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Incorporating medical text annotations compensates for the quality deficiencies
of image data, effectively overcoming the limitations of medical image
segmentation. Many existing approaches achieve high-quality segmentation
results by integrating text into the image modality. However, these
approaches require matched image-text pairs during inference to maintain
their performance, and the absence of corresponding text annotations results
in degraded model performance. Additionally, these methods often assume that
the input text annotations are ideal, overlooking the impact of poor-quality text
on model performance in practical scenarios. To address these issues, we
propose a novel generative medical image segmentation model, Cap2Seg
(Leveraging Caption Generation for Enhanced Segmentation of COVID-19
Medical Images). Cap2Seg not only segments lesion areas but also generates
related medical text descriptions, guiding the segmentation process. This design
enables the model to perform optimal segmentation without requiring text input
during inference. To mitigate the impact of inaccurate text on model
performance, we consider the consistency between generated textual
features and visual features and introduce the Scale-aware Textual Attention
Module (SATaM), which reduces the model’s dependency on irrelevant or
misleading text information. Subsequently, we design a word-pixel fusion
decoding mechanism that effectively integrates textual features into visual
features, ensuring that the text information effectively supplements and
enhances the image segmentation task. Extensive experiments on two public
datasets, MosMedData+ and QaTa-COV19, demonstrate that our method
outperforms the current state-of-the-art models under the same conditions.
Additionally, ablation studies have been conducted to demonstrate the
effectiveness of each proposed module. The code is available at https://
github.com/AllenZzzzzzzz/Cap2Seg.
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1 Introduction

COVID-19 has rapidly become a global epidemic since the early
2020s Benvenuto et al. [1]. Within 6 months of the outbreak, over
1.5 million cases of COVID-19 had been reported worldwide, with
more than 92,000 deaths Organization et al. [2]. Clinically, reverse
transcription polymerase chain reaction (RT-PCR) is the standard
method for diagnosing COVID-19. Still, it has drawbacks, such as a
high false-negative rate Chan et al. [3] and an inability to provide
information about the patient’s condition. Computed tomography
(CT), due to its convenience and ability to display the three-
dimensional structure of the lungs, has been considered an
essential complement to RT-PCR testing for the early diagnosis
of COVID-19, especially in the follow-up assessment and evaluation
of disease progression Raoof and Volpi [4]. Consequently, the
automatic segmentation of lung infections in CT scans using
computer vision techniques has garnered widespread attention
from clinical researchers Shi et al. [5].

With the advent of deep learning, medical image segmentation
has become a hot topic in computer vision researchZhu et al. [6].
This task focuses on identifying pixel features of anatomical or
pathological regions from the background of medical images and
applying these features to the image segmentation process Liu et al.
[7]; Zhu et al. [8]. Consequently, many deep learning systems have
been proposed for COVID-19 infection detection Ronneberger et al.
[9]; Zhou et al. [10], achieving state-of-the-art performance Wang
et al. [11]; Fan et al. [12]. Figure 1A illustrates that the encoder-
decoder architecture is a more commonly used approach. In this
architecture, the encoder is responsible for extracting image features,

while the decoder restores these features to the original image size
and produces the final segmentation results.

However, the aforementioned traditional pixel-wise supervised
automatic segmentation methods based on deep learning neglect the
semantic information in medical reports. Medical reports often
contain information about the lesion areas, such as size and
quantity, which can complement image data and provide
additional supervisory signals for diagnosis Monajatipoor et al.
[13]. Vision-language models have been extensively researched
recently and achieved remarkable results in cross-modal tasks.
Consequently, many studies have begun exploring combining
textual information from medical reports with the segmentation
process to improve segmentation accuracy Li et al. [14]; Chen et al.
[15]; Huemann et al. [16]; Tomar et al. [17]. As shown in Figure 1B,
a typical multimodal medical image segmentation research
workflow first relies on two specially designed encoders to extract
visual and language features separately. These extracted features are
then integrated using a specific fusion strategy and processed
through a network decoder intended explicitly for multimodality
to obtain the segmentation results.

