derivation (Eqs 4–7) demonstrates a correlation
between pixel brightness and surface height in the imaging
method. Furthermore, the relative position relationship between
the surface crest height can be calculated by the pixel brightness,
which provides a foundation for the subsequent detection method.

TABLE 2 Working conditions.

Grinding wheel particle
size

Grinding wheel speed
(r/min)

Axial feed rate
(m/min)

Cross feed rate
(m/min)

Grinding
depth (mm)

120 1,500 0.005 8 0.010

FIGURE 7
Incidence angles in the fitted model.
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FIGURE 8
Multiple parallel lights.

FIGURE 9
Flow Chart. G1, G2, G3, G4 represent the level of roughness, F1, F2, F3, F4 represent the index function fitted according to the workpiece with
different roughness levels.
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3 Experimental verification

3.1 Flowchart and experimental design

Due to the random texture characteristics of the grinding
surface, the shape of the fit ellipse is changeable, and the
occlusion ratio between different wave peaks is not fixed. The
direct application of the aforementioned derivation to the
calculation of the height of each point on the surface will
inevitably result in the generation of erroneous data. The surface
roughness parameter Ra is an average evaluation index.
Consequently, the error can be reduced by the average method,
which involves establishing the average brightness value of the image
pixel and the surface roughness parameter.

However, due to the change in surface roughness, the diffuse
reflection coefficient and specular reflection coefficient of the
grinding surface of the same material will change, which will
further affect the image pixel brightness. Consequently,
establishing a direct correlation between the image pixel
brightness and the surface roughness parameter Ra will inevitably
result in significant inaccuracies. To address this issue, this paper
proposes a method that combines a neural network with an
indicator. Firstly, the roughness level of the image is determined
by a neural network, and then the specific values of the roughness
parameters are predicted based on the indicator relationship
functions of each roughness level. The overall method is shown
in Figure 9.

In order to verify the effectiveness of the proposed method, this
paper conducted experimental designs from two aspects: neural
network classification and the prediction of specific values for
indicators.

With regard to neural network classification, this article refers to
the traditional macroscopic vision-based neural network prediction
method for grinding surface roughness parameters, as described in
[29–32], and the classification accuracy of the aforementioned
methods exceeds 90%. In order to gain a deeper understanding
of the fractal characteristics of grinding surface morphology and
their impact on neural network classification models at the micro
scale, the following steps were taken in this paper: Firstly, the
reference method [32] conducted classification experiments at the
macro scale, with the dataset denoted as D1. Subsequently, this
article conducted a replication of the traditional classification
experiments at the microscale using the same instruments and
equipment, with the dataset denoted as D2. Finally, the proposed
method will be applied to the same instrument and equipment for
classification experiments at the microscopic scale, with the dataset
denoted as D3.

In terms of predicting the specific values of roughness
indicators, this article fits the indicator function relationship of
different roughness levels by statistically analyzing the
correspondence between roughness parameters and image
brightness under the proposed method. Once the neural
network has predicted the roughness level of an image with
unknown roughness, this paper inputs the level into the
corresponding index function in order to calculate the specific
roughness value. A comparison of the calculated value with the
measured value has demonstrated the rationality and accuracy of
the method proposed in this paper.

3.2 Preparation of samples

The sample under examination was produced using the
M7130 (as shown in Figure 10A) precision horizontal axis
grinder, and the workpiece material is 45# steel, a common
engineering material. In order to ensure the rationality and
scientific nature of the experiment, the commonly used
processing parameters are selected in this paper, as shown in
Table 2. These include the grinding wheel particle size number,
grinding wheel speed, grinding depth, axial feed parameters and
transverse feed speed. The specific parameters are presented in
tabular form.

A total of 80 experimental sample blocks were obtained through
processing. In dataset D1, each sample is divided into two detection
areas in a manner that is uniform across the entire set, as illustrated
by the yellow box in Figure 10B. In datasets D2 and D3, each sample
is divided into four detection areas in a manner that is uniform
across the entire set, as illustrated by the blue box in Figure 10B. In
this study, the surface roughness tester TA260 was employed to
conduct five repeated measurements of the roughness parameter Ra
in each region. The average of these five measurements was then
taken as the roughness parameter value for the region. The overall
range of the roughness parameter Ra distribution of the sample is
(0.3 μm, 1.6 μm). Subsequently, this paper further subdivides the
roughness interval into four categories based on the ISO
1302 roughness grade standard. The four categories are as
follows: The range of roughness values (0.3 μm, 0.5 μm) is
designated as G1, (0.5 μm, 0.8 μm) as G2, (0.8 μm, 1.2 μm) as
G3, and (1.2 μm, 1.6 μm) as G4. Due to the non-uniform distribution
of grinding surface roughness, the number of detection regions
conforming to each classification interval is also non-uniform. The
number of detection regions in each classification interval is
provided in Tables 3, 4.

