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Recent advancements in quantum computing and quantum-inspired
algorithms have sparked renewed interest in binary optimization. These
hardware and software innovations promise to revolutionize solution
times for complex problems. In this work, we propose a novel method for
solving linear systems. Our approach leverages binary optimization, making
it particularly well-suited for problems with large condition numbers. We
transform the linear system into a binary optimization problem, drawing
inspiration from the geometry of the original problem and resembling the
conjugate gradient method. This approach employs conjugate directions
that significantly accelerate the algorithm’s convergence rate. Furthermore,
we demonstrate that by leveraging partial knowledge of the problem’s
intrinsic geometry, we can decompose the original problem into smaller,
independent sub-problems. These sub-problems can be efficiently tackled
using either quantum or classical solvers. Although determining the
problem’s geometry introduces some additional computational cost, this
investment is outweighed by the substantial performance gains compared to
existing methods.
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1 Introduction

Quadratic unconstrained binary optimization (QUBO) problems [1] are equivalent
formulations of some specific type of combinatorial optimization problems, where one (or a
few) particular configuration is sought among a finite huge space of possible configurations.
This configuration maximizes the gain (or minimizes the cost) of a real function f defined
in the total space of possible configurations. In QUBO problems, each configuration is
represented by a binary N-dimensional vector q, and the function f to be optimized is
constructed using a N × N symmetric matrix Q. For each possible configuration, we have
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f q( ) � qT.Q.q. (1)

The sought optimal solution q* satisfies f(q*)< ϵ, where ϵ is a
sufficiently small positive number. It is often easier to build a system
configured near the optimal solution than to build a system
configured at the optimal solution.

The QUBO problem is NP-Hard and is equivalent to finding the
ground state of a general Ising model with an arbitrary value and
numbers of interactions, commonly used in condensed matter
physics [2, 3]. The ground state of the related quantum
Hamiltonian encodes the optimal configuration and can be
obtained from a general initial Hamiltonian using a quantum
evolution protocol. This is the essence of quantum computation
by quantum annealing [4], where the optimal solution is encoded in
a physical Ising quantum ground state. Hybrid quantum–classical
methods, digital analog algorithms, and classical computing inspired
by quantum computation are promising Ising solvers (see [5]).

Essential classes of problems, not necessarily combinatorial, can
be handled using QUBO solvers. For example, the problem of
solving systems of linear equations has been previously studied in
the context of quantum annealing in [6–9]. The complexity and
usefulness of the approach were discussed in [10, 11]. From those,
we can say that quantum annealing is promising for solving linear
equations even for ill-conditioned systems and when the number of
rows far exceeds the number of columns.

In another context, QUBO formulation protocols were recently
developed to train machine learning models with the promising
expectation that quantum annealing could solve this type of hard
problem more efficiently [12]. Machine learning algorithms and
specific quantum-inspired formulations of these strategies in the
quantum circuit approach have grown substantially in recent years;
see, for example, [13–18] and references therein. At the core of the
machine learning approach, linear algebra is a fundamental tool used in
these formulations. Therefore, the study of QUBO formulations of
linear problems and their enhancement can be of interest in the use of
the quantum annealing process in machine learning approaches.
Another recent example is the study of simplified binary models of
inverse problems where the QUBO matrix represents a quadratic
approximation of the forward non-linear problem (see [19]). It is
interesting to note that in classical inverse problems, the necessity of
solving linear system equations is an essential step in the whole process.

In this work, we propose a new method to enhance the
convergence rate of an iterative algorithm used to solve a system
of equations with an arbitrary condition number. At each stage, the
algorithm maps the linear problem to a QUBO problem and finds
appropriate configurations using a QUBO solver, either classical or
quantum. In previous implementations, the feasibility of the method
was linked to the specific binary approximation used. Generally, as
the condition number increases, more bits are required, which
increases the dimension of the QUBO problem. Our contribution
shows that a total or partial knowledge of the intrinsic geometry of
the problem helps reformulate the QUBO problem, stabilizing the
convergence to the solution and, therefore, improving the
performance of the algorithm. In the case of full knowledge of
the geometry, we show that the associated QUBO problem is trivial.
If the geometry is only partially known, we show that the QUBO
problems are small in principle, solvable with low binary
approximation.

The remainder of this paper is organized as follows: Section 2
briefly describes how to convert the problem of solving a system
of linear equations into a QUBO problem. The conventional
algorithm for this problem is presented and illustrated with
examples. Subsequently, we analyze the geometrical structure
of the linear problem A · x � b and their relation with the
function [20]; from them, a new set of QUBO configurations
is proposed, taking into account the intrinsic geometry in a new
lattice configuration. In Section 4.2, we implement these ideas in
a new algorithm using a different orthogonality notion (that we
call H-orthogonality) related to the well-known gradient descent
method. Using the N × N matrix A, we find a new set of N
vectors that characterize the geometry of the problem. We
compare the new algorithm with the previous version revised
in Section 2. Section 4.3 uses the tools of the previous section to
construct a different set of vectors grouped in many subsets
mutually H-orthogonal. This construction allows the
decomposition of the original QUBO problem into
independent QUBO sub-problems of smaller dimensions. Each
sub-problem can be addressed using quantum or classical QUBO
solvers, allowing arbitrary linear equation systems to be resolved.
In Section 5, we present the final considerations.

