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Introduction: External beam radiotherapy (RT) is one of the most common
treatments against cancer, with photon-based RT and particle therapy being
commonly employed modalities. Very high energy electrons (VHEE) have
emerged as promising candidates for novel treatments, particularly in
exploiting the FLASH effect, offering potential advantages over traditional
modalities.

Methods: This paper introduces a Deep Learning model based on graph
convolutional networks to determine dose distributions of therapeutic VHEE
beams in patient tissues. The model emulates Monte Carlo (MC) simulated doses
within a cylindrical volume around the beam, enabling high spatial resolution
dose calculation along the beamline while managing memory constraints.

Results: Trained on diverse beam orientations and energies, the model exhibits
strong generalization to unseen configurations, achieving high accuracy metrics,
including a δ-index 3% passing rate of 99.8% and average relative error <1% in
integrated dose profiles compared to MC simulations.

Discussion: Notably, the model offers three to six orders of magnitude increased
speed over full MC simulations and fast MC codes, generating dose distributions
in milliseconds on a single GPU. This speed could enable direct integration into
treatment planning optimization algorithms and leverage the model’s
differentiability for exact gradient computation.
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1 Introduction

In the treatment of cancer for deep-seated tumors, external
beam radiotherapy (RT) is recognized as one of the most effective
and commonly employed therapies [1]. Various types of radiation
have been explored, with X-ray radiotherapy being the most
commonly used, while a smaller portion of patients undergo
particle therapy (PT) utilizing protons or heavier ions. Electrons,
due to their unique interaction properties with matter, offer
potential advantages over photon RT and PT, especially for
specific irradiation modalities [2, 3]. For example, electrons
possess an advantageous attribute since they can be easily stirred
by a magnetic field, providing great flexibility in selecting the entry
angles of the radiation beams. Very high-energy electrons (VHEE)
in the 60–120 MeV range have been investigated for treating deep-
seated tumors, demonstrating comparable performance to
volumetric modulated arc therapy (VMAT) [4] and proton
irradiation, albeit with complexities and cost considerations [5,
6]. Technological advances, such as compact and cost-effective
C-band accelerating structures, now enable the feasible
production of high-energy electron fields, potentially making
VHEE therapy more accessible for clinical use [7].

Finally, there has been growing interest in the exploration of
high-dose-rate therapies, with electron FLASH therapy standing out
as a possible revolutionary treatment [8]. FLASH-RT is a novel
approach that promises an ultra-fast delivery of radiation (less than
200 milliseconds per treatment) with pulses featuring an ultra-high
dose rate (> 40 Gy/s). This makes FLASH-RT approximately
400 times faster than traditional radiotherapy, with a dose rate
several orders of magnitude higher than the traditional rate
(approximately 0.5 Gy/min). FLASH-RT derives its name from
the “FLASH effect” a biological phenomenon where irradiation at
ultra-high dose rates exhibits a superior ability to spare healthy
tissues while maintaining its effectiveness against tumors [9–11].

The prime candidates for fully exploiting the potential of this
effect are believed to be electrons, specifically VHEE, for the
treatment of deep-seated tumors [2, 12]. Currently, a treatment
planning (TP) algorithm exploiting the electron beam possibilities is
needed. The first step for a TP system is the estimation of the dose as
a function of the beam parameters. The ongoing research in the field
of TP for VHEE RT and electron FLASH-RT predominantly relies
on Monte Carlo (MC) simulations or the development of fast MC
simulations, such as FRED (Fast paRticle thErapy Dose
evaluator) [12–14].

In this context, deep learning (DL) algorithms are a promising
alternative to overcome current limitations, offering a dual benefit of
speed and precision in dose estimation. These algorithms can be
trained to replicate the output of MC simulations, enabling the fast
generation of dose distribution maps with a precision comparable to
MC. Moreover, the speed of DL models in generating these dose
distributions and the differentiability of their output enable the
development of a TP system based on them. Such a TP system could
integrate them into the merit function and exploit gradient-based
optimization algorithms for plan optimization.

