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The near-eye display (NED) systems, designed to project content into the human
eye, are pivotal in the realms of augmented reality (AR) and virtual reality (VR),
offering users immersive experiences. A small volume is the key for a fashionable,
easy-to-wear, comfortable NED system for industrial and consumer use.
Freeform surfaces can significantly reduce the system volume and weight
while improving the system specifications. However, great challenges still exist
in further reducing the volume of near-eye display systems as there is also a limit
when using only freeform optics. This paper introduces a novel method for
designing compact freeform NED systems through a powerful optical–digital
joint design. The method integrates a geometrical freeform optical design with
deep learning of an image compensation neural network, addressing off-axis
nonsymmetric structures with complex freeform surfaces. A design example is
presented to demonstrate the effectiveness of the proposedmethod. Specifically,
the volume of a freeform NED system is reduced by approximately 63%
compared to the system designed by the traditional method, while still
maintaining high-quality display performance. The proposed method opens a
new pathway for the design of a next-generation ultra-compact NED system.
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1 Introduction

The near-eye display (NED) system has undergone substantial evolution in recent
10 years. These systems, designed to project content into the human eye, play a pivotal role
in the expanding sectors of augmented reality (AR) and virtual reality (VR), offering users
an unparalleled immersive experience. In the design process of an NED system, volume and
weight are critical factors. The volume determines the portability and wearing comfort,
while the lower weight allows them to be worn for extended periods. Therefore, the volume
and weight should be reduced as much as possible while maintaining the system
specifications. In recent years, freeform optical surfaces have gained increasing
prominence in optical system design due to their expanded design parameter space.
Freeform optical surfaces have been successfully utilized in the field of imaging optics,
including off-axis cameras [1–3], spectrometers [4, 5], head-mounted display [6], and scan
systems [7]. In the design process of an NED system, freeform surfaces are being employed
to reduce the system volume and weight. However, further reducing the volume of NED
systems remains an unresolved and very challenging issue.

Image processing techniques can be used to improve the image quality of imaging
systems. By fully integrating the design of a geometric imaging system and image processing
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algorithms, better design results can be obtained [8–10]. However,
the working mode of NED systems is totally different from that of
imaging systems with image sensors or detectors as the light beams
are emitted from the display panel or image sources and finally travel
into the eyes. In recent years, researchers have explored the design of
display systems by integrating the optimization of optical systems
and the use of image processing algorithms. Reference 11, through
joint optimization, designed a diffractive optical element (DOE)
placed in front of a projector lens and a compensation network for
deblurring, realizing extended projector depth-of-field. Reference 12
used a joint optimization method to design an NED system
consisting of aspherical reflectors instead of a freeform and lens-
correction group. For an NED system, if a deep neural network is
utilized for image compensation at the display panel, and
optical–digital joint optimization of the network and freeform
system is conducted, the advantages of freeform optics and the
image compensation deep neural network can be fully integrated
and exploited. The NED system design with an ultra-compact
structure can be achieved to realize reduced system volume,
while maintaining good display performance when the
compensated image is displayed by the panel.

In this paper, we introduce a novel and powerful design
framework for compact freeform NED systems through
optical–digital joint optimization. Using the proposed framework,
an NED system design with an ultra-compact structure and good
display quality can be realized. The feasibility and effect of the
proposed design framework are demonstrated by a design example.
A freeform off-axis NED system with a significantly smaller volume
(62.98% smaller than that of an original freeform system) is realized.
The proposed framework opens a new pathway for developing NED
systems with an ultra-small volume and can also be extended to the
joint design of other kinds of NED and display systems using other
surface types or phase elements, such as holographic elements and
meta-surfaces.

2 Method

The design framework and process proposed in this paper,
which work for NED systems, are different from the
optical–digital joint design framework for traditional imaging
systems as the NED systems have a totally different working
mode from imaging systems, which images the outside scene on
the image plane (sensors or detectors). The image with bad
performance obtained directly by the imaging system can then be
recovered by the recovery network in order to obtain a good final
output image. The image recovery is the last step of the whole system
working flow. For NED systems, a display panel is used as the “image
source.” The image on the display panel is then projected by the
NED optical system and, finally, images at the eye. As there is no
image recovery at the exit pupil or human eye, the image projected
by the freeform NED system should be good. If the freeform NED
system is made to be more compact, the aberration of the system
may be large. Therefore, the proposed framework uses a
compensation network to generate a compensated image at the
display panel (which is the first step of the system working flow in
order to cooperate with the following freeform optical system with
aberrations) and then projected by the NED system.