3.3 Imaging system and data acquisition

Building upon the theoretical framework presented in the
preceding section, an optical imaging system is constructed as
depicted in Figure 11. Following the construction of the imaging
system, this article selected the GP-660V industrial microscope
(resolution: 1920 × 1,080) and equipped it with a 2BRD6030 white
light strip light source (color temperature range: 6,500 K–7500 K) and
an AR67 white light ring light source (color temperature range:
3,300 K–12,000 K). Subsequently, this article employed both
traditional and novel methodologies to capture images of the
sample detection area at the millimeter scale (field of view range:
The dimensions of the sample detection area were 30 mm × 16 mm,
with a working distance of 115 mm and a depth of field of 14 mm. At
the micrometer scale, the field of view range was 4 mm × 2 mm, the
working distance was 85 mm, and the depth of field was 2 mm.
Specifically, at the micrometer scale, this article employed two distinct
methods for image acquisition, which were subsequently subjected to
comparative analysis.

The study randomly selected 10 images from each of the
10 detection areas. In order to expand the data set, techniques
such as rotation and cropping were employed for the D1 dataset.
This ensured that each detection area contained 15 images. For
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datasets D2 and D3, this article did not implement data
augmentation operations to ensure that the sample size in the
D1, D2, and D3 datasets is as similar as possible. Once all image
processing has been completed, the images are uniformly adjusted to
a size of 224 × 224 pixels for subsequent analysis. Subsequently, 80%
of the images in each classification interval were randomly selected
as the training set, while the remaining images were used as the test
set. The number of images in the test set and the training set is
presented in Tables 3, 4. It is important to note that, in this paper, the
roughness level division is carried out prior to image acquisition.
Consequently, in the construction of the data set, whether using the
traditional method or the novel method proposed in this paper, the

data structure of the two methods is identical. This step ensures the
consistency and comparability of data during subsequent image
analysis and processing.

3.4 Correlation between image pixel
brightness and surface roughness

In the experimental section of this article, we randomly selected
40 detection regions from each of the four classification intervals
(G1, G2, G3, G4) of dataset D3 for correlation analysis. Based on
these regions, we constructed indicator functions. As the number of

FIGURE 10
Processing equipment and measuring equipment (A) ordinary horizontal axis moment table surface grinder M7150H (B) surface roughness
tester TA260.

TABLE 3 Composition of dataset D1.

Classification
interval

Number of detection
areas

Total number of
images

Number of training
sets

Number of validation
sets

G1 37 555 444 111

G2 39 585 468 117

G3 50 750 600 150

G4 26 390 312 78

TABLE 4 Composition of dataset D2 and D3.

Classification
interval

Number of detection
areas

Total number of
images

Number of training
sets

Number of validation
sets

G1 75 750 600 150

G2 78 780 624 156

G3 100 1,000 800 200

G4 54 540 432 108
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detection regions in each classification interval of dataset D3 exceeds
40, an additional 5 regions were selected for inclusion in the
validation set, which were not used in the construction of the
indicator functions. The validation set was specifically designed
to test and verify the accuracy of the constructed indicators. The
Figure 12 depicts the fitting curves of roughness and brightness for
each classification interval.

As illustrated in Figure 12, there is a clear and direct correlation
between the roughness and the average brightness of image pixels. In
these four correlation functions, the average brightness of image
pixels increases with an increase in the roughness parameter.

4 Experiment and result analysis

4.1 Classification based on neural
network models

The classification experiment in this paper uses two different
sources of experimental data sets, one data set is the grinding
surface images at microscopic scale captured by the traditional
illumination method, and the other is the grinding surface images
acquired at the same scale by the proposed method. In order to
make a comprehensive comparison, this paper selects four
commonly used classification networks to perform classification
experiments on two datasets, including convolutional neural
network models: ConvNeXt V2, ResNet 101, lightweight neural
network: MobileNet V3, ShufflNet V2. The experimental results
are as follows.

