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Magnetic reconnection is a fundamental mechanism for energy conversion in the
realms of space physics, astrophysics, and plasma physics. Over the past few
decades, obtaining analytical solutions for three-dimensional (3D) magnetic
reconnection has remained a challenging endeavor. Due to the complexity
and nonlinearity of the equations, analytical solutions can only be obtained
when specific spatiotemporal distributions of magnetic fields or plasma flows
are provided. Particularly, the evolution of reconnection flows in time-dependent
3D reconnection has not been analytically discussed. Additionally, quasi-steady
magnetic reconnection persisting for several hours can be observed in the
turbulent solar wind, which raises an important question: can steady
reconnection flows theoretically exist in a time-dependent 3D magnetic
reconnection model? In this study, a generalized analytical model for time-
dependent kinematic 3D magnetic reconnection has been constructed. In the
framework of pure analytical approach, it is firstly demonstrated that steady
reconnection outflows can theoretically exist within a time-varying magnetic
field. We have also analytically discussed the possibility of the existence of quasi-
steady reconnection flows in 3D magnetic reconnection for turbulent magnetic
fields in the solar wind. These findings broaden our understanding of the stability
and necessary conditions for time-dependent 3D magnetic reconnection,
offering new insights into quasi-steady reconnection phenomena in real
cosmic environments.
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1 Introduction

Magnetic reconnection, recognized as a topological or
geometrical rearrangement process of magnetic field [1], plays a
significant role in the dynamics of diverse plasma environments
[2–5]. Historically, the concept of magnetic reconnection advanced
significantly through the exploration of two-dimensional (2D)
steady-state models rooted in magnetohydrodynamic (MHD)
theory [6–9]. In recent decades, significant achievements have
been made in the study of magnetic reconnection, primarily
through observation [10–13], numerical simulation [14–17], and
experimental research [18–21]. These advancements have enriched
our understanding of this fundamental phenomenon, uncovering
and validating its intricate evolutionary characteristics across a wide
range of astrophysical and laboratory environments. However, the
theoretical analysis on magnetic reconnection, especially in seeking
the analytical solutions for 3D magnetic reconnection, has faced
numerous challenges due to the complexity and nonlinearity of the
equations involved [22–25].

Magnetic reconnection and plasma dynamics are intricate
processes governed by nonlinear coupling between magnetic
fields and plasma flows. Obtaining analytical solutions within the
MHD framework faces considerable challenges due to this
nonlinearity. Even when equations such as the momentum and
energy equations are simplified, deriving direct analytical solutions
remains daunting. Consequently, previous analytical approaches
have predominantly relied on simplifying theoretical equations
and imposing specific constraints. A practical method involves
combining Ohm’s law and simplified Maxwell equations with a
particular magnetic field configuration to deduce analytical
solutions [26–28].

In order to simplify the analytical process, many authors have
disregarded the time variable and concentrated exclusively on static
magnetic reconnection analysis. By constructing different spatial
distribution of magnetic fields, they have derived diverse analytical
solutions that could address different types of magnetic
reconnection scenarios to some extent [29–31]. Under the
assumption of stagnation point flow driving [32–34] and based
on the linear X-point theory [35], Craig et al. [36–38] developed a set
of hybrid analytic solutions describing reconnection processes with
X-type topology magnetic field lines and intricate current structures.
In addition, a notable instance is the derivation of self-similar
solutions [39], which simplify the intricate problem by linearly
expanding a magnetized plasma under self-similar evolution
conditions. Moreover, along with the localized resistivity
assumption, pioneering works on the slippage reconnection
process within a finite diffusion region [40, 41] resulted in the
identification of kinematic solutions of the null or non-null
magnetic reconnection [42–45] featuring a reverse rotational flow
in a hyperbolic magnetic field.