As shown in Figure 1, the framework contains forward pass and
backward pass processes. In the forward pass process, by conducting
ray tracing for sampled field points within the full field of view
(FOV), the simulated point spread function (PSF) of the sampled
field points is obtained, which serves as the basis for acquiring the
simulated imaging results of the NED system. The differences
between the actual display results and the target images, as well
as the evaluation of aberrations, are calculated (loss function L1);
meanwhile, the constraints of the NED system can also be
established using ray tracing data (loss function L2). So the total
loss function Ltotal can be established and calculated. Since imaging
simulation of the NED system is based on images displayed on the
display panel generated by the compensation network, the
connection is established between the NED system and the
compensation network. In the backward pass process, the partial
derivative (or gradient vector) of the loss function with respect to
each parameter in the freeform NED system and the network is
calculated. Then, using the partial derivatives, the parameters in the
freeform NED system and the neural network can be updated based
on Ltotal. The above process is repeated, and the joint optimization of
the NED system and the network is accomplished. The goal of the
design framework is to generate a feasible compact freeform NED
system and the corresponding well-trained image compensation
neural network.

To realize the joint optimization of the deep learning network
and freeform optical system, differentiable ray tracing has to be used
so that the gradient of the optical system parameters can be
calculated, which will be used to update the parameters of the
system and the network. The commonly used freeform surface
types include XY polynomial freeform surface, Zernike
polynomial freeform surface, and Q2D polynomial freeform
surface. Generally, the implicit freeform surface expression can
be written as follows:

f x, y, z( ) � h x, y( ) − z. (1)

We assume that the ray can be represented with two vectors
(o,d). The vector o = [ox,oy,oz] represents the origin point of the ray,
and the normalized vector d = [dx,dy,dz] represents the propagation
direction of the ray. In addition, the propagation direction can also
use the exit angle along the x-axis and y-axis to represent, which can
be denoted as θ = [θx,θy]. The relationship between d and θ is
as follows:

d � tan θx( ), tan θy( ), 1[ ]��������������������
tan 2 θx( ) + tan 2 θy( ) + 1

√ . (2)

For one ray in the space, if the position of a point on this ray can
satisfy Eq. 1, this point should be the intersection point of the ray
with the surface. The ray tracing problem can be transformed into
solving an equation, which can be iteratively solved using Newton’s
method as Eq. 3, until the change in w is smaller than the
allowed value.

w n[ ] � w n−1[ ] − f o + w n−1[ ]d( )
f′ o + w n−1[ ]d( ) � w n−1[ ] − f o + w n−1[ ]d( )

∇f · d . (3)

When the intersection is found, the ray will be reflected or
refracted, whose propagation direction can be calculated based on
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the law of reflection or refraction. With the above process, the ray
can be traced from the object space (display panel) to the exit pupil
(human eye). As the whole process is differentiable, the partial
derivative of each parameter that needs to be optimized can be
calculated in the backward pass.

Rays from the full FOV and full pupil should be sampled for the
evaluation and optimization process of an optical system. The ray
sampling process for each field point includes three parts: searching the
chief and marginal rays with an iterative method, sampling the rays in
the object space with the grid-based method, and out-selecting the rays
outside the aperture stop range. If the aperture stop is located at the first
surface or in the object space, the sampled rays can be easily determined.
However, for an NED system, the aperture stop (exit pupil) is the eye
pupil, which is located in the afocal space. The size of the circular exit
pupil is generally given for the NED system design, and it can be used to
determine the discrete sampled rays used in the design; an iterative ray
search method is proposed and used to find the chief ray and marginal
ray exit angle. As the position of the field point (object point) is known,
we only need to find the ray propagation angle (direction). The chief ray
of each field point will intersect with the aperture stop at its center,
which will be the reference for the iterative process. Assume that the
initial guess of the exit angle θ[0] = [θ[0]x , θ