Although vision-language models have shown promising
performance in the segmentation field, they face two significant
challenges in practical applications within the medical domain.
Firstly, these methods Li et al. [14]; Huemann et al. [16]; Wen
et al. [18], trained using image-text pairs, often experience
performance degradation during inference if the text is
unavailable. This creates a dependency on image-text pairs. In
real-world scenarios, this form of inference frequently contradicts
the process of the model independently assisting clinical diagnosis: it

FIGURE 1
Current medical image segmentation models. (A) Traditional medical image segmentation. (B) Vision-Language multimodal medical image
segmentation. (C) Our proposed model in this paper.
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is usually challenging to obtain textual information from medical
reports before the doctor completes the diagnosis Li et al. [19]; Yu
et al. [20]. This means that if the model relies on these finalized
reports to enhance its performance, it is essentially duplicating the
diagnosis already made by the doctor rather than providing an
independent auxiliary diagnosis. This dependency significantly
diminishes the model’s auxiliary value and deviates from its
original purpose of independently aiding medical diagnosis.
Secondly, existing vision-language models Wen et al. [21] often
focus solely on effectively combining text and visual modalities,
neglecting text accuracy’s impact on model performance. Inaccurate
text can mislead the model and negatively affect its performance. In
practical applications, medical reports may contain errors due to
various factors. Effectively handling this imperfect textual
information and preventing it from impairing model
performance is also a significant challenge.

In summary, there are two main challenges: 1. How to address
the model’s dependency on image-text pairs during the inference
stage; 2. How to mitigate the impact of text accuracy on model
performance. To solve the first challenge, we propose the Cap2Seg
model, as shown in Figure 1C. This model combines the image
captioning task and requires only a lesion image as input to
simultaneously output segmentation results and corresponding
text descriptions, successfully eliminating the model’s dependency
on image-text pair data. Considering that some generated texts may
sometimes deviate from actual medical reports and potentially affect
segmentation performance, we designed a Scale-aware Textual
Attention Module (SATaM) and a semantic consistency loss
(SCloss) function to address the second challenge. These two
mechanisms work together to ensure that the attention of the
generated language features is focused on the lesion areas,
effectively avoiding misleading the model with biased generated
texts. Additionally, we introduced a Language-Aware Visual
Decoder (LAVD), which effectively integrates multi-scale
language features with visual features and decodes them,
significantly improving the overall quality of the segmentation
results. Our contributions are summarized as follows.

(1) The proposed Cap2Seg combines caption generation with
lesion area segmentation, generating related medical text
descriptions simultaneously. Leveraging the generated
textual information to supplement the segmentation task
effectively improves the accuracy of medical image
segmentation. This eliminates the model’s dependency on
image-text pairs and provides additional references for
clinical diagnosis.

(2) The SATaM optimizes the quality of language features and
enhances the model’s ability to handle textual biases, thereby
improving overall robustness. Concurrently, the Language-
Aware Visual Decoder (LAVD) effectively integrates visual
and linguistic features, significantly improving
segmentation quality.

(3) Experiments conducted on two publicly available COVID-19
datasets demonstrate that our proposed method outperforms
most state-of-the-art models in segmentation performance.

The remainder of this paper is organized as follows: Section 2
provides a comprehensive review and summary of previous research

related to our work. Section 3 describes the architecture of the
proposed network. In Section 4, we present and analyze the
experimental results. Finally, in Section 5, we conclude our work.

2 Related works

This section reviews and summarizes previous relevant studies
related to our work, focusing on Visual-Language image
segmentation, image captioning, and multi-task learning.

2.1 Visual-language image segmentation

In recent years, multimodal segmentation techniques that
combine visual and language modalities have garnered extensive
attention. Hu et al. Hu et al. [22] pioneered using textual
descriptions to assist image segmentation, sparking further
research into effectively integrating visual and textual information
to enhance segmentation results. Broadly, this task can be
categorized into two types: referring image segmentation in
natural scenes and image segmentation in medical contexts.