Sporadic studies have addressed the scenarios involving
temporal changes in analytical solutions for 3D magnetic
reconnection [46–50]. While the inclusion of time variable makes
the solution of the equation set more complex, often requiring the
imposition of additional restrictions. By utilizing various initial
conditions, Anderson and Priest [51] investigated the time-
dependent solution of the MHD equations for magnetic
annihilation in a time-varying stagnation point flow. Wilmot-

smith et al. [52] examined a series of magnetic diffusion with
assumed magnetic diffusivity under the effect of a defined
magnetic flux velocity. Additionally, Hornig and Priest [26]
attempted to incorporate a time-dependent factor in the
expression of electric potential within the framework of the time-
independent equation set. Most notably, all of these efforts cannot
address how reconnection flows evolve over time. Recently, based on
the method employed by Hornig et al. [26], we have constructed a
time-dependent 3D model by directly introducing time variables
into the equation set [53]. It has been found that spiral plasma flows
can be generated if the magnetic field changes
exponentially with time.

As mentioned above, the inherent complexity and nonlinearity
of the governing equations in magnetic reconnection and plasma
dynamics present formidable obstacles to deriving analytical
solutions without imposing specific spatiotemporal distributions
of magnetic fields and plasma flows. However, such distributions,
tailored for analytical tractability, are seldom representative of real
cosmic environments, thus constraining the practical utility of these
solutions. Significantly, both magnetic fields and plasma flows
exhibit intrinsic temporal variability, making stationary analytical
solutions unsuitable for accurate predictions and empirical
validation. The absence of temporal dynamics in these static
solutions leads to significant discrepancies between theoretical
predictions and empirical observations. Furthermore, in time-
dependent 3D models, if the magnetic field varies with time, the
deduced plasma flows will also exhibit temporal variations [53]. So,
even if the time-dependent analytical solutions offer advancements
by integrating temporal variations, they will still encounter
challenges in elucidating quasi-steady reconnection phenomena.

The prolonged magnetic reconnection phenomena in the solar
wind, characterized by the presence of a pair of Alfvenic
reconnection jets, have been reported for years [54–56]. These
reconnection jets, which are signatures of ongoing magnetic
reconnection, have been observed to persist over extended
periods, indicating the long-lasting nature of the reconnection
process in the solar wind environment [57]. Observations reveal
that such phenomena are very common, occurring approximately
1.5 times per day, with a typical reconnection rate of ~0.05, and can
persist for at least 5 h [58]. Remarkably, the reconnection exhausts
measured between 1 and 5.4 AU do not appear significantly broader
than those measured between 0.3 AU and 1.0 AU, maintaining good
planarity in their structure [59–61]. Intriguingly, given the turbulent
nature of the solar wind, where magnetic fields and plasma flows
vary continuously over time, it seems counterintuitive for such
quasi-steady reconnection exhausts to exist from the perspective
of time-dependent 3D analytical solutions [62]. Nevertheless, the
inherent characteristic of turbulence is its unpredictability, which
cannot be fully expressed analytically in four-dimensional
spacetime. Consequently, researchers have mainly focused on
providing theoretical analysis [63] and numerical simulations [64,
65] to incorporate the effect of turbulence on magnetic reconnection
in earlier studies. Notably, the turbulence generated during magnetic
reconnection is self-consistently simulated, appearing after
32–64 Alfven time and being caused by two beam instabilities
with 3D Particle in cell simulations [66, 67]. Moreover, MHD
simulations [68] demonstrate a fast growth of turbulent energy
by 3 orders of magnitude over one Alfven time, indicating a
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considerably shorter timescale for turbulence self-generation during
reconnection. To date, however, quasi-steady reconnection flows in
3D magnetic reconnection for turbulent magnetic fields have never
been proven through a purely theoretical analytical approach.

Therefore, the question arises: can steady reconnection
theoretically persist within a time-varying magnetic field
scenario? If generalized spatiotemporal distribution forms of
the magnetic field and magnetic diffusivity are given, can we
analytically obtain steady reconnection outflows from the time-
dependent 3D magnetic reconnection model? Furthermore, if
such steady reconnection outflows can occur in a time-varying
magnetic field, what conditions must the spatiotemporal
distributions of the magnetic field and magnetic diffusivity
fulfill? In this letter, we analytically solve the time-dependent
kinematic 3D magnetic reconnection with generalized
spatiotemporal distribution forms of the magnetic field and
magnetic diffusivity. The existence and the conditions of
steady reconnection outflows are discussed.