[0]
y ] can make the ray intersect

with the first freeform surface at its center, and we trace the ray to the
aperture stop. According to the distance between the intersection point
and the center of the aperture stop, we can update the exit angle with the
following equations:

θ n[ ]
x,j � θ n−1[ ]

x,j − o local{ }
x,j,stop, (4)

θ n[ ]
y,j � θ n−1[ ]

y,j − o local{ }
y,j,stop, (5)

where θ[n]x,j and θ
[n]
y,j represent the exit angle of the field point j after the

nth iteration in the x and y direction, respectively. In addition, o local{ }
x,j,stop

and o local{ }
y,j,stop represent the x and y coordinates, respectively, of the

intersection point of field point j and the aperture stop in the local
coordinate system. The superscript {local} is used to represent the
coordinates in the local coordinate system of the surface. The above
process can be stopped until the L2-norm of the [o local{ }

x,j,stop, o
local{ }
y,j,stop,

o local{ }
z,j,stop] is smaller than the maximum allowed value. The exit angle of
the chief ray for the field point is found. Due to pupil aberration, the
size and shape of the entrance pupil for each field point may deviate
from the ideal case. In order to sample the corrected rays of one field

point used in the system, its fourmarginal pupil rays (top, bottom, left,
and right) are found using the similar method above. After obtaining
the exit angle of the marginal rays, the next step is ray sampling. The
grid-based ray samplingmethod is used. Based on the range of the exit
angle in the x and y direction, we can use the grid-based method to
uniformly sample the exit angle in a rectangular range. However, a
rectangle sampling rangemeans that some rays exceeding the aperture
stop range are also sampled, so the ray out-selected method based on
aperture stop size is employed. After tracing all the sampled rays with
the grid-based method to the aperture stop, those rays that exceed the
aperture stop range will be out-selected. Using the above process, the
ray sampling can be done, which will guarantee the subsequent
calculation and evaluation. The whole ray sampling process for
one field point is shown in Figure 2.

The point spread function of each field point, which describes
the image quality, can be calculated for a further display simulation
process. As the system outputs plane waves at the exit pupil, we can
add an ideal lens to simulate the eye and evaluate the PSF on the
image plane. Here, we assume that the energy of a ray hit on the
image plane follows Gaussian distribution [13]. For one field point,
the corresponding PSF can be obtained by superimposing the energy
distributions of all the sampled rays. The energy distribution of each
ray can be represented with a two-dimensional matrix. For all
sampled ray energy distribution matrixes, superimposing them
together will yield the PSF of the field point. In practice, the
center of the matrix is the image point of the chief ray, and the
size of the matrix is K×K. For one ray on the image plane, the energy
distribution on cell (m,n) can be calculated as follows:

e〈μ〉m,n �
1���
2π

√
σ
exp −r

2
m,n

2σ2
( ), (6)

where rm,n is the distance between the intersection of the ray with the
image plane and the pixel (m,n) and σ � ���������

Δx2 + Δy2
√

/3, where Δx
and Δy represent the size of each pixel on the image in x and y
directions, respectively. The PSF can be calculated as

PSF � ∑N
μ�1

e〈μ〉m,n
⎡⎢⎢⎣ ⎤⎥⎥⎦

K×K

1≤m, n≤K( ), (7)

where μ represents the ray number, and in total, N rays are sampled
for one field point. The diffraction effect is ignored as in the visible

FIGURE 1
Design framework of the compact freeform NED system based on optical–digital joint optimization.
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band the diffraction effect is not significant, and the system
performance is mainly determined by much larger aberrations.

In our method, one key to conducting joint optimization is
compensating the ideal display image in order to generate good
display performance at the exit pupil (or the new image plane). A
compensation network is utilized. This network aims to generate a
compensated image, which can then generate an image close enough to
the target image after being displayed by the freeformNED system. The
architecture of the network is ResUNet [14], which combines the
advantage of both UNet [15] and a residual neural network [16]. The

network comprises three components: encoding, bridge, and decoding.
In each part, the residual structure was used. The network wasmodified
to consist of three downsampling and upsampling blocks, and only in
the downsampling block was the residual structure adopted. The
architecture of the network is shown in Figure 3.