Recently, an increasing number of studies on the application of
DL techniques to dose estimation and treatment planning has
emerged [15]. The majority of these studies concentrate on
clinically established treatments for which extensive datasets from

past patients are readily available. Moreover, only a limited number
address the DL emulation of dose distributions for individual beams
or fields [16, 17], while the majority of these efforts aim to replicate
entire treatment plans based on historical records [18, 19]. Although
it has been shown that DL models can effectively reproduce the dose
distributions, it is important to note that the accuracy of DL models
is intrinsically constrained by the precision of the algorithms that
they are trained to emulate. However, these are often the
deterministic algorithms used in the optimization of most current
treatment plans [18, 19]. Conversely, we propose that the true
advantage of employing DL lies in emulating MC simulations,
which, although substantially more accurate than deterministic
algorithms, are currently too slow for practical clinical use. This
approach can potentially enhance both treatment efficiency
and quality.

Few studies have explored the feasibility of reproducing MC-
simulated dose distributions [20, 21], and these are primarily
focused on novel radiotherapy treatments where deterministic
algorithms are not applicable. Finally, no DL-based solution has
yet been developed or applied for VHEE RT dose estimation.

We thus introduce a DL model designed to replicate MC-
simulated dose distributions for therapeutic VHEE beams in
patient tissues. Our strategy involves considering a voxelized
cylindrical volume around the beam, enabling us to predict the
dose at varying spatial resolutions. This approach minimizes the
model’s memory requirements while maintaining high accuracy in
the most relevant regions. The model is trained to take as input the
beam’s energy and the densities of organs inside the cylinder around
the beam and delivers an accurate and ultra-fast (0.02 s on CPU)
estimate of the dose distribution within the cylinder.

This paper is organized as follows. Section 2 describes in detail
the MC simulations used to build the dataset to train our DL model
along with the description of the model itself. Section 3 presents the
metrics used to evaluate our model and summarize the main results
of our work. Finally, Section 4 is dedicated to final discussion and
conclusions.

2 Materials and methods

The proposed DL model is trained to estimate the dose
distribution in a cylindrical volume with the symmetry axis
aligned with the beam. It outputs a 3D cylindrical dose map
which uses as input the densities in such a cylinder and the
beam energy.

2.1 Dataset

2.1.1 Monte Carlo simulation
The dataset used to train, validate, and test the proposed DL

model was built running a set of MC simulations using the
Geant4 toolkit (version 11.1.1) [22–24]. Geant4 is the most used
toolkit for developing radiation matter MC simulations, being
regularly validated also for medical applications [25]. Each
element of the dataset is a different simulation in which an
electron beam of varying energy and orientation simulates an
incident on a patient’s head and neck CT scan.
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The CT scan used in this study contains the head of a patient
with a meningioma (hereafter M1) treated at the Trento Particle
Therapy Center. We decided to use the M1 patient CT scan because
it has been used in a recent publication to compare treatment plans
delivered with VHEE FLASH RT, IMRT, and Proton therapy [14].
In future, we plan to compare a DL generated treatment plan with
that produced by currently available techniques. The CT scan was
composed of 260 slices 1 mm thick. Each slice was composed of
512 × 512 pixels with a side length of 0.6015626 mm. The CT scan
was imported as the detector geometry in a Geant4 simulation based
on the ICRP110 Human Phantoms Advanced Example [26].

Each voxel was assigned a material and a nominal density based
on its Hounsfield unit (HU) value. Firstly, depending on the binning
on HU values reported in Table 1, materials were assigned to each
voxel. In particular, on the right side of Table 1 the upper bounds of
the material binning were reported so that voxels with HUs −820
were assigned to the material “Air”, voxels with HU between −820

and 39 were assigned the material “Soft Tissue”, and so on. The
material list is that used for the Geant4 DICOM Digital Head in the
DICOM example [27]. HU boundary values between different
organs were computed based on the data in [27] where HU
mean and standard deviation values were reported for each
tissue. Boundaries are computed as the intersection points
between the Gaussian distributions with those mean and
standard deviation values. The upper bound for the air was set
manually to −820. In Geant4, a material is defined by an atomic
composition and a density value. To avoid the definition of a large
number of materials (one for each density value), we created a sub-
binning for each material with bin width equal to 50 HU. Using the
calibration curve used for the treatment planning of M1 [14]
(reported in Table 2), a nominal density was then assigned to
each voxel. Finally, nominal densities were averaged, so that each
voxel of a certain material’s sub-bin had the average density of the
voxels assigned to that sub-bin. As a result, there was univocal
correspondence between HU sub-bin ranges, materials,
and densities.