2 Time-dependent magnetic
reconnection model with
generalized forms

Based on the method introduced by Hornig and Priest [26] and
following a similar approach used in our previous studies [53], we
construct a time-dependent model by integrating temporal variables
directly into the Maxwell-Faraday equations. Consequently, the
governing equations of the system can be succinctly expressed
as follows:

E + u × B � ηJ, (1)
∇× E � −∂B/∂t, (2)

∇ · B � 0, (3)
∇× B � μ0J. (4)

Here the first equation is Ohm’s law, while the others are
Maxwell’s equations. Here, u denotes the velocity of the plasma,
while E, B and J refer to the electric field, magnetic field and current
density respectively. η and μ0 represent the magnetic diffusion
coefficient and the permeability of the vacuum, respectively.

Previous studies have always facilitated analytical derivation and
resolved the flow field by providing specific spatiotemporal
distributions of B and η. However, as discussed in the
introduction, quasi-steady reconnection exhausts could persist in
turbulent solar wind, where the magnetic fields and magnetic
diffusion coefficients cannot be given in any specific form.
Therefore, in this work, we deviate from past practices by
refraining from specifying particular spatiotemporal distributions
of B and η. Instead, we adopt a more general approach and assume
that the temporal and spatial variables can be expressed in a
separable form. By following the similar derivation method [26,
53], the B can be expressed as follows:

B x, y, z, t( ) � B r( )B t( ) (5)
here r represents the three components of the Cartesian coordinate
system. The analytical expressions of field lines can be found
by solving:

∂X s, t( )/∂s � B X s, t( )( ) (6)
where s is the parameter satisfying ds � dλ/|B|, and λ represents the
distance along the magnetic field lines. Here we mainly discuss the
variable separated case X(s, t) � X(s)X(t).

Then we can obtain the equations of the magnetic field lines
X(r0, s) and the corresponding inverse mapping X0(r, s) in term of
an initial point r0:

X � f r0, s( ) (7)
X0 � F r, s( ) (8)

Furthermore, incorporating a time-dependent magnetic field
allows us to express the electric field as follows:

E � −∇ϕ − ∂A/∂t (9)
where A is the magnetic vector potential, and B � ∇× A.
Substituting Equation 9 in Equation 1 yields

−∇ϕ − ∂A/∂t + u × B � ηJ (10)

Based on the analysis method of Hornig and Priest [26] and the
boundary conditions of Chen et al. [53], the electric potential can be
derived as:

ϕ � −∫ ηJ · B + ∂A/∂t · B( )ds + ϕ0 (11)

Here, we still set ϕ0 � 0. Similarly, a general form of the local
resistivity is given as η � η(r)η(t), and substituting Equation 7 into
Equation 11, we can obtain ϕ(X0, s). After which we get ϕ(X) by
using Equation 8.

By taking the scalar product of both sides of Equation 10 with B
and combining Equations 5, 6, the analytical expression for the
velocity perpendicular to the magnetic field can be derived as:

u⊥ � E − ηJ( ) × B/ B| |2
� {∇F η t( )B2 t( )∫ η r( )J r( ) · B r( )ds + B′ t( )B t( )∫A r( )·[
B r( )ds] − B′ t( )A r( ) − η t( )B t( )F η r( )J r( )[ ]} × B r( )/
× B r( )| |2B t( )( )

(12)
where F denotes the transformation mapping a function from vector
s to one of x. Note that the implicit form of the reconnection flow is
intricate. To investigate the existence of steady reconnection plasma
flows, the condition ∂u⊥/∂t � 0 in the generalized time-dependent
system will be analyzed. To ensure meaningful results, we will
discuss the case where both the magnetic field and the magnetic
diffusivity vary with time (∂η/∂t ≠ 0 and ∂B/∂t ≠ 0). Additionally,
the dimensionless approach is employed for the sake of simplicity.