Then, we need to obtain the simulated image of the NED system,
which can be obtained by the convolution of each point of the displayed
image after compensation with the corresponding PSF and
superimposing all convolution results. The PSF is space-variant across
the object plane (FOV). However, due to the memory limitation and the

FIGURE 2
Illustration of the ray sampling procedure for one field point. (A) Sampling range determination based on edge ray positions in different directions for
grid sampling; (B) tracing the sampled rays to the aperture stop and determining whether their inclusion within the aperture stop bounds based on their
radial distance; (C) out-selecting the ray exceeding the bounds of the aperture stop; (D) ray sampling result.

FIGURE 3
Architecture of the image compensation net. “Conv,” convolutional layer; “BN,” batch normalization layer; “ReLU,” rectified linear unit; “addition,”
residual connection; “upsampling,” transposed convolutional layer; “concatenate,” skip connection; “clamp,” clamp layer.
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computational time, here, we divide both the object plane and image
plane into P×Q sub-areas, and in each sub-area, the
corresponding PSF is considered to be space-invariant
approximately. The imaging result IMGu,v (1 ≤ u ≤ P, 1 ≤ v ≤
Q) of each sub-area can be obtained by the convolution of the
sub-area COMu,v (compensated image) with corresponding
PSFu,v as follows:

IMGu,v � COMu,v * PSFu,v. (8)

It is worth noting that information related to system aberrations
is included in the PSF during the image simulation process.
Therefore, for systems with significant aberrations, the P and Q
values should be set as high as possible to obtain accurate simulation
results. However, excessively high P and Q values will also increase
the consumption of computational resources. The choice of P and Q
values should strike a reasonable balance between computational
resource consumption and image simulation accuracy.

Then, all image sub-areas are joined together to form the final
simulated image of the compensated image. The whole image
simulation process is shown in Figure 4. Since the system’s
distortion can be controlled to be very small, the impact of
distortion can be ignored. Furthermore, distortions do not impact
image quality and can be easily corrected in practical processes.

Then, the loss function should be established to optimize the
freeform system and the compensation network. The goal is to obtain
good display performance and a feasible freeform system with a
proper structure and small volume, as well as the required system
specifications. Multiple loss functions are incorporated to achieve the
design goal.

The display performance of the system is decided by the NED
system and compensation network. Due to the existence of the
compensation network, the performance when only considering the
freeform systemmay be worse than that of the traditional NED system.
However, it should not be too bad in order to guarantee our PSF
calculation method effective. In addition, the PSF should not be larger
than the maximum allowable K×K grid, which is used for practical
calculation in programs and further image simulation. Here, we take
the maximum spot size (Lspot) among the sampled field points, which
can be calculated through ray tracing as the loss function related to this
imaging performance as it is related to the spread area of the PSF to
some extent. Other image qualitymetrics (such as wavefront aberration
and MTF) may also be used to construct the loss function (larger loss
function corresponds to worse image quality), but their values do not
correspond to the PSF size directly. For the whole framework, the
simulated image at the exit pupil (image plane) obtained through the
compensated network and the freeform system should be close enough
to the target image. We used the structural similarity index measure
(SSIM) to build the loss function to evaluate the difference between the
target images and the final display results. The loss is denoted as Limg.
The imaging loss L1 can be written as follows:

L1 � wimgLimg + wspotLspot � wimg · 1 −
∑T
t�1
SSIM OBJt, IMGt( )

T

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
+ wspot · max max 2 × o local{ }

μ,j − o local{ }
1,j

���� ����
2

( )
1≤ μ≤N

( )
1≤ j≤M

( ) ,

(9)

where Tmeans T image pairs to be evaluated. o{local} represents the local
coordinates of the ray on the image plane, μ represents different pupil
coordinates of N coordinates, j means different field points of M field
points, and the subscript 1 represents the chief ray of the field point.

While guaranteeing good display performance, some constraints
should also be added to constrain the system specifications,
structure, volume, and distortion. These constraints can be added
by also incorporating specific loss functions. Light obstruction must
be eliminated in the off-axis reflective system. This can be done by
controlling the distances from the edge of the elements to the
marginal rays between different elements using real ray trace
data. Violation of the minimum clearance corresponds to larger
positive loss function Lobs.