Using this geometry setting, therapeutic very high energy
electron (VHEE) beams were directed towards the center of the
CT scan. Each beam was modeled as a Gaussian pencil-beam with
a full width at half maximum (FWHM) of 0.5 cm whose source
lies on a 30-cm-radius sphere centered in the CT scan center. To
collect dose data, we used a cylindrical scorer with the z axis
aligned with the beam. The scorer comprised 100 voxels of 4 mm
length along the z axis, 20 voxels of 4 mm length along the r axis,
and 25 voxels along the theta axis, so that the inner voxels had an
angular length of ~ 1 mm, while the outer ones had an angular
length of ~ 2 cm.

Using a cylindrical scorer has two main advantages. The first is
that it is more precise near the beam line, where most of the dose is
deposited. The second advantage regards the exemplification of the
DL emulation problem. We required the DL model to reproduce the
dose in the cylinder around the beam so that we did not have to
account for a direct dependence on the beam orientation. Because
the beam distribution was fixed, the dose only depended on the
beam energy and the densities of the tissues in the cylindrical region
around the beam. On the left of Figure 1, we present a two-
dimensional schematic representation of cylindrical voxels
superimposed on a regular grid. Depending on the grid spacing
and cylinder voxelization, the cylindrical scorer can have an
increased resolution near the beamline. In the same figure, the
central and right panels show front and lateral slices of the CT scan,
respectively. The blue regions correspond to the intersection with a
cylinder whose axis is represented by the light blue line in the
right panel.

It is worth noting that the actual tracing in the simulation was
done considering the CT voxels, and only the scoring was done in
the cylindrical voxels.

Using this setting, we generated a dataset of 10.000 examples
with low statistics (10.000 primaries per beam, average 20%
statistical uncertainty) to train, validate, and test the DL model.
Each example contained the dose of a monochromatic electron
beam inside the cylindrical scorer. The beam energy was uniformly
sampled between 70 and 130 MeV. The two angular values defining
the orientation of the beams θ and ϕ were sampled uniformly as
integers respectively of 0–180° and 0–360°.

TABLE 1 Materials’ table. Left column: list of materials used in the MC
simulation, based on that used in [27]. Right column: upper bound of the
material binning is reported so that all voxels with HU less than −820 are
assigned to the material “Air”, all voxels with HU between −820 and 39 are
assigned the material “Soft Tissue”, and so on.

Material HU upper bound

Air −820

SoftTissue 39

BrainTissue 84

SpinalDisc 115

TrabecularBone_HEAD 242

CorticalBone 1,208

ToothDentin 1,540

ToothEnamel 3,071

TABLE 2 Calibration curve which rules the conversion between HU and
density, for the patient M1 [14]. The calibration curve was used to assign
each voxel of the CT scan a nominal density value.

HU Density [g/cm3]
−1,024 0.0

−820 0.205

−531 0.507

−89 0.96

−43 0.99

19 1.

22 1.06

42 1.070

187 1.160

850 1.530

1,302 1.820

4,000 3.551
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Our dataset was built to simulate conventional VHEE beams,
and our DL model was trained to reproduce such simulations. It is
possible to account for the FLASH effect after the conventional dose
calculation using the FLASHmodifying factor (FMF), as in [14]. The
FMF, defined in [28], is the ratio of doses that need to be
administered at conventional and ultra-high dose rates to achieve
the same effect for a given biological system. Thus, by multiplying
the simulated absorbed dose by the FMF, it is possible to account for
the organs at risk induced by the FLASH effect [14]. Such a
computation was performed after the treatment plan
optimization and thus was not an object of this study.

2.1.2 Density interpolation
As already mentioned, we sought to train the DL algorithm to

produce the dose map in a density map with the same mesh of
the input.