2 System of linear equations

2.1 Writing a system of equations as a
QUBO problem

Solving a system ofN linear equations ofN variables is identical
to finding a N-dimensional vector x ∈ RN that satisfies

A · x � b,

where A is the matrix constructed with the coefficients of the N
linear equations and b is the vector formed with the inhomogeneous
coefficients. If the determinant Det(A) ≠ 0, then there exists one
unique vector x* that solves the linear system. We can transform the
linear problem of real variables into a binary optimization problem
using a binary R-approximation of the components of one vector x̂:

x̂i � ∑R−1
r�0

q r( )
i 2−r. (2)

Define the vector q(r) � (q(r)1 , . . . , q(r)N ). The relation between x
and the binary numbers q(r)i is

x � x0 + L∑R−1
r�0

2−r q r( ) − I
2

( ),
where L is the length of the edge of theN-cube and I is theN-vector
(1, 1, . . . , 1). Utilizing Equation 2 and recognizing the summation
involving the I term, we can express

x � x0 + Lx̂ − 2R − 1
2R

LI, (3)

where x̂ � (x̂1, . . . , x̂N). With this notation, each binary vector

q � q 0( )
1 / , q R−1( )

1 , q 0( )
2 , . . . , q R−1( )

2 , . . . , q R−1( )
N( )
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of length RN defines a unique vector x. These choices ensure
that the initial guess x0 remains at the center of the N-cube.

To construct the QUBO problem associated with solving the
linear system, we provide a concrete example with N � 2; the
generalization to arbitrary N is straightforward. Let A be the
matrix and b be the vector.

A � 1 2
3 4

( ), b � 5
6

( ). (4)

The solution x* � (−4, 9/2) of the system minimizes
the function

f x( ) � ||A · x − b||2, (5)
with f(x*) � 0. We choose R � 3, L � 10, and x0 � (0, 0). The
binary vector q has six components. Figure 1A depicts the 26

vectors to be analyzed. To construct the QUBO problem, we
substitute Equation 2 into Equation 3 and utilize the

FIGURE 1
Performance of the original algorithm for solving linear equation systems. (A) 64 � 23×2 vectors x(q) used to represent possible solutions, with R � 3
and N � 2. The green diamond corresponds with the initial guess x0, the red square is the exact solution, and the orange triangle is the vector x(q*) that
minimizes the function f(x) restricted to the possible 64 QUBO vectors, with f(x(q*)) � 13/8 and q* � (0,0, 1, 1, 1,0). (B–C) We consider the iterative
QUBO resolution of the linear system A · x � b, for matrices with different condition numbers and N � 2. For each iteration, a vector x* is obtained,
and we plot f(x*). We use R � 3 in (B) and different values of R until convergence is reached in (C). In both cases, we use c � 2. The blue continuous curve
corresponds to the example in Equation (4). (D–E) We consider linear systems with N � 100 and matrix condition numbers Cond(A) � 2, 10, and 16
(continuous blue, green dashed, and dash-dot violet lines, respectively). (D) We use the Fujitsu system as the QUBO solver. (E) We use Qbsolv in its
standard configuration. In both cases, R � 3, and the maximum time allowed per iteration is 30 s. (F) We consider a linear system with N � 1000 and a
matrix condition number Cond(A) � 4. We use the Fujitsu system as the QUBO solver (solid green line) and Qbsolv software in its standard configuration
(blue dashed line). Additionally, we consider the case where N � 100 and Cond(A) � 104 (green dashed-dot line), demonstrating that the method does
not work well for square matrices with a large condition number. In all cases, R � 3, and the maximum time allotted per iteration is 300 s.
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corresponding result in Equation 5. It is not difficult to observe that
the function is redefined in the binary space of the 64 q’s, and
therefore, we can construct a new N × RN matrix Aq and an
N-vector bq satisfying

f q( ) � ||Aq · q − bq||2, (6)
where Aq � A ⊗ (20, 2−1, 2−2, . . . , 21−R), with ⊗ denoting the matrix
Kronecker product and

bq � 1
L

b + L
2R − 1( )
2R

A · I − A · x0( ).
In our particular case, we have

Aq � 1 0.5 0.25 2 1 0.5
3 1.5 0.75 4 2 1

( ) and bq � 3.125
6.75

( ).
To construct the QUBO matrix used in Equation 1, we expand

f(q) � [(Aq · q − bq) · (Aq · q − bq)]. Neglecting the constant
positive term bq · bq, we obtain the symmetric QUBO matrix

Q � AT
q · Aq − 2pDiag AT

q · bq( ), (7)

where Diag(/ ) converts an N-vector into a diagonal N × N
matrix. For our specific case, we have

Q �

−36.6 5 2.5 14 7 3.5
5 −20.8 1.25 7 3.5 1.75
2.5 1.25 −11.025 3.5 1.75 0.875
14 7 3.5 −46.3 10 5
7 3.5 1.75 10 −28.15 2.5
3.5 1.75 0.875 5 2.5 −15.325

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠.

The binary vector q* � (0, 0, 1, 1, 1, 0) minimizes the function
f(q). In Figure 1A, the orange triangle represents x(q*), which
minimizes the function in Equation 6. Note that in this case, the

QUBO solution is not the closest point to the exact solution of the
problem (the red square). However, for the procedure to work, it is
necessary only that the orange configuration lies within the same
quadrant as the exact solution.

Once the vector x(q*) is found using a QUBO solver, we repeat
the process to find a better solution (closest to the exact solution x*).
This involves redefining x0 → x(q*) and finding a new L*, smaller
than the previous L, such that the new N-cube contains a solution
closer to the exact one.

For our concrete example (RN � 6), verifying all the
configurations and determining the best solution are easy tasks.
However, whenN is big, this procedure becomes intractable because
the space of configurations is too large. A new search algorithm,
different from the brute force approach, is necessary. There are
different possibilities, such as simulated annealing algorithms [20],
metaheuristic algorithms [21], and particular-purpose quantum
hardware such as quantum annealing machines [9, 22] and
classical Ising machines [5]. Hybrid procedures using quantum
and classical computation are still possible [23].

Other algorithms to tackle QUBO problems are mentioned in
the review [1]. Once a QUBO solver is chosen, we can use the
iterative process to find the solution of the linear equations system.
We implement this procedure in Algorithm 1, as shown in Figure 2.

3 Methods

After developing the appropriate mathematical tools, we
implemented three methods in Python to solve the associated
QUBO problem.