3 The existence of stationary plasma
flow with generalized forms

The presence of a stationary plasma flow requires that the partial
derivative of velocity with respect to time equals zero, ∂u⊥/∂t � 0. By
performing a temporal partial differentiation on Equation 12, we
have derived the conditions that guarantee the existence of a
stationary plasma flow within the system:
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k1 η′ t( )B t( ) + η t( )B′ t( )[ ] + k2B″ t( ) − k3 B″ t( )B t( )(
−B′ t( )2/B2 t( )) − k4η′ t( ) � 0 (13)

Where ki are introduced as specific expressions for the sake of
simplicity:

k1 � ∇F ∫ η r( )J r( ) · B r( )ds[ ] × B r( )/B2 r( )
k2 � ∇F ∫A r( ) · B r( )ds[ ] × B r( )/B2 r( )
k3 � A r( ) × B r( )/B2 r( )
k4 � F η r( )J r( )[ ] × B r( )/B2 r( )

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
(14)

Neglecting the trivial solutions and assuming
B′(t) ≠ 0, η′(t) ≠ 0, we infer three distinct categories of
constraints on the stationary plasma flow from Equation 13:
scenarios where each term is zero, situations where some terms
are nonzero, and cases where every term is nonzero. Specifically, we
systematically discussed the following six situations:

Case Ⅰ, ki in Equation 13 are all zero:

k1 � 0,
k2 � 0,
k3 � 0,
k4 � 0.

⎧⎪⎪⎪⎨⎪⎪⎪⎩ (15)

From Equation 14 We deduce that:

∇F ∫ η r( )J r( ) · B r( )ds[ ] � a1B r( ),
∇F A r( ) · B r( )ds[ ] � a2B r( ),
A r( ) � a3B r( ),
J r( ) � a4B r( ).

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
(16)

Here a1, a2, a3 and a4 are all nonzero constants. It is worth
noting that in such a scenario, the system does not impose any
requirements on the temporal variations of the magnetic field and
magnetic diffusion coefficient. As long as the spatial distribution of
the magnetic field and magnetic diffusion coefficient satisfies the
equations mentioned above, it is sufficient to generate stationary
plasma flow. However, the third equation in equation set (16) imply
that the magnetic field should be at least irrotational, and the forth
equation requires the magnetic field to be force-free.

Case Ⅱ, k1 ≠ 0 and the first term in Equation 13 is zero:

η′ t( )B t( ) + η t( )B′ t( ) � 0,
k2 � 0,
k3 � 0,
k4 � 0.

⎧⎪⎪⎪⎨⎪⎪⎪⎩ (17)

We derive that:

η t( )B t( )[ ]′ � 0,

∇F ∫A r( ) · B r( )ds[ ] � a1B r( ),
A r( ) � a2B r( ),
J r( ) � a3B r( ).

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
(18)

Where a1, a2, a3 are all nonzero constants. This case additionally
requires that the partial derivative of the product of the magnetic
diffusion coefficient and the magnetic field with respect to time is
zero. Other requirements are similar to those in Case I.

Case Ⅲ, k2 ≠ 0 and the second term in Equation 13 is zero:

k1 � 0,
B″ t( ) � 0,
k3 � 0,
k4 � 0.

⎧⎪⎪⎪⎨⎪⎪⎪⎩ (19)

We can get:

∇F ∫ η r( )J r( ) · B r( )ds[ ] � a1B r( ),
B t( ) � a2t + a3,
A r( ) � a4B r( ),
J r( ) � a5B r( ).

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
(20)

Where a1, a2, a4, a5 are all nonzero constants, and a3 is constant.
This case additionally requires that the magnetic field must change
linearly with time. Other requirements are similar to those in Case I.

Case Ⅳ, k3 ≠ 0 and the third term in Equation 13 is zero:

k1 � 0,
k2 � 0,
B″ t( )B t( ) − B′ t( )2 � 0,
k4 � 0.

⎧⎪⎪⎪⎨⎪⎪⎪⎩ (21)

It can be obtained that:

∇F ∫ η r( )J r( ) · B r( )ds[ ] � a1B r( ),
∇F ∫A r( ) · B r( )ds[ ] � a2B r( ),
B t( ) � a3e

a4t,
J r( ) � a5B r( ).