Therefore, for each example, we computed the density values in
the cylindrical voxels interpolating the densities we assigned to the
CT scan voxels. To obtain a reliable estimate of the density, we
sampledN random 3D points inside each cylindrical voxel. We then
computed the fraction of such points that fall in each of the CT
voxels, to which we refer as Ni, i ∈ {1, NCTvox}. The density
associated with a cylindrical voxel j ρj is then the average of the
density in the CT voxels weighted by the values {Ni} (Equation 1):

ρj � ∑iNi ρi
N

. (1)

For large N, this expression converges to the average weighted with
intersection volumes (Equation 2):

ρj � ∑iv
j
i ρi

Vj
, (2)

where Vj is the volume of the cylindrical voxel j, while vji is the
volume of the intersection between the cylindrical voxel j and the
CT voxel i. We chose N to be equal to 100 in order to obtain a
satisfactory estimate in a contained computing time. The study we
performed for choosing the most suitable number of sampling
points can be found in the Supplementary Material.

The cylindrical density maps represent the input to our DL
model, along with the information about the beam energy.

2.2 Deep learning model

The DL model developed in this work is based on graph neural
networks and has a U-net structure. A U-net [29] is a two-
dimensional fully convolutional neural network that is widely
used in medical applications. Its encoder–decoder architecture,
combined with skip connections, enables efficient modeling of
hierarchical features while mitigating the issue of vanishing
gradients. To account for the geometric structure of our data, we
replaced traditional with graph convolutions. Such a model
represents an improvement over the already published recursive
nearest neighbors (ReNN) graph variational auto encoder [30],
which we proved to be effective in predicting dose distributions
in homogeneous and simple in-homogeneous materials. Finally, we
compared such a model to a 3D U-net on a dose prediction task on
standard grid-like data presented in [21], finding comparable or
superior performance [31].

The model is composed of three modules: the encoder, the
embedder, and the decoder. The encoder takes input from the
density cylindrical graphs ρ, each with 50.000 nodes. Data are
processed through six GraphConv layers with an increasing
number of output channels: 32, 64, 128, 256, 256, 256 followed
by rectified linear unit activation (ReLu) functions. In the
GraphConv layer, the new node features x′ are a linear
combination between their old features x and a weighted mean
of their neighbors’ features (Equation 3):

xi′ � ReLu W1xi +W2
1

|N i( )| ∑
j∈N i( )

eijxj
⎛⎝ ⎞⎠. (3)

The edge features eij represent the weight of the link between nodes i
and j; in our model, they are learnable parameters of the network.
Between the convolutive layers, we used ReNN-Pool [30]. This
pooling technique allows the graph to reduce dimensionality,
dropping a consistent number of nodes but always assuring a
unique connected graph, creating new links between far nodes
regularly and efficiently. After five pooling operations, the output
of the encoder consisted of a small connected graph with 33 nodes.

The embedder is a two-layer multilayer perceptron which takes
input from the energy of the beam E and outputs a feature map with
the dimensionality of the number of nodes in the smallest graph

FIGURE 1
Cylindrical approximation. Left: 2D schematic drawing of cylindrical voxels superimposed on a regular grid. Center and right panels: front and lateral
sections of the CT scan. The intersection between the CT scan and a cylinder is highlighted in blue. Right panel: the cylinder axis, which coincides with the
beam line, is displayed as a light blue line.
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representation—33 nodes. The output of the encoder and the
embedder are then summed.

The decoder applies five GraphConv layers with a decreasing
number of output channels: 256, 128, 64, 32, 1. Each GrapConv
layer is followed by a ReLu activation except the last, which is
followed by a sigmoid activation function. Before each
convolutive layer, ReNN-UnPool is applied to retrieve the
original graph dimensionality and to allow skip connection
between the encoder and the decoder. Indeed, each decoder
layer takes as input the sum of the unpooled output of the
previous layer and the partial output from the skip connection
coming from the encoder.

Figure 2 presents a schematic representation of the model
architecture, including only two pooling layers for simplicity.

3 Results and discussion

We divided our 10.000 example dataset between train,
validation, and test sets. The examples selected for the test set are
275 and satisfy these conditions:

• Beam energy E ∈ [60, 70] ∪ [80, 90] MeV,
• Angle θ ∈ [45, 75] ∪ [105, 135] degree,
• Angle ϕ ∈ [75, 105] ∪ [165, 195] ∪ [255, 285] degree.