Figures 13A–F and Table 5 depicts the outcomes of the training
process for each model across distinct datasets. The results
demonstrate that, when employing traditional methods and
utilising the imaging instrument described in this article, the

classification accuracy of the neural network can exceed 90%.
When the range of image acquisition is reduced, the accuracy of
traditional lighting methods is constrained, with a maximum
accuracy of only 52.52%. In contrast, the datasets constructed by
the proposed illumination method demonstrate significant
advantages, with the highest accuracy of 99.58%. The discrepancy
in outcomes can be attributed to the fact that traditional methods
solely enhance images by amplifying texture features, which in turn
exacerbates self-affine texture noise, thereby negatively impacting
the prediction accuracy of deep learning models. Conversely, the
proposed illuminationmethod effectively eliminates the interference
of self-affine texture features on the topography of the 2D image of
the grinding surface. The experimental results presented in this
series demonstrate the effectiveness and superiority of the
illumination method proposed in this paper.

Furthermore, an examination of the accuracy and loss curves
between convolutional neural network models and lightweight
neural network models in deep learning models reveals that,
despite the superior accuracy of convolutional neural network
models (ConvNeXt V2, ResNet 101) (99.58%), the loss curves
(depicted by the blue and orange curves in Figure 13D) exhibit
considerable fluctuations. In other words, even after the overall
convergence of the loss curve, the discrepancy in loss values will
remain above 0.2. In contrast, the lightweight neural network model
can not only achieve a high accuracy (stable above 98%), but also its
prediction results are more stable than those of convolutional neural
networks. This phenomenon can be attributed to the relatively
modest size of the current dataset produced in this study. At this
scale, lightweight neural networks are able to demonstrate their full
potential, whereas convolutional neural networks are constrained by
the limitations of the data volume. Consequently, at this data scale,
the lightweight neural network model exhibits enhanced stability
and practicality.

FIGURE 11
Imaging systems corresponding to different datasets. 1) Industrial microscope; 2) Workpiece; 3) Circular light source; 4) Bar light source.
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Figure 14 depicts the confusion matrices of each model on
distinct test sets. It is evident that there is confusion among the
morphological features of images with disparate roughness

parameters captured at the micron scale using the traditional
illumination method. In particular, the confusion between G1
(0.3 μm, 0.5 μm) and G2 (0.5 μm, 0.8 μm) and between G3

FIGURE 12
Correlation functions for each classification interval. Correlation functions for the G1 interval (A), the G2 interval (B), the G3 interval (C) and the
G4 interval (D).
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(0.8 μm, 1.2 μm) and G4 (1.2 μm, 1.6 μm) is pronounced. The data
indicates that the similarity ratio of the self-affine texture of the
grinding surface exhibits fluctuations within the ranges of roughness
parameters (0.3 μm, 0.8 μm) and texture characteristics
(0.8 μm, 1.6 μm).

4.2 Prediction of roughness parameter

Following the processing of the deep learning classification
model, the image of the test area was successfully classified, and

its roughness level and the corresponding index function were
determined. In order to verify the effectiveness of the index, this
paper selects five detection areas in each roughness level of the test
set as the validation set of the test index. The specific values of the
roughness parameters of the sample block to be tested are then
predicted through the pictures of the sample block according to the
corresponding index functions. The experimental results are
presented in Table 6.

Table 6 illustrates that the average relative error between the
predicted value and the measured value of the indicator function
remains below 5%, thereby demonstrating that the proposed

FIGURE 13
Accuracy and Loss curves for each model using different datasets (A) Accuracy curve for D1 (B) Loss curve for D1 (C) Accuracy curve for D2 (D) Loss
curve for D2 (E) Accuracy curve for D3 (F) Loss curve for D3.
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FIGURE 14
Confusion matrices for each model on different test sets. (A) ConvNeXt V2 (B) MobileNet V3 (C) ResNet 101 (D) ShufflNet V2 (E) ConvNeXt V2 (F)
MobileNet V3 (G) ResNet 101 (H) ShufflNet V2 (I) ConvNeXt V2 (J) MobileNet V3 (K) ResNet 101 (L) ShufflNet V2.