Lobs � ∑D
g�1

Ldis,g,where Ldis,g � −min 0, δ − δtarget( ), (10)

where D represents D locations where light obstruction may occur
and δ and δtarget represent the actual distance and target distance,
respectively.

Relative distortion for the field point β can be calculated
through the ideal image height and actual image height
obtained through real ray tracing, which are represented by
hx,ideal(β) or hy,ideal(β) and hx(β) or hy(β), respectively. The loss
related to distortion Ldst is the violation of the mean and maximum
relative distortion in x and y directions for W sampling fields
(excluding the 0° field angle) among the full FOV with respect to
the given design requirements lmean,dst,target and lmax,dst,target,
respectively.

Ldst � max 0,mean γk
∣∣∣∣ ∣∣∣∣( )

1≤ k≤W
( ) − lmean,dst,target( ) + wmax ,dst

· max 0, max γk
∣∣∣∣ ∣∣∣∣( )

1≤ k≤W
( ) − lmax ,dst,target( ),where

γ � hx β( ) − hx,ideal β( )
hx,ideal β( ) × 100%, or

γ � hy β( ) − hy,ideal β( )
hy,ideal β( ) × 100%. (11)

For the freeform system design, it is preferable to use the
central area of the freeform surface in order to reduce complexity
during the optomechanical design and system assembly process, as
well as to improve design convergence. Therefore, a loss Lcenter
representing the deviation between the vertex of the freeform
surface and the point where the chief ray of the central field
intersects with the surface is added.

Lcenter � ∑B
b�1

���������������������
o local{ }
x,1 b( )( )2 + o local{ }

y,1 b( )( )2√
, (12)

where B represents that the system has B surfaces in total (including
the image plane), o local{ }

x,1 (b)means the x-coordinate of the chief ray of
the central field on the surface, and o local{ }

y,1 (b) is by the same logic.
To control the system volume during the optimization process, a

loss Lvol is added, which depicted the violation of the system size in x,
y, and z directions from the target values.

Lvol � max 0, Vx − Vx,t arg et( ) + max 0, Vy − Vy,t arg et( )
+ max 0, Vz − Vz,t arg et( ), (13)
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where Vx, Vy, and Vz represent the actual size in x, y, and z
directions, respectively. Vx,target, Vy,target, and Vz,target represent
the maximum allowed size in x, y, and z directions, respectively.

In addition, the optical see-through FOV is also an essential
specification for the NED system. It should be kept large by
keeping the light clearance, while the system volume is reduced.
As the last optical surface of the NED system is a half-
transmission and half-reflection combiner, the rays of a large
FOV are usually obstructed by the surfaces before the last optical
surface. The see-through FOV can be calculated using the
geometrical relationships between the aperture stop and the
surfaces in the system or using the real ray tracing data. Here,
we use a three-mirror system (same structure with the design
example in Section 3) as an example. As shown in Figure 5, the
see-through FOV can be calculated using the center of the
aperture stop (point O), the vertex A of the last surface, and
the marginal points (B and C) of mirrors. The half see-through
FOV α is the smaller one of ∠AOB and ∠AOC. The loss of the see-
through FOV LOST-FOV can be written as

LOST−FOV � max 0, αt arg et − α( ), (14)

where αtarget represents the target of the half required see-
through FOV.

For a display panel, the outgoing direction perpendicular to the
display panel emits the strongest intensity. To fully utilize
the intensity of the display panel, a loss Lintensity is added to
represent the angle deviation between the chief ray direction of
the central field point and the perpendicular direction of the display
panel. The center global coordinate of the display panel and first
optical surface in x and y directions are denoted as oobj = [xobj, yobj]
and os1 = [xs1,ys1], respectively. The loss can be written as

Lintensity �
����������
oobj − os1( )2√

. (15)

As we control the chief ray of the center field point intersecting
with each surface center, Eq. 15 can be used to constrain its
exit angle.

The total loss Ltotal of each epoch during training and
optimization is the weighted sum of the above individual losses.