• Exhaustive search (for small problems): when the number of
variables (denoted by RN) is less than 20, we directly evaluate

FIGURE 2
Preparation of the QUBO problem to solve a linear system of equations A · x � b, where x0 is the initial guess,NIter is the number of iterations used in
the algorithm, R is the bit approximation used for x̂i, and c> 1 is a constant.
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all possible QUBO configurations and select the one that yields
the optimal solution. This approach is guaranteed to find the
best solution but becomes computationally expensive for
larger problems.

• D-Wave Qbsolv (deprecated): for larger problems, we
employed Qbsolv open-source software provided by
D-Wave systems (although it is currently deprecated). This
Python library implements a simulated annealing algorithm,
which we integrated into our code alongside Qbsolv.

• Fujitsu Digital Annealer: we additionally utilized the Fujitsu
Digital Annealer system. We accessed the Fujitsu system
through an application programming interface (API) using
Python’s requests package. This allows our code to seamlessly
interact with the Fujitsu system and submit QUBO problems
for optimization.

The coefficients of the linear systems that we studied were
randomly generated. After transforming these coefficients into a
QUBO format, we converted them into JavaScript Object Notation
(JSON) for efficient data exchange. The resulting JSON data were
then sent to the Fujitsu system for optimization. Inquiries regarding
the implementation details or the code itself can be directed to
the authors.

4 Results

Section 4.1 presents the performance of the algorithm in
Figure 2 applied to problems with a small condition number.
The algorithm works well in this case, but if we increase the
condition number, convergence is only obtained by increasing
the factor R associated with the numerical binary approximation
of the problem. Large condition numbers require larger R, and
Algorithm 2 is no longer efficient.

In Section 4.2, the previous issue is addressed by determining the
geometry of the hypersurfaces with xT · (ATA) · x constant. We
reformulate the QUBO problem considering this geometry and
show that solving this problem is trivial, even when using R � 1.
A linear system consisting of N � 5000 equations with a condition
number 106 is solved, demonstrating the power of the method.

In Section 4.3, it is shown that partial knowledge of the geometry
simplifies the QUBO approach. In particular, it is demonstrated that
in a large problem with a condition number where the algorithm in
Figure 2 fails, it is possible to decompose the original problem into
many independent QUBO sub-problems, each with a condition
number amenable to being approached by the algorithm in Figure 2.
Such decomposition is obtained with only partial knowledge of
the geometry.

4.1 Convergence of the conventional
algorithm

The performance of Algorithm 1 strongly depends on the type of
matrix A used in the problem, particularly on its condition number.
The example described in Equation 4 has a condition number
Cond(A) ≈ 15. For this example, it is sufficient to use the
parameters R � 3 and c � 2. As Cond(A) increases, the optimal

QUBO configurations deviate further from the exact solution of the
problem, and it is possible that in the next iteration, the exact
solution may fall outside the N-cube, breaking convergence. This
issue can be resolved by decreasing the parameter c, which increases
the number of iterations needed to reach convergence.

Another option is to increase the factor R of the algorithm,
which increases the number of QUBO configurations. This, in turn,
helps the optimal QUBO solution stay closer to the exact solution of
the problem. However, increasing R also enlarges the dimension of
the QUBO problem to RN × RN, thereby escalating the difficulty of
the QUBO approach, at least in principle. In Figures 1B, C, we
illustrate these issues for the simpler case of N � 2.

In Figures 1D, E, we solve three different systems of linear equations
with N � 100, R � 3, and different Cond(A)< 20. The vector b
associated with the problem was generated using random numbers
between −200 and 200, and the matrix A was generated using random
unitary transformations applied to appropriate diagonal matrices. In
this study, we compare the open-source heuristic algorithmQbsolv in a
classical simulation (which uses Tabu search and classical simulated
annealing) and the Fujitsu system, which is a classical QUBO solver
inspired by the quantum annealing approach. We observe that the
Fujitsu system finds an adequate configuration in each iteration,
reaching convergence when the process ends. For N � 100, Qbsolv
software reaches convergence when Cond(A) � 2 and parameter
c � 1.5, showing that for N � 100, it is advantageous to use the
Fujitsu system.

Figure 1F shows that for N � 1000 and Cond(A) � 4, the
method still works very well only for the Fujitsu system.
However, when Cond(A)≫ 20, the correspondence between
optimal QUBO configurations that minimize Equation 6 and the
closest configuration to the solution of A · x � b is lost. We can
choose a larger R, as shown in Figure 1C, but for larger matrices with
Cond(A)≫ 20, this procedure is not efficient.

The Fujitsu digital annealer enhances the well-known simulated
annealing algorithm with other physics-inspired strategies that
resemble quantum annealing procedures (see [24]). In our case,
involving large matrices, small binary approximations, and small
condition numbers, the Fujitsu system seems to be very efficient at
solving these types of problems. Large QUBO problems can be
solved using the Fujitsu system (QUBO with dimensions up to 105),
which includes integration with the Azure system’s blob storage to
load even larger problems. However, even with an efficient QUBO
solver like the Fujitsu system, in cases of large matrices with
appreciable condition numbers and small binary approximations,
Algorithm 1 is not adequate for solving a linear system equation with
a unique solution. For matrices with larger Cond(A), finding
correspondence between QUBO configurations that minimize
Equation 6 and configurations sufficiently close to x* depends on
the initial guess x0. This property resembles the gradient descent
algorithm used in minimization problems, where the convergence
rate can heavily depend on the initial guess. This drawback is
addressed in descent methods by considering the geometry of the
problem and reformulating it into a more powerful conjugate
gradient descent method. Next, we demonstrate that the
geometry associated with the system of linear equations can
improve convergence and break down a sizable original system A
with an arbitrary Cond(A) number into smaller ones Ai with lower
Cond(Ai) that could be solved separately using Algorithm 1.
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4.2 Rhombus geometry applied to the
problem A · x � b

4.2.1 Geometry of the problem A · x � b
The entire discrete set of possible configurations defines the

QUBO. Generally, there is little structure in this set. However, since
the problem is written in the language of vector space, there is a
robust mathematical structure that we can use to improve the
performance of existing algorithms. It is not difficult to observe
that the subset of RN, where f(x) (given by Equation 5 with A
invertible) is constant, corresponds to ellipsoidal hypersurfaces of
dimension N − 1. For N � 2, see Figure 3A.