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
(22)

Where a1, a2, a3, a5 are all nonzero constants, and a4 is constant.
This case additionally requires that the magnetic field must change
exponentially with time. Other requirements are similar to those
in Case I.

Besides, there are situations that bind the system even further:
Case Ⅴ, both the first and third term in Equation 13 are zero:

η′ t( )B t( ) + η t( )B′ t( ) � 0,
k2 � 0,
B″ t( )B t( ) − B′ t( )2 � 0,
k4 � 0.

⎧⎪⎪⎪⎨⎪⎪⎪⎩ (23)

It suggests that:

η t( ) � a2e
−a1t,

∇F ∫A r( ) · B r( )ds[ ] � a3B r( ),
B t( ) � a4e

a1t,
J r( ) � a5B r( ).

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
(24)

Where a1, a2, a3, a4, a5 are all nonzero constants. Based on the
above conditions, the steady flow can exist when the temporal
variation of the magnetic field and the magnetic diffusion
coefficient can be expressed as an exponential relationship. Other
requirements are similar to those in Case I.

Case Ⅵ, both the first and second term in Equation 13 are zero:

η′ t( )B t( ) + η t( )B′ t( ) � 0,
B″ t( ) � 0,
k3 � 0,
k4 � 0.

⎧⎪⎪⎪⎨⎪⎪⎪⎩ (25)

It can be parsed that:
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η t( ) � a1/ a2t + a3( ),
B t( ) � a2t + a3,
A r( ) � a4B r( ),
J r( ) � a5B r( ).

⎧⎪⎪⎪⎨⎪⎪⎪⎩ (26)

Here a1, a2, a4, a5 are all nonzero constants, and a3 is
constant. This situation requires that the magnetic diffusivity
is inversely proportional to time, while the magnetic field varies
linearly with time. Other requirements are similar to those
in Case I.

It should be noted that the condition where both the second and
third non-parametric terms are zero in Equation 13 does not hold
since η′(t) ≠ 0. Additionally, in other cases where Equation 13
contains non-zero terms, the presence of complex expressions
makes it impractical to explicitly express their physical meaning.
To maintain completeness, these cases are provided in the
Supplementary Appendix SA1. Furthermore, unlike 2D magnetic
reconnection, where reconnection occurs only at X-type null points,
3D magnetic reconnection can occur at locations where the
magnetic field does not vanish. Consequently, the conditions
required for steady reconnection flows in 3D magnetic
reconnection discussed here from Equations 15–26 are distinct
from those in classical reconnection models [6–8] and cannot be
directly compared.

4 Discussion and conclusion

From the analysis of the above results, it can be observed that
the existence conditions for steady reconnection flows impose
very strict requirements on the spatial distribution of the
magnetic field. However, in terms of the time variable,
common variations such as linear or exponential changes can
meet the requirements. Although very few regions
simultaneously satisfy these conditions in actual cosmic space,
it is proven that steady reconnection flows can be analytically
obtained from the time-dependent 3D magnetic reconnection
model. Specifically, if the spatiotemporal distributions of the
magnetic field and magnetic diffusivity follow the constraints
referred to above, steady reconnection can theoretically persist
within a time-varying magnetic field scenario.

As introduced above, the solar wind is full of turbulence
where the distribution of the magnetic field and the magnetic
diffusion coefficient cannot meet any form of the above
theoretical analysis, but we can still observe quasi-steady
magnetic reconnection exhausts persisting for hours. Our
work may shed some light on this phenomenon. According to
Fourier’s theorem, any periodic or non-periodic signal can be
decomposed into a combination of harmonically related
sinusoidal signals. Therefore, the turbulent magnetic field in
the solar wind can be decomposed into a series of sinusoidal
signals. If we can prove that there exists a quasi-steady flow field
corresponding to a time-varying magnetic field such as a
sinusoidal signal in 3D magnetic reconnection, then the
turbulent solar wind might have the possibility to produce
quasi-steady magnetic reconnection. Following the method
adopted before, we assume a classical X-type magnetic field
along with a sinusoidal time-dependent perturbation:

B r, t( ) � y/L, k2x/L, Bz( ) B1 + B2 sin ω t( )( ) (27)