Ltotal � L1 + L2 � wimgLimg + wspotLspot( ) + wobsLobs + wdstLdst+(

wcenterLcenter + wvolLvol + wsee−thoughLsee−through + wintensityLintensity).
(16)

In the forward pass, Ltotal can be calculated according to the
compensation network and the NED system parameters. In the
backward pass, the partial derivative (or gradient) of the parameters
in the compensation network (weights and biases) and the
parameters of the freeform NED system (surface coefficients and
surface locations) can be calculated, and then the parameters can be
updated in order to minimize Ltotal using specific optimization
algorithms.

3 Design example

To show the effect of the proposed optical–digital joint
optimization framework in achieving an ultra-compact NED
system, a freeform three-mirror NED system design example
is demonstrated. The display panel we chose is BOE VX050S0M-
NH1, with a size of 10.13 mm × 7.61 mm and a resolution of 800 ×
600 pixels. The pixel size of the display panel is 12.6 μm.
However, this pixel size is not involved in characterizing the
PSF of one field point as it is a feature of the display panel. The
exit pupil FOV is 12° × 16°; meanwhile, the exit pupil diameter is
4 mm. First, we designed the freeform system using commercial
optical design software, as shown in Figure 6A. The initial system
structure was selected from the sample lens library of CODE V
(threemrc.len). In this design, we use an XY polynomial surface,
which is the simplest polynomial freeform surface type, and it
matches the standard of the CNC machine. Other surface types
can also be used for the joint optimization process if they are
continuous and their derivatives can be calculated for the ray
tracing process. During optimization, the fields were represented
with the object height, and the surface type was changed to an XY
polynomial freeform surface up to the fourth order, as shown in
Eq. 17. The aperture stop (exit pupil) is at the end of the system,
and the distance (eye relief) between the tertiary mirror and the
aperture stop was controlled to be at least 34 mm. To maximize

FIGURE 4
Schematic plot of the image simulation process.
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the intensity utilization of the display panel, the chief ray of the
central field point of the full object plane was constrained to be
perpendicular to the display panel. The relative distortion was
calculated using real ray tracing data and controlled to be lower
than 4%. The chief ray from the central field point was
constrained to intersect at the center of each surface,
including the image surface. The distances that need to be

controlled to avoid light obstruction and surface interference
are shown in Figure 6B with green dashed lines; each green
dashed line represents a potential location for light obstruction or
surface interference. In addition, to simulate the human eyes, an
ideal lens with a focal length of 18 mm is added at the aperture
stop (exit pupil). The PSF and the display performance are both
evaluated at the image plane of the ideal lens. The error function

FIGURE 5
Schematic diagram of see-through FOV calculation. The angle α denotes the half see-through FOV, which has a unit of degree.

FIGURE 6
Layout NED freeform system. (A) Systemwith a large volume designed using optical design software. (B) Initial systemwith a small volume designed
using optical design software. (C) System with a small volume designed by joint optimization. For (A–C), the scale bar indicates a length of 10 mm, which
can be used to evaluate the size of the systems. (D) To simulate the human eyes, an ideal lens with a focal length of 18 mm is added at the aperture stop
(exit pupil). The PSF and the display performance are both evaluated at the image plane of the ideal lens.
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type was set to the default transverse ray aberration type in
CODE V.

h x, y( ) � c x2 + y2( )
1 +

������������������
1 − 1 + κ( )c2 x2 + y2( )√ + A1x

2 + A2y
2 + A3x

2y

+ A4y
3 + A5x

4 + A6x
2y2 + A7y

4.

(17)
During this stage, the goal is to minimize the aberrations. The

SSIM evaluation result on the testing dataset is 0.9152. Here, in this
design, the training and testing datasets are selected from DIV2K, a
public dataset, and we chose 400 images and 100 images,
respectively. Only the central area (800 × 600 pixels) of each
image was used. Although the display performance is good, the
volume of the system (16.89 mm × 47.46 mm × 24.13 mm =
19.34 mL) is large. If the volume was further reduced,
aberrations will be very large. Here, we use the proposed
optical–digital joint optimization framework to reduce the system
volume while maintaining the high display performance. First, we
reduce the system volume using optical design software directly,
during which we allow for more aberrations but maintain the
fundamental folding geometry of the system, control the
distortion, and maintain the system specifications. The design
result is shown in Figure 6B, and the volume is 7.22 mL. Because
of the presence of aberrations, the system display performance is
poor. The SSIM evaluation result on the testing dataset is only
0.7137 now. This system is taken as the initial system for the joint
optimization process.