All the ellipses in Figure 3A are concentric and similar.
Therefore, we can take a unique representative. Each ellipse
contains a family of parallelograms with different sizes but

congruent angles; see Figure 3B. In Figure 1A, the problem is
formulated using a square lattice geometry. However, nothing
prevents us from using other geometries, especially those better
suited to the problem. We can choose a lattice with the
parallelogram geometry. In particular, we choose the
parallelogram with equal-length sides (rhombus). Figure 3C
illustrates how possible configurations are chosen using the
rhombus geometry.

The choice of this geometry brings advantages in the final
algorithm efficiency since we need only a few iterations with the
rhombus geometry to obtain convergence to the solution. Given
an initial guess x0, such a point defines a rhombus. If the solution
x* is also inside the same rhombus, then we can guarantee that all
subsequent steps will also be inside the same rhombus as x* (see
proof in Supplementary Appendix S1). This property improves

FIGURE 3
Geometry of the matrix problem associated with the solution of a linear system. In (A), concentric ellipsoidal geometry in the inversion problem (5)
for a particular case whenN � 2. A is invertible and the ellipsoids corresponds to the regions in RN where f(x) is constant. All the ellipsoids are concentric
and contractible to the point x* (black point), which is the unique point that satisfies A · x* � b. In (B), family of parallelograms contained in a representative
ellipse of the figure (A). The parallelograms have different side lengths and congruent angles. In the figure, we highlight the parallelogramwith equal-
length sides (rhombus) in blue, which would be the base of our method to solve the problem A · x � b. In (C), space configurations of the QUBO problem
in the rhombus geometry (The green diamond corresponds with the initial guess x0, the red square is the exact solution, and the orange triangle is the
point x(q*) that minimizes the function f(x) between the lattice blue points). The unitary vectors v1 and v2 are the lattice vectors that define the
rhombus geometry.
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convergence and will be referred to here as rhombus
convergence.

We emphasize that the square geometry used in previous works
only coincides with thematrix inversion geometry when thematrixA is
diagonal. For non-diagonal matrices in the square geometry, the closest
point (in the conventional distance) to the exact solution x* is not
necessarily the point with themost negligible value off(x) between the
finite QUBO vectors. In other words, the exact solution x* would lay
outside the region containing the QUBO configurations, breaking
convergence. We can avoid the lack of convergence by reducing the
parameter c or increasing the number R in the algorithm but with the
consequence of increasing the number of iterations.

4.2.2 H-orthogonality

The ellipsoid form in the matrix inversion problem is given by
the symmetric matrix H � ATA; this becomes clear when we define
the new function f0(x) � ‖A · x‖, which defines the same set of
similar ellipsoids but centered at the zero vector. Particularly, the
matrix H introduces a different notion of orthogonality referred to
in the review [25] as H-orthogonality. Two vectors v1 and v2 in RN

are H-orthogonal if they satisfy

〈v1, v2〉H ≡ v1 · ATA · v2( ) � 0.

Given the N’s canonical vectors uk, with the kth coordinate
equal to 1 and all others equal to 0, we can construct from them
N H-orthogonal vectors vk associated with each uk using a
generalized Gram–Schmidt H-orthogonalization. The method
selects the first vector as v1 � u1. The vector vm is constructed as

vm � um + ∑m−1

k�1
βmkvk. (8)

The coefficients βmk in Equation 8 are determined using the
H-orthogonality property 〈vm, vk〉H � 0. Explicitly,

βmk � −〈vk, um〉H
〈vk, vk〉H

.

This procedure is implemented in Algorithm 2, as shown in Figure 4.
The calculated non-orthogonal unitary vectors (in the standard
scalar product) vk define the rhombus geometry previously
described. In Supplementary Appendix S2, we improve the
algorithm described above.

4.2.3 Modified search region

Considering the intrinsic rhombus geometry, the iterative algorithm
converges exponentially fast with respect to the number of iterations,
making it sufficient to useR � 1. TheQUBO configurations in Equation
3 around a certain guess x0 can be rewritten as

x � x0 + L∑N
i�1

x̂i − 1/2( )ui,

where {ui} is the canonical base. Therefore, we modified Algorithm
1 by changing ui → vi and x̂i → qi, where qi ∈ {0, 1}. The 2N QUBO

configurations are the vertices of a N-rhombus and are associated
with all the possible binary vectors q � (q1, . . . , qN). We can
substitute these modifications in the function f(x) and calculate
Aq and bq. Considering the vectors vi as the ith row of a matrix V
(where Vij � vi · uj), it is not difficult to see that

Aq � AVT (9)
and

bq � b + L

2
Aq · I − A · x0( )/L.

From Equation 7 and the H-orthogonality of the vectors vi
(matrix rows of V), it becomes evident that the QUBO matrix Q
constructed from Equation 9 is always diagonal. The QUBO solution
is trivial (this means that there are no necessary heuristic algorithms
or quantum computers to solve the QUBO problem). The modified
iterative process is shown in Algorithm 3, shown in Figure 5.

4.2.4 Implementation of the algorithm

Algorithm 3 works whenever the rhombus that contains the
QUBO configurations also includes the exact solution x*. This is
guaranteed when L is sufficiently large (in particular when L>L0,
where L0 is the “critical” value parameter to obtain convergence). In
Figure 6A, we show the algorithm performance for a particular
dense matrix with dimensions 5000 × 5000. The initial guess is the
N-dimensional zero vector (N � 5000). Note the dependence on
the parameter value c; the critical value is c � 2, and there is no
convergence for c> 2. To compare with the original algorithm, we
study the case with N � 500, corresponding to a QUBO problem
with 1500 variables (N � 500 and R � 3). Figure 6B, C show the
comparison of the two different approaches. The original Algorithm
1 in Figure 6C exhibits poorer efficiency than the modified
Algorithm 3 shown in Figure 6B.