The rest of the dataset was split between train and validation sets
with a 1/10 ratio, so that the training set contained 8,752 examples
while the validation set contained 973. We chose this arrangement
for the test set in order to put ReNN GU-Net under a strict test,
testing its ability to interpolate between samples and generalize to

unseen configurations from both the point of view of patient
anatomy and the beam’s energy.

We also generated ten high statistical examples, whose
Geant4 simulations were run using one million primaries per
beam (× 100 more particles than in train, validation, and test
sets) with an average statistical uncertainty of 2%. These samples,
whose energies and orientations lie in the ranges of the test set, were
used for the final evaluation and plots.

After an extensive hyper-parameter optimization of the learning
rate, convolutional filters, and model depth, we trained our final
model with a learning rate of 0.005 and a batch dimension of 16,
with the learning rate scheduler ReduceOnPlateau with a patience of
20 epochs. The model was trained using Binary Cross-Entropy loss.
We stopped the training at the convergence of the validation loss
after 104 epochs. The training was conducted on a Tesla V100 GPU
and lasted approximately 4 h. The complete information about the
hyper-parameter optimization can be found in the
Supplementary Material.

In order to evaluate the results of our model, we considered four
different metrics:

• Mean absolute error (MAE): voxel-wise mean absolute error
between MC and DL dose.

• δ-index: introduced by Mentzel [20] and inspired by the
clinical γ-index [32]. It quantifies the voxel-wise absolute
error difference between MC and DL doses normalized by
the maximum dose. This measure gives less importance to
regions in which the dose is low and thus are therapeutically
less important. In particular, we consider the δ-index 3%
passing rate, which accounts for the percentage of voxels in
which the δ-index if less than 3%.

FIGURE 2
ReNN GU-Net. Simplified scheme of the ReNN GU-Net with two pooling layers. Density information ρ in the form of a 3D graph is processed by the
model through the encoder. The energy of the beam E is processed by the embedder and then added to the encoder output. The resulting graph is
processed by the decoder to retrieve the original graph dimensionality and to predict the dose distribution D.
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• Mean relative error (MRE) on dose profiles. We compute the
integrated dose profiles along the two cylindrical axes z and r
and compute the MRE between the MC and DL predictions.
We refer to these metrics as MRE z and MRE r.

• MRE on total dose. MRE computed on the full integral of the
dose, which represents the total dose, computed with MC and
DL. We refer to this measure as MRE E

We present the results for all metrics in Table 3 for the training,
validation, testing, and evaluation sets. The MAE, expressed in
micrograys (μGy), is calculated considering the dose as deposited
by a beam of 106 electrons.

The best agreement is observed on the high statistics examples of
the evaluation set. Increasing the statistics in an MC simulation
yields a reduction of the fluctuations with a consequent better
estimate of the dose distribution. DL models, by construction,
learn to interpolate smooth functions between the training
samples. Models based on convolutional layers are particularly

known for their smoothing effect on outputs. This effect is
leveraged in de-noising tasks, also performed on MC simulations
for radiation therapy [33], where a model is trained to suppress
fluctuations in noisy images or distributions. We took advantage of
this effect by training our DLmodel on low-statistics samples, which
can be produced more quickly, testing it on clinically valid high-
statistics MC samples. As shown in the results, the model learns to
ignore the fluctuation and predict a good estimate of the dose
distribution, comparable with the one generated by high statistics
MC simulations.

All the metrics show good agreement between the MC simulated
dose and the DL emulated one, with 99.8% of the voxels of the
evaluation set examples exhibiting a δ-index inferior to 3%.

In the top plots of Figure 3, we show the integrated dose profiles
along the z and r axes of the cylinder for an example drawn from the
high-statistics evaluation set with beam orientation defined by θ =
122° and ϕ = 178°, and beam energy E = 82.44 MeV. The dose
profiles predicted by our ReNN GU-Net (in orange) agree with the

TABLE 3 Dose results: we report the results for all metrics for training, validation, testing, and high-statistics evaluation set. Note that the best agreement is
found for the evaluation set because, by construction, DL models produce a smooth approximation of the learned function.