For the subsequent joint optimization process, all the losses were
added, as shown in Eq. 16. The current value of the size in x, y, and z
directions was set as the maximum allowed size, and the target see-
through FOV, maximum allowed value of maximum, and mean
relative distortion were also set according to the current value. The
system distortion will be controlled to be small, and the impact of
distortion can be ignored during image simulation. Five distances
were controlled to eliminate light obstruction, as shown in
Figure 6B. Thirty-five different field points across the half-object
plane (zero and positive position in the x direction) were sampled
and traced. In the training process, only 275 rays were uniformly
sampled, while in the testing process, 2,718 rays were uniformly

sampled to calculate more accurate PSF and spot sizes. The
differentiable ray tracing method remains applicable for the
testing. However, during the testing process, backward pass for
partial derivative calculation is not required, and sampling of more
rays will not cause memory issues. The ray tracing data were used to
calculate the spot diameter on the image plane and the PSFs of the
sampled fields. The pixel size on the image plane is 5 μm × 5 μm
(close to the size of the cell on retina), and a 51 × 51-pixel grid (the
center locates at the image point of the chief ray) was used to
characterize the PSF of one field point. For this initial small-volume
system, the simulated PSFs across the full object plane are shown in
Figure 7A. The simulated images were obtained using the PSFs of
these 35 field points and other 186 field points (28 fields in −x
directions can be obtained using the results of the PSFs of the fields
in the +x direction directly due to symmetry, and other 158 fields are
calculated by interpolating). The number of the field points used to
obtain the simulated images is determined based on the actual
situation. Generally speaking, the more field points used, the
more accurate the simulated image will be. However, there
should be a balance between the sampled field point number and
simulation accuracy because of limited memory and calculation
speed. At least the central field point and the field points in marginal
areas of different directions should be sampled. Joint optimization
was performed on a computer using Intel i9-12900K CPU and
NVIDIA RTX 3090Ti 24 GB Memory GPU. AdamW was chosen as
the optimizer. Compared to AdamW, the inclusion of weight decay
can achieve better generalization performance and improved
convergence stability. It is crucial to elucidate that not all
parameters share the same learning rates. This distinction arises
because individual parameters exert disparate effects on the system’s
loss function. Specifically, in this design, parameters such as the
conic constant, surface vertex position, and surface tilt relative to the
x-axis were assigned a learning rate of 1e-2, and the learning rate of
the compensation network was set as 1e-4, while the learning rate for
the surface curvature was 1e-5. For higher-order surface terms, their
learning rates were calibrated based on the magnitude of their initial
values, subsequently multiplied by 1e-2. If the learning rate is too
large, the training results will not converge, while a too small
learning rate will cause the convergence process to be extremely
slow. The current learning rate setting is a balance between these two

FIGURE 7
Simulated PSFs across the full FOV of the (A) initial system and (B) system after joint optimization. Note that these PSFs are the result of the geometric
optical system, and image compensation is not considered.
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extremes. After completing 100 epochs, an exponential decay was
applied to the learning rates. The decay factor for this learning rate
was established at 0.9. After completing 160 epochs, the NED system
was fixed, and we fine-tuned the image compensation network. We
sampled 2,718 rays for each sampled field point during the fine-
tuning and testing stages to obtain more accurate PSF. Only
40 epochs were fine-tuned using AdamW, and the learning rate
was set to 1e-5 without decay.

A total of 160 epochs were joint optimized and 40 epochs were
fine-tuned, taking approximately 200 h. In addition to the time
consumed by system optimization and network training, ray
sampling also consumes a significant amount of time. The
system aperture stop (exit pupil) is the eye pupil, which is placed
at the end of the system. Therefore, during each ray sampling
process, it is necessary to completely fill the aperture stop with
light rays. This requires iteratively determining the chief ray and
marginal rays in different directions for each sampled field and,
based on these rays, defining the field sampling range. All rays
within this range are then traced to the aperture stop, where rays
outside the aperture are out-selected (as shown in Figure 2). This
process results in a significant increase in optimization time. The
final system layout is shown in Figure 6C. Table 1 presents the
optimal results, delineating the volume and the average SSIM of the
testing dataset across three systems, namely, the large volume
system, the initial small volume system, and the system after
joint optimization with image compensation considerations; the