FIGURE 4
Gram-Schmidt procedure for the calculus of the N’s
H-orthogonal vectors (v1 , . . . , vN)
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In the last section of this work, we show that having partial
knowledge of the conjugated vectors vi also simplifies the original
QUBO problem considerably.

4.3 Solving large systems of equations using
binary optimization

4.3.1 Decomposing QUBO matrices in smaller
sub-problems

In the previous section, we show that the knowledge of the
conjugated vectors that generate the rhombus geometry simplifies the
QUBO resolution and improves the convergence rate to the exact
solution. However, the calculus of these vectors in Algorithm 2 has
approximately O(N3) steps. A faster algorithm would be desirable.

Another interesting possibility is to use the notion of
H-orthogonality to construct a different set of N vectors vi grouped
inm different subsets in such a way that vectors in different subsets are
H-orthogonal. In this last section, we show that such construction
decomposes the original QUBO matrix in a block diagonal form, and
we can use amodified version of Algorithm 3.We can tackle each block
independently for some QUBO solver, and after joining the
independent results, we obtain the total solution. There are BN

possible decompositions, where BN is the number of possible
partitions of a set with N elements (Bell numbers).

Techniques for decomposing into sub-problems are
standard in the search process for some QUBO solvers. One
notable example is the QUBO-solver Qbsolv, a heuristic hybrid
algorithm that decomposes the original problem into many
QUBO sub-problems that can be approached using classical
Ising or Quantum QUBO solvers. The solution of each sub-
problem is projected into the actual space to infer better initial
guesses in the classical heuristic algorithm (Tabu search); see
[26] for details. Our algorithm decomposes the original QUBO
problem associated with A · x � b into many independent
QUBO sub-problems. We obtain the optimal solution

directly from the particular sub-solutions of each QUBO
sub-problem.

To see how the decomposition method works, we use the
generalized Gram–Schmidt orthogonalization only between
different groups of vectors. We choose m positive numbers ai,
satisfying N � a1 + a2 +/ + am. First, call

v 1( )
i � ui, If i ∈ 1, . . . , a1{ }.

For the other vectors, we use

v 1( )
j � uj +∑a1

k�1
βjkv

1( )
k , If j ∈ a1 + 1, . . . , N{ }.

We also require that the first group of a1 vectors be
H-orthogonal to the second group of N − a1 vectors; specifically,
this applies for j ∈ {a1 + 1, . . . , N}:

〈v 1( )
k , v 1( )

j 〉H � 0, if k ∈ 1, . . . , a1{ } and
j ∈ a1 + 1, . . . , N{ }.

This last condition determines all the coefficients βjk for each j,
by solving a linear system of dimension a1 × a1. For fixed j and
defining βj � (βj1, βj2, . . . , βja1), the linear system to solve is

βj � −H−1
a1
· hj,

whereHa1 is the corresponding sub-matrix ofH consisting of its first
a1 × a1 block sub-matrix and hj represents the first a1’s coefficients
of the jth column ofH. With the coefficients βj, we can calculate v

(1)
j

and normalize it. Grouping all these vectors as the rows of the matrix
V(1), it is possible to verify that

V 1( ) ·H · VT
1( ) � Ha1 ⊕ H 1( ),

where H(1) is a (N − a1) × (N − a1) matrix. We can put H(1) in a
two-block diagonal form using the same process, where one block
has dimension a2 × a2 and the second block has dimension
(N − a1 − a2) × (N − a1 − a2). In other words,

v 2( )
i � ui, if i ∈ 0, 1, . . . , a1 + a2{ } (10)

and

v 2( )
j � v 1( )

j + ∑a1+a2
k�a1+1

β 1( )
jk v

2( )
k , if j ∈ a1 + a2 + 1, . . . , N{ }.

To determine the new set of β coefficients, we use

β 1( )
j � −H−1

a2
· h 1( )

j ,

where β(1)j � (β(1)j,a1+1, β
(1)
j,a1+2, . . . , β

(1)
j,a1+a2 ), Ha2 is the first a2 × a2

block diagonal matrix of H(1), and h(1)j represents the first a2’s
coefficients of the jth column of H(1). Repeating the previous
procedure, we obtain a new matrix V(2), which has the property

V 2( ) · V 1( ) ·H · VT
1( )( ) · VT

2( ) � Ha1 ⊕ Ha2 ⊕ H 2( ).

Repeating the same process another (m − 3) times and defining

V ≡ Vm−1 · Vm−2/V2 · V1

and H(m−1) ≡ Ham, we obtain

V ·H · VT � Ha1 ⊕ Ha2 ⊕/⊕ Ham. (11)

FIGURE 5
Modified iterative algorithm using the rhombus geometry. TheCk

numbers are calculated in Algorithm 2.
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We use the notationHak to reinforce that this is a ak × ak matrix. We
implemented this procedure in Algorithm 4, as shown in Figure 7.

To effectively decompose a large matrix A with an arbitrary
condition number Cond(A) into m sub-problems Ha1, . . . ,Ham,
each tractable with Algorithm 1, we need to choose adequate
submatrices of H � AT · A such that Cond(Hai)<

��
15

√
. This is

always possible for large matrices H using the following
procedure. To construct Ha1, first test all the 2 × 2 submatrices of
H and choose the one with the minimal condition number. Next,
test all theN − 2 remaining indices to construct a 3 × 3 matrix with
the previous matrix, and choose the one with the minimal condition

number; repeat this procedure until reaching the desired dimension
a1 × a1 to obtain Ha1. Then, apply the modified orthogonalization
procedure explained above to obtain a new matrix H(1) with
dimensions (N − a1) × (N − a1), and using this matrix, construct
Ha2 in the same way. Repeat the procedure until reaching Ham.
Evidently, the indices of the submatrices are not ordered, but the
generalization is straightforward. Each matrix Hai is associated with
a set of indicesAi ⊆ {1, . . . , N}, whereAi ∩ Aj � ∅ for i ≠ j, and in
Equation 10, the substitution is made where i ∈ A1 ∪ A2. It is not
difficult to show that there exists a permutation σ of the matrix
indices such that the row–column permutation P(σ) · (V ·H · VT) ·