MAE [μGy] δ < 3% [%] MRE z [%] MRE r [%] MRE E [%]
Train 1.1 ± 0.1 98.7 ± 0.2 1.2 ± 0.3 2.0 ± 0.4 0.2 ± 0.2

Validation 1.2 ± 0.1 98.7 ± 0.2 1.4 ± 0.5 2.1 ± 0.5 0.3 ± 0.4

Test 1.2 ± 0.1 98.6 ± 0.3 1.6 ± 0.7 2.2 ± 0.4 0.4 ± 0.4

Eval 0.29 ± 0.07 99.8 ± 0.2 0.9 ± 0.9 0.5 ± 0.2 0.3 ± 0.3

FIGURE 3
Integrated dose profiles. Top: comparison of dose profiles along the z and r axes of the cylinder, computed throughMC simulation (blue) and our DL
model (orange), showcasing an example from the high-statistics evaluation set. The average CT scan density, calculated from HU using a calibration
curve, is indicated by a gray dashed line. Bottom: absolute error and percentage relative error between the dose profiles computed by MC and DL
methods (blue dots) along with the MC standard deviation (gray band).
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MC simulated profiles (in blue), even on the boundaries between
tissues with very different densities. The average density in g/cm3

computed from the CT scan using a calibration curve, as explained
in Section 2.2, is also shown for reference as a dashed gray line. The
agreement between the two profiles is quantified in the bottom plots,
where we report respectively the absolute difference between the
profiles (Err) and the percentage relative error between the profiles
(Rel Err) in blue dots. In both plots we also report the standard
deviation of the MC simulation (gray band). The percentage relative
error is computed directly between the two integrated profiles as
follows (Equation 4):

RE %[ ] � Dprof
MC −Dprof

DL

Dprof
MC

× 100, (4)

where Dprof
MC and Dprof

DL are respectively the dose profiles computed
with a MC simulation and with our DL model. The relative error is
mostly inferior to 2% except from the tails of the distributions, where
a lower amount of dose is deposited. These regions are typically
those in which the standard deviation of the MC simulation is also
higher due to the low statistics. Indeed, as is evident from the middle
and bottom plots, the errors appear to be correlated with the MC
standard deviation, and the absolute error rarely exceeds 0.1 mGy. It
is worth noting that the tails of the dose distribution are subject to a
large amount of uncertainty in the low-statistics training examples
of over 50%. Therefore, a larger error in the DL prediction, but still
coherent with the MC uncertainty, is expected.

The agreement is not limited to the integrated profiles but also
extends locally. In Figure 4, we present a plot similar to that in
Figure 3, depicting the dose profiles along the z-axis. This
computation is specifically for the central voxels, considering
only one voxel along the r-axis and marginalizing over θ. This
accounts for the region in the highest proximity to the beam line
with r< 4 mm, where a large amount of dose is deposited—around
75% of the total. Such a plot shows that the agreement between MC
and DL dose profiles persists, also restricting our analysis in the core
of the cylinder. Looking at the bottom plots, it is worth noting that
the relative error is also clearly correlated in this case with the
standard deviation of the MC simulation, and that DL and the MC
curves are mostly consistent within a standard deviation.

To show our model’s ability to generalize to different unseen
beam energies and orientations, Figure 5 compares DL and MC
computed core dose profiles for four additional examples from the
evaluation set. Each panel’s title reports the two angles, θ and ϕ, that
define the beam orientation, as well as the beam energy for the
respective example. In all cases, discrepancies between DL and MC
are mostly within the range of MC uncertainty.

In Figure 6 we show a visual comparison between the CT scan
(in the left panel), theMC simulated dose (central panel), and the DL
emulated dose (right panel). These panels were extracted from our
cylindrical structures considering two opposite sets of voxels in the θ
dimension. In other words, these represent a horizontal slice taken
from the cylinder, slicing it in one of the z-r planes.

FIGURE 4
Core dose profile. Top: comparison of the dose z profile computed for the core cylinder around the beam (with r <4mm), usingMC simulation (blue)
and our DL model (orange), for an example from the high-statistics evaluation set. The average CT scan density, calculated from HU using a calibration
curve, is indicated by a gray dashed line. Bottom: absolute error and percentage relative error between the dose profiles computed by MC and DL
methods (blue dots) along with the MC standard deviation (gray band).
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FIGURE 5
Core dose profiles: different beam configurations. Each panel corresponds to a different example from the evaluation set, featuring varying beam
energies and orientations as indicated by the panel titles. For each panel, a comparison of the core dose z-profile computed using MC simulation (blue)
and our DLmodel (orange) is shown, alongwith the average CT scan density represented by a gray dashed line. Below each profile: the absolute error and
the percentage relative error between the dose profiles computed by the MC and DLmethods (blue dots) are displayed, along with the MC standard
deviation (gray band).