Here the reconnecting field component, Bxy � (y/L, k2x/L) and
the guide field component Bz are specifically addressed to analyze
the effect of the guide field on the stability of the reconnection
outflows. To make Equations 1–4 analytically solvable, and by
following the similar derivation method [26, 53], we construct
the following magnetic vector potential:

A r, t( ) � k2xz/L, Bzx, y
2/ 2L( )( ) B1 + B2 sin ω t( )( ) (28)

Assuming X(s, t) � X(s)X(t), the corresponding inverse
mapping of X(x0, s) can be written as:

X0 � x cosh ks/L( ) − y sinh ks/L( )/k (29)
Y0 � y cosh ks/L( ) − kx sinh ks/L( ), (30)

Z0 � −s + z. (31)

Adopting the same boundary conditions [53], the magnetic
diffusion coefficient is also set as:

η x0, y0, s( ) � η0 exp − s2 + x2
0 + y2

0( )/l2( ) (32)
where l is a constant that governs the scale of a non-ideal
region. Here, the electric field can be deduced from Equations
9, 11 and Equations 27–32. Then, the flow can be determined
as follows:

u⊥ � E − ηJ( ) × B
B2 (33)

The solid lines in Figure 1 represent the magnetic field
variations, while the dashed lines represent the outflows
deduced from Equation 33. It is evident that the outflows
exhibit corresponding periodic oscillations in response to the
periodic variations of the magnetic field. In scenarios with lower
guide field conditions, the system tends to amplify the
fluctuations in the magnetic field, leading to increases in the
amplitude of velocity disturbances. As the guide field increases,
these disturbances are suppressed, and the oscillation amplitude
of the outflows gradually decreases. Notably, when Bz/Bxy > 0.2,
the outflow exhibits obvious stability. Hence, the presence of the
guide field significantly enhances the stability of the
reconnection outflow. Figure 1 also reveals that for a
sinusoidally varying magnetic field, 3D magnetic
reconnection can generate a quasi-steady flow that
corresponds to these magnetic field variations if a suitable
range of angular frequencies, disturbance amplitudes and
guide field are satisfied.

It should be noted that the single X-type topology for solar
wind reconnection exhausts has never been completely observed.
There are only fragmentary observational evidences from multi-
spacecraft measurements suggesting that the most likely
geometric structure of the reconnection exhaust is a large-
scale X-line shape [54–56, 61]. Since a single spacecraft can
only observe the solar wind passing by it, providing essentially
one-dimensional observations without three-dimensional
information, the actual reconnection topology for solar wind
could be more complex. However, our intention here was not to
argue whether the reconnection exhaust should conform to such
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a classical X-type structure, but rather to discuss the possibility of
quasi-steady reconnection flow. In addition, the above analysis
does not essentially incorporate any turbulent components in the
classical sense, whereas turbulence has been demonstrated in the
literature to significantly affect magnetic field diffusivity,
i.e., reconnection diffusion and reconnection rate [63, 65].
From this point of view, the analysis primarily represents a
laminar flow perspective. Nevertheless, this approach could
also serve as a purely theoretical framework for analytically
validating the potential existence of quasi-steady flows in 3D
magnetic reconnection within disturbed magnetic field
configurations. By adopting Fourier’s signal decomposition
approach, the above efforts might still enhance our ability to
interpret reconnection phenomena in turbulent solar wind.

In summary, due to the complexity and difficulty of
analytical work, many previous studies have disregarded the
time variable and focused exclusively on static magnetic
reconnection analysis to deduce solutions. Consequently,
most of these works cannot address how reconnection flows
evolve over time. In this paper, we analytically solve the time-
dependent kinematic 3D magnetic reconnection with
generalized spatiotemporal distribution forms of the magnetic
field and magnetic diffusivity. Although the required
spatiotemporal distributions are too strict to be found in
actual cosmic space, through a purely theoretical analytical
approach, we have demonstrated for the first time that steady
reconnection flow can exist. These results could contribute to a
deeper understanding of the stability and conditions required
for the existence of 3D magnetic reconnection, offering new
insights into quasi-steady reconnection in various cosmic
environment.
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