FIGURE 6
Performance of the newmethod for solving linear systems. In (A), we shown the iterative QUBOmodified algorithm applied to a linear system with
5000 variables and 5000 equations and Cond(A) ≈ 106. Note the fast convergence rate to the exact solution in a few iterations (cases c � 2 and c � 1.5).
All the 2.5 × 107 matrix coefficients of A and the 5000 vector coefficient of bwere generated using random numbers between 0 and 200. In themodified
algorithm we use L � 61000 and initial guess x0 � (0,0, . . . ,0). Considering xInv � A−1 · b as the solution obtained by classical inversion algorithms,
we have f(xInv) ≈ 7.07 × 10−7. We obtain f(x*) ≈ 7.08 × 10−9 with our modified QUBO algorithm. For c>2, the convergence is drastically destroyed. In
(B,C), we have the comparison between the iterative algorithms 3 (Panal (B)) and algorithm 1 (Panal (C)) for a matrix withN � 500, Cond(A) ≈ 106 and the
same initial L. The modified algorithm performs substantially better than the original (see Panal (B)). The function f(x*) for the vector x* obtained in the
final iteration is very close to zero). Algorithm 1 (Panal (C)) using Qbsolv as QUBO-solver in the standard configuration does not show convergence. The
Fujitsu system present the same behavior (We tested only 20 iterations, and the figure is not shown). In the two cases, the initial guess x0 is the zero vector.
In (D,E), we have the iterative algorithms 1 and 5 applied to two linear systems with dimensions 100 × 100 and 500 × 500. All the matrix coefficients of A
and the vector coefficients of bwere generated using random numbers between −200 and 200. We use L � 100 and an initial guess x0 � (0,0, . . . ,0). In
(d), we use the square geometry and algorithm 1. In Panal (E), we decompose the original matrix into 10 sub-problems with dimensions 10 × 10 and 10
sub-problems with dimensions 50 × 50. We only obtain exact convergence to the solution using the block decomposition shown in algorithm 5. In all
cases, we use R � 3 and c � 2.
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P(σ)−1 is put into an explicit block diagonal form. This remark is
important because we need to manipulate each block independently,
as will be shown in the next section.

4.3.2 Implementation of the algorithm

Suppose that the matrixH is transformed into block diagonal form
with each block Hi having Cond(Hi)<

��
15

√
, as explained above. The

procedure for decomposing and solving a QUBO problem is shown in
Algorithm 5 (Figure 8). For each matrix Hi in each iterative step, the
Fujitsu QUBO solver system is used. Figures 6D, E illustrate the
resolution of two matrices of sizes 100 × 100 and 500 × 500 using
block decomposition into ten 10 × 10 sub-problems and ten 50 × 50
sub-problems, respectively. The condition numbers of both matrices
are, respectively, Cond(A) � 1.3 × 105 and Cond(A) � 8.6 × 105.
Note that our method, unlike the original Algorithm 1, works for
arbitrary matrices and is not restricted to matrices with small condition
numbers (the two matrices were generated by choosing random
integers in the interval [−200, 200]).

5 Discussion

It has recently been conjectured that the use of quantum
technologies would improve the learning process in machine
learning models. In the standard quantum circuit paradigm,
many proposals and generalizations exist, promising better
performance with the advent of quantum computers. Machine
learning formulations such as QUBO problems are also another
possible strategy that can be improved with the development of
quantum annealing hardware. In such cases, the approach of
addressing linear algebra problems through QUBO problems is

of general interest because linear algebra is one of the natural
languages in which machine learning is written. In this work, we
proposed a new method to solve a system of linear equations using
binary optimizers. Our approach guarantees that the optimal
configuration is the closest to the exact solution. Additionally, we
demonstrated that partial knowledge of the problem’s geometry
allows decomposition into a series of independent sub-problems
that can be solved using conventional QUBO solvers. The solution to
each sub-problem is then aggregated, enabling rapid determination
of an optimal solution. We show that the original formulation as
QUBO is efficient only when the condition number of the associated
matrix A is small (with A being a square matrix). Our procedure is
applicable in principle to matrices with arbitrary condition numbers
where the error associated with the multiplication operations is
controlled. Therefore, our method is not restricted to matrices with
condition numbers close to 1.

However, identifying the vectors that determine the sub-
problem decomposition incurs computational costs that influence
the overall performance of the algorithm. Nevertheless, two factors
could lead to significant improvements: better methods for
identifying the vectors associated with the geometry and faster
QUBO solvers. In our study, when using a QUBO solver such as
the Fujitsu digital annealer, we focus on finding elite QUBO
solutions. This is because when the condition number is small,
we are guaranteed that the associated configuration is very close to
the solution to the problem. Finding elite solutions to QUBO
problems is very costly for large problems due to their NP-
hardness. However, the only criterion for obtaining convergence

FIGURE 8
Modified iterative algorithm using the block diagonal
decomposition of H. Here, Diag(ai )(AT

q · bq) take the components of
the vector (AT

q · bq) from the coordinate R × (a1 +/ + ai−1) + 1 until
the coordinate R × (a1 +/ + ai) and builds a diagonal
Rai × Rai matrix.

FIGURE 7
Block diagonal transformation of the matrix H associated with
the composition (a1 , a2 , . . . , am) from the partial H-orthogonalization
process described in the construction of equation (11). In the pseudo-
code the notation is βr � (βr1 , βr2 , . . . , βrak) and H[ak−1: : ak , r]
correspond with the r sub-column of H beginning in the row
component a1 +/ + ak−1 + 1 and finishing in a1 +/ + ak−1 + ak .