peak signal-to-noise ratio (PSNR) value of these systems is also given
for reference. It is evident from Table 1 that the SSIM value of the
system after joint optimization is close to the result of a large volume
system, significantly surpassing the initial small volume system. The
SSIM and PSNR are two main image quality metrics but have
different calculation methods and features. The PSNR is a widely
usedmetric for evaluating the consistency of two images. It measures
the ratio between the maximum possible pixel value squared and the
mean squared error (MSE) between the two images. Higher PSNR
values indicate higher consistency. The SSIM is more consistent with
the human visual system. In addition, in this work, the SSIM is used
as the standard for image evaluation and used in the loss function
construction during training. Therefore, only the SSIM is directly
controlled during design, and the training result may not
demonstrate a significant improvement in the PSNR compared
with the initial small-volume system before joint optimization.
The volume of the system after joint optimization is 12.74 mm ×
38.80 mm × 14.48 mm = 7.16 mL, which is 62.98% smaller than the
large-volume system. The simulated PSFs across the full object plane
of the system after joint optimization are shown in Figure 7B; it can
be seen that the PSF of different sampled field points becomes
similar. The maximum relative distortion is approximately 2.00%,
and the average relative distortion is approximately 0.72%. Another
experiment was conducted to substantiate the efficacy of the joint
optimization. An image compensation network was trained for the
initial small-volume system, while parameters of the NED system

TABLE 1 Quantitative evaluation of the averaged SSIM and PSNR on the testing dataset and the system volume for the NED system design.

System SSIM PSNR (dB) Volume (mL)

Large-volume system 0.9153 30.6039 19.34

Initial small-volume system 0.7137 23.5477 7.22

Initial small-volume system after joint optimization 0.9141 27.0707 7.16

FIGURE 8
(A) Simulated images of the initial NED freeform system; (B) compensated images obtained through the compensation network; (C) imaging
simulation results with compensated images of a small-volume NED freeform system after joint optimization; (D) simulated images of a large-volume
NED freeform system; (E) target images. See detailed subsections below for full-size images. SSIM value calculated relative to the target image.
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are not updated. After training, the average SSIM of the testing
dataset is 0.8708, demonstrating the effect of the joint optimization.

The exit pupil size of the NED system is 4 mm, and the focal
length of the ideal lens is 18 mm. For a wavelength of 587.56 nm, the
Airy disk size of the system on the final image plane is approximately
7 μm. The minimum 100% spot size across the full FOV for the
initial system with a small volume designed using optical design
software, and the system with a small volume designed by joint
optimization is 28.455 μm and 29.257 μm, respectively. In both
systems, the spot size is significantly larger than the Airy disk size,
indicating that the influence of diffraction effects can be neglected.

In conclusion, the above design and analyses validate that the
optical–digital joint optimization framework we propose can
effectively reduce the system volume while maintaining good
display performance of the system. Figure 8 shows examples of
the simulated images before and after the optimization process, as
well as the compensated images and the target images, which
demonstrates the effect of the design framework.

4 Conclusion

In this paper, we propose an optical–digital joint optimization
framework for ultra-compact freeform NED systems. By jointly
designing the image compensation network and the freeform optical
system, the advantages of both freeform optics and a deep learning
neural network can be deeply integrated in order to obtain good
display performance with a significantly reduced system volume,
which cannot be achieved using traditional design approaches. This
opens a new pathway for developing next-generation AR glasses
with much increased wearing comfort and portability. This powerful
design framework can be directly applied to the design of systems
with fewer optical components or more advanced system
specifications than in traditional design. The proposed
framework can also be extended to the design of systems
consisting of other surface types and phase elements, such as
holographic optical elements and meta-surfaces. In addition, a
typical feature of the proposed design method or system
framework is that image compensation is at the beginning of
the whole system, and no recovery is done on the final image.
Therefore, besides designing NED systems, this method can also
be used in designing projector systems. In future work, we will

focus on the development of the prototypes of freeform NED
systems and projector systems.
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