FIGURE 6
CT, Monte Carlo, and ReNN GU-Net. Image representation of a horizontal slice taken from the considered cylindrical volume around the beam. On
the left panel is shown the CT scan, which is the input to our DLmodel. The MC simulated and DL predicted dose distributions are reported, respectively,
on the central and right panels.
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Moreover, we show in Figure 7 the δ-index computed on the
cylinder slice shown in Figure 6. δ-index values are reported for all
but the voxels which contain air. On a green-to-yellow scale, we
report all the δ-index values below 3%, while on a yellow-to-red scale
the higher values (up to 3.8%) are drawn.

Finally, our DL model can significantly enhance speed in
generating dose distributions. Currently, the available methods to
compute VHEE dose maps are full MC simulations and fast MC
codes such as FRED, which run on GPU. Our DL algorithm
produces a dose map in approximately 0.02 s on a 16-core CPU
(HP Z2 Tower G5 Workstation). A full MC simulation with
Geant4 takes five orders of magnitude more time on the same
machine. Moreover, running the DL model on GPU devices can
further reduce the execution time. Generating a single example on a
Nvidia Tesla V100 32G GPU takes approximately 7 milliseconds. If
generating in batches, the execution time can be further reduced:
generating a batch of 64 samples takes approximately 0.15 s,
bringing the generation time of a single sample down to
2.3 milliseconds—roughly three orders of magnitude
faster than FRED.

Although the DL dose engine presented shows promise in balancing
accuracy and speed in dose computation, it is important to note some
limitations. This study aims to demonstrate the feasibility and
effectiveness of the cylindrical scoring method combined with an
innovative GNN-based DL model for dose predictions. Although
nearly 100% of the dose predictions achieve a δ-index passing rate of
3% inspired by the clinical global γ-index, the current cylindrical voxel
dimensions along z and r do not permit comparison at the required
clinical spatial resolution. This comparison will be conducted in
subsequent research, in which we plan to increase the cylinder’s
resolution to meet, and even over-sample, in the core of the cylinder
the clinically required spatial resolution. A larger cohort of patients will
then be considered to test the model’s generalization ability. Given that
the execution time of graph convolutional layers scales linearly with the
number of nodes, reducing the resolution to 2mm—increasing the nodes
by a factor of 4—would still keep the total execution time below 10 ms.

4 Conclusion

The current study proposes a DL model to compute the dose
distribution of a therapeutic VHEE beam in patient tissues. The

model, based on graph convolutional networks, is trained to emulate
theMC simulated dose inside a cylindrical volume around the beam.
This approach allows us to compute the dose with high spatial
resolution on the beamline, where most of the dose is deposited,
while containing the model’s memory footprint. The model was
trained on a set of examples comprising different beam orientations
and energies, and it was tested on a different set. The test set has been
realized using couples of beam orientation and energy not used to
produce the train set to test model’s generalization capability. The
model’s accuracy was measured using MAE and MRE on integrated
dose profiles, and δ-index. The results show that the model can
generate dose distributions with a δ-index 3% passing rate of 99.8%.
Moreover, integrated dose profiles agree with MC simulations, with
an average relative error less than 1%.

With respect to other current methods for calculating VHEE
dose distributions—full MC simulations and FRED—our model
provides an acceleration of several orders of magnitude. Indeed,
it can generate dose distribution in milliseconds on a single
GPU. The dose calculation is so fast that the DL model could be
directly integrated into the merit function of an optimization
algorithm for treatment planning. Moreover, taking advantage
of the fact that the output of a DL model is differentiable with
respect to the input, it would be possible to build a treatment
planning optimization strategy based on exact gradient
computation.

We plan to explore this possibility in future research aiming to
build a treatment plan optimization algorithm which can fully
exploit the benefits of DL dose generation.
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