Frontiers in Physics frontiersin.org10

Castro et al. 10.3389/fphy.2024.1443977

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2024.1443977


in Algorithm 1 is to get a configuration in the same quadrant that
contains the solution to the linear system of equations. The number
of configurations in each quadrant (there are 2N quadrants) is
2RN/2N. For large values of N, this results in a large number of
configurations. Therefore, focusing on developing new methods to
find configurations in the same quadrant as the solution would be an
interesting strategy to overcome the NP-hardness of finding the best
QUBO solution. In any case, quantum computing or quantum-
inspired classical computation could be fundamental tools for
developing better approaches that can be integrated with the
procedures presented here. We intend to explore these interesting
questions in subsequent studies, and we hope that the methods
presented in this study can contribute to the discovery of better and
more efficient procedures for solving extensive linear systems
of equations.

Data availability statement

The raw data supporting the conclusions of this article will be
made available by the authors, without undue reservation.

Author contributions

EC: conceptualization, data curation, formal analysis,
investigation, methodology, software, validation, visualization,
writing–original draft, and writing–review and editing. EM:
conceptualization, investigation, methodology, project
administration, resources, software, validation, visualization, and
writing–review and editing. RS: methodology, resources,
supervision, validation, and writing–review and editing. AS:
conceptualization, formal analysis, investigation, methodology,
resources, software, supervision, validation, visualization, and
writing–review and editing. IO: conceptualization, funding
acquisition, methodology, project administration, resources,
supervision, visualization, and writing–review and editing.

Funding

The author(s) declare that financial support was received for the
research, authorship, and/or publication of this article. This work was
supported by the BrazilianNational Institute of Science andTechnology
for Quantum Information (INCT-IQ) (Grant No. 465 469/2 014-0), the
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior—Brasil
(CAPES)—Finance Code 001, Conselho Nacional de Desenvolvimento
Científico e Tecnológico (CNPq), and PETROBRAS: Projects 2017/00
486-1, 2018/00 233-9, and 2019/00 062-2. AMS acknowledges support
from FAPERJ (Grant No. 203.166/2 017). ISO acknowledges FAPERJ
(Grant No. 202.518/2 019).

Conflict of interest

Author EM was employed by Petróleo Brasileiro S.A.
The remaining authors declare that the research was conducted

in the absence of any commercial or financial relationships that
could be construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated
organizations, or those of the publisher, the editors, and the
reviewers. Any product that may be evaluated in this article, or
claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Supplementary material

The Supplementary Material for this article can be found online
at: https://www.frontiersin.org/articles/10.3389/fphy.2024.1443977/
full#supplementary-material

References

1. Kochenberger G, Hao JK, Glover F, Lewis M, Lü Z, Wang H, et al. The
unconstrained binary quadratic programming problem: a survey. J Comb Optim
(2014) 28:58–81. doi:10.1007/s10878-014-9734-0

2. Barahona F. On the computational complexity of ising spin glass models. J Phys A:
Math Gen (1982) 15:3241–53. doi:10.1088/0305-4470/15/10/028

3. Lucas A. Ising formulations of many np problems. Front Phys (2014) 2:1–15. doi:10.
3389/fphy.2014.00005

4. Kadowaki T, Nishimori H. Quantum annealing in the transverse ising model. Phys
Rev E (1998) 58:5355–63. doi:10.1103/PhysRevE.58.5355

5. Mohseni N, McMahon PL, Byrnes T. Ising machines as hardware solvers of
combinatorial optimization problems. Nat Rev Phys (2022) 4:363–79. doi:10.1038/
s42254-022-00440-8

6. O’Malley D, Vesselinov VV. Toq.jl: a high-level programming language for d-wave
machines based on julia. In: IEEE conference on high performance extreme computing.
Waltham, MA, United States: D-Wave (2016). p. 1–7doi. doi:10.1109/HPEC.2016.
7761616

7. Pollachini GG, Salazar JPLC, Góes CBD, Maciel TO, Duzzioni EI. Hybrid classical-
quantum approach to solve the heat equation using quantum annealers. Phys Rev A
(2021) 104:032426. doi:10.1103/PhysRevA.104.032426

8. Rogers ML, Jr RLS. Floating-point calculations on a quantum annealer:
division and matrix inversion. Front Phys (2020) 8:265. doi:10.3389/fphy.2020.
00265

9. Souza AM, Martins EO, Roditi I, Sá N, Sarthour RS, Oliveira IS. An application of
quantum annealing computing to seismic inversion. Front Phys (2021) 9:748285. doi:10.
3389/fphy.2021.748285

10. Borle A, Lomonaco SJ. Analyzing the quantum annealing approach for solving
linear least squares problems. In: WALCOM: algorithms and computation. Springer
(2019). p. 289–301doi. doi:10.1007/978-3-030-10564-8_23

11. Borle A, Lomonaco SJ. How viable is quantum annealing for solving linear algebra
problems? arXiv:2206 (2022). doi:10.48550/arXiv.2206.10576

12. Date P, Arthur D, Pusey-Nazzaro L. Qubo formulations for training machine
learning models. Sci Rep (2021) 11:10029. doi:10.1038/s41598-021-89461-4

13. Gong C, Zhou N-R, Xia S, Huang S. Quantum particle swarm optimization
algorithm based on diversity migration strategy. Fut Gen Comp Syst (2024) 157:445–58.
doi:10.1016/j.future.2024.04.008

14. Gong L-H, Ding W, Li Z, Wang Y-Z, Zhou N-R. Quantum k-nearest neighbor
classification algorithm via a divide-and-conquer strategy. Adv Quan Technol (2024) 7:
2300221. doi:10.1002/qute.202300221

15. Gong L-H, Pei J-J, Zhang T-F, Zhou N-R. Quantum convolutional neural network
based on variational quantum circuits. Opt Commun (2024) 550:129993. doi:10.1016/j.
optcom.2023.129993