TABLE 5 Evaluation index parameters of each model.

Model Accuracy Precision Recall

D1 (%) D2 (%) D3 (%) D1 (%) D2 (%) D3 (%) D1 (%) D2 (%) D3 (%)

ConvNeXt V2 91.05 48.75 96.72 91.98 40.98 97.03 91.58 48.75 97.05

ResNet 101 96.84 51.50 99.58 97.33 52.63 99.60 97.18 51.50 99.60

MobileNet V3 96.32 42.50 98.95 97.40 46.98 99.00 96.50 42.50 99.00

ShufflNet V2 91.05 52.25 98.32 92.45 52.23 98.50 91.58 52.25 99.43
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indicator relationship exhibits satisfactory detection performance.
Nevertheless, it is evident that the precision of the index function
prediction exhibits fluctuations within the narrow range of
roughness levels, spanning from 0.3 μm to 0.5 μm. In particular,
there is an instance where an image originally belonging to
roughness level G1 was incorrectly predicted to be an image of
roughness level G2. This phenomenon indicates that the self-affine
texture noise is not readily eliminated by our method at the micron
scale due to the fluctuation of the self-affine texture similarity ratio
in the region with relatively weak texture features. Further research
is necessary to investigate this issue.

5 Conclusion

This paper presents a visual inspection method that can
eliminate the influence of self-affine grinding surfaces. The
method is constructed by improving the illumination method
and combining the neural network with the specific index
evaluation method. Firstly, the neural network model is
employed to categorize the grinding surface, and subsequently,
the specific value of the roughness is calculated in accordance
with the index function. Experimental data shows that the
imaging method proposed in this article can achieve a
classification accuracy of 99.58% for neural networks, and the
average relative error of the specific value of the roughness
predicted by the index is less than 5%. The experimental
results demonstrate the effectiveness of the proposed method.
The results of the experiments allow the following conclusions to
be drawn:

1. The accuracy of neural network classification is negatively
impacted when the image capture scale is reduced,
particularly when traditional lighting methods are employed.
However, the lighting method proposed in this article is an
effective solution to this problem and improves
classification accuracy.

2. Once the self-affine texture noise has been eliminated from the
2-D topography image of the grinding surface at the micron
scale, the average brightness of the image is larger and the
roughness of the image is also larger.

3. The similarity ratio of the self-affine texture of the grinding
surface exhibits fluctuations within the ranges of roughness
parameters (0.3 μm, 0.8 μm) and texture characteristics
(0.8 μm, 1.6 μm).

4. In the region with relatively weak texture features, the
fluctuation of the self-affine texture similarity ratio
precludes the complete elimination of self-affine texture
noise by changing the illumination method at the micron scale.

In the context of the proposed illumination method for surface
reconstruction, two approximation assumptions may potentially
lead to errors. To enhance the precision of the study, future
research may wish to examine the change ratio of the fitted
ellipse shape under varying roughness parameters in greater
depth, as well as the specific occlusion ratio between different
wave peaks. Concurrently, researchers may endeavor to integrate
binocular reconstruction technology with the illumination method
proposed in this paper, thereby investigating the broader potential
applications of this fusion technology in the domain of surface
reconstruction. Additionally the fractional calculus [51] and the
optimization-based detection system [52, 53] and the variational
iteration method [54] might be also applied for the fractal image
process. Furthermore the deep learning technology can be also
applied to Micro-electromechanical Systems [55, 56, 57].
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TABLE 6 Measured results (Ra:μm).

NO. G1 G2 G3 G4

Measured Forecast Measured Forecast Measured Forecast Measured Forecast

1 0.491 0.5213 0.511 0.5180 0.822 0.8543 1.494 1.4868

2 0.483 0.4829 0.792 0.8254 0.846 0.8473 1.257 1.2796

3 0.488 0.4765 0.632 0.6102 0.957 0.9521 1.556 1.5884

4 0.424 0.3954 0.551 0.5698 0.964 0.9648 1.531 1.5583

5 0.417 0.3894 0.509 0.5105 1.153 1.0569 1.383 1.4530

Error MSE:0.000525 MSE:0.000400 MSE:0.002061 MSE:0.001451

MRE:4.3782% MRE:2.5489% MRE:2.6023% MRE:2.2401%
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