16. Huang S-Y, An W-J, Zhang D-S, Zhou N-R. Image classification and adversarial
robustness analysis based on hybrid quantum–classical convolutional neural network.
Opt Commun (2023) 533:129287. doi:10.1016/j.optcom.2023.129287

Frontiers in Physics frontiersin.org11

Castro et al. 10.3389/fphy.2024.1443977

https://www.frontiersin.org/articles/10.3389/fphy.2024.1443977/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fphy.2024.1443977/full#supplementary-material
https://doi.org/10.1007/s10878-014-9734-0
https://doi.org/10.1088/0305-4470/15/10/028
https://doi.org/10.3389/fphy.2014.00005
https://doi.org/10.3389/fphy.2014.00005
https://doi.org/10.1103/PhysRevE.58.5355
https://doi.org/10.1038/s42254-022-00440-8
https://doi.org/10.1038/s42254-022-00440-8
https://doi.org/10.1109/HPEC.2016.7761616
https://doi.org/10.1109/HPEC.2016.7761616
https://doi.org/10.1103/PhysRevA.104.032426
https://doi.org/10.3389/fphy.2020.00265
https://doi.org/10.3389/fphy.2020.00265
https://doi.org/10.3389/fphy.2021.748285
https://doi.org/10.3389/fphy.2021.748285
https://doi.org/10.1007/978-3-030-10564-8_23
https://doi.org/10.48550/arXiv.2206.10576
https://doi.org/10.1038/s41598-021-89461-4
https://doi.org/10.1016/j.future.2024.04.008
https://doi.org/10.1002/qute.202300221
https://doi.org/10.1016/j.optcom.2023.129993
https://doi.org/10.1016/j.optcom.2023.129993
https://doi.org/10.1016/j.optcom.2023.129287
https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2024.1443977


17.Wu C, Huang F, Dai J, Zhou N-R. Quantum susan edge detection based on double
chains quantum genetic algorithm. Phys A: Statis Mech Its Appl (2022) 605:128017.
doi:10.1016/j.physa.2022.128017

18. Zhou N-R, Zhang T-F, Xie X-W, Wu J-Y. Hybrid quantum–classical
generative adversarial networks for image generation via learning discrete
distribution. Sign Proc Ima Commun (2023) 110:116891. doi:10.1016/j.image.
2022.116891

19. Greer S, O’Malley D. Early steps toward practical subsurface computations with
quantum computing. Front Comput Sci (2023) 5:1235784. doi:10.3389/fcomp.2023.
1235784

20. Alkhamis TM, Hasan M, Ahmed MA. Simulated annealing for the unconstrained
binary quadratic pseudo-boolean function. Eur J Oper Res (1998) 108:641–52. doi:10.
1016/S0377-2217(97)00130-6

21. Dunning I, Gupta S, Silberholz J. What works best when? a systematic evaluation
of heuristics for max-cut and qubo. INFORMS J Comput (2018) 30:608–24. doi:10.1287/
ijoc.2017.0798

22. Hauke P, Katzgraber HG, Lechner W, Nishimori H, Oliver WD. Perspectives of
quantum annealing: methods and implementations. Rep Prog Phys (2020) 83:054401.
doi:10.1088/1361-6633/ab85b8

23. BoothM, Berwald J, Uchenna Chukwu JD, Dridi R, Le D,Wainger M, et al. (2020).
Qci qbsolv delivers strong classical performance for quantum-ready formulation.
doi:10.48550/arXiv.2005.11294

24. Aramon M, Rosenberg G, Valiante E, Miyazawa T, Tamura H, Katzgraber HG.
Physics-inspired optimization for quadratic unconstrained problems using a digital
annealer. Front Phys (2019) 7:48. doi:10.3389/fphy.2019.00048

25. Shewchuk JR.An introduction to the conjugate gradientmethodwithout the agonizing pain.
Pittsburgh, PA, USA: Carnegie-Mellon University, Department of Computer Science (1994).

26. Booth M, Reinhardt SP, Roy A. Partitioning optimization problems for hybrid classical/
quantum execution. Burnaby, BC,Canada:D-WaveTheQuantumComputingCompany (2017).

27. Rump SM. Inversion of extremely ill-conditioned matrices in floating-point. Jpn
J. Indust. Appl. Math. (2009) 26:249–77. doi:10.1007/BF03186534

Frontiers in Physics frontiersin.org12

Castro et al. 10.3389/fphy.2024.1443977

https://doi.org/10.1016/j.physa.2022.128017
https://doi.org/10.1016/j.image.2022.116891
https://doi.org/10.1016/j.image.2022.116891
https://doi.org/10.3389/fcomp.2023.1235784
https://doi.org/10.3389/fcomp.2023.1235784
https://doi.org/10.1016/S0377-2217(97)00130-6
https://doi.org/10.1016/S0377-2217(97)00130-6
https://doi.org/10.1287/ijoc.2017.0798
https://doi.org/10.1287/ijoc.2017.0798
https://doi.org/10.1088/1361-6633/ab85b8
https://doi.org/10.48550/arXiv.2005.11294
https://doi.org/10.3389/fphy.2019.00048
https://doi.org/10.1007/BF03186534
https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2024.1443977

	Improving the convergence of an iterative algorithm for solving arbitrary linear equation systems using classical or quantu ...
	1 Introduction
	2 System of linear equations
	2.1 Writing a system of equations as a QUBO problem

	3 Methods
	4 Results
	4.1 Convergence of the conventional algorithm
	4.2 Rhombus geometry applied to the problem A⋅x=b
	4.2.1 Geometry of the problem A⋅x=b

	4.2.2 H-orthogonality
	4.2.3 Modified search region
	4.2.4 Implementation of the algorithm
	4.3 Solving large systems of equations using binary optimization
	4.3.1 Decomposing QUBO matrices in smaller sub-problems

	4.3.2 Implementation of the algorithm

	5 Discussion
	Data availability statement
	Author contributions
	Funding
	Conflict of interest
	Publisher’s note
	Supplementary material
	References