2.1.1 Referring image segmentation
In applications within natural settings, early studies Liu et al.

[23]; Li et al. [24]; Shi et al. [25]; Ye et al. [26] focused on developing
more effective techniques for extracting and merging visual and
linguistic features. Liu et al. Liu et al. [23] introduced a multimodal
Long Short-Term Memory network specifically designed to process
and fuse multimodal features of each word. Shi et al. Shi et al. [27]
proposed a keyword-aware network that, while extracting text
features, assigns higher weights to keywords, thereby improving
the model’s ability to recognize text-indicated objects. The
introduction of attention mechanisms paved new ways for
effective cross-modal feature fusion. Ye et al. Ye et al. [26]
employed non-local blocks Wang et al. [28] to design a cross-
modal self-attention module for integrating features across
modalities. Similarly, other studies Chen et al. [29]; Hu et al.
[30]; Shi et al. [27]; Chen et al. [31] utilized various attention
mechanisms to process and integrate cross-modal features.
Unlike these later fusion approaches, LAVT Yang et al. [32]
achieved an early fusion of linguistic and visual features at the
intermediate layers of a Transformer network, enhancing cross-
modal alignment and the model’s integration of visual and linguistic
information. With the significant rise of CLIP Radford et al. [33] in
the multimodal field, some research began to explore using
contrastive learning to represent cross-modal data, such as LSeg
Li et al. [34] and GroupViT Xu et al. [35]. These studies leveraged the
advanced representational capabilities of CLIP in multimodal
scenarios, effectively enhancing image segmentation efficiency
and accuracy and demonstrating exceptional capabilities in zero-
shot inference scenarios. Further research has focused on the role of
text structure in enhancing multimodal information processing. Yu
et al. Yu et al. [36] and Huang et al. Huang et al. [37] utilized
sentence structure knowledge to capture concepts within
multimodal features, such as categories, attributes, and
relationships. Hui et al. Hui et al. [38] used syntactic structures
between words to guide multimodal context aggregation. Ding et al.
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Ding et al. [39] introduced a dynamic query generation module
capable of dynamically producing multiple queries based on the
input text to accommodate diverse linguistic scenarios, making
multimodal information fusion more targeted and specific.

2.1.2 Medical image segmentation
In the medical field, Li et al. Li et al. [14] proposed the LViT

model, a hybrid of CNNs and Transformers, which incrementally
integrates medical text annotations into the image segmentation
process to compensate for the quality deficiencies of image data.
Unlike LViT, Bi-VLGM Chen et al. [15] emphasizes maintaining
consistency within modal features and uses a visual-language graph
matching module to handle the category-severity relationships
between visual and text features, enabling the segmentation
model to learn valuable representations selectively. Other studies
Huang et al. [40]; Zhang et al. [41]; Huemann et al. [16]; Dai et al.
[42] have used more flexible medical reports for segmentation.
ConTEXTualNet Huemann et al. [16] employs attention
mechanisms to decode image features based on text in medical
reports, guiding the model to focus on text-related image pixels.
Some methods Tomar et al. [17], even without available medical
reports or texts, utilize auxiliary classification tasks to embed textual
attributes (size and number) during encoding. This approach
enables the network to adapt to various sizes and numbers of
polyp cases, thereby enhancing segmentation performance.
However, existing state-of-the-art methods Li et al. [14]; Chen
et al. [15] still rely on matched medical text and image data
during the inference stage to achieve optimal performance. Their
performance may suffer when only image input is available without
corresponding text. In contrast, the Cap2Seg model proposed in this
study requires only one image to achieve optimal performance
during inference.

2.2 Image captioning

Image captioning, which aims to produce natural language
descriptions based on static visual content Vinyals et al. [43];
Ghandi et al. [44], represents a challenging cross-modal
translation task Zhang et al. [45]; Yu et al. [46]. This task
demonstrates particular application value in the medical field Li
et al. [47]; Hou et al. [48]; Wang et al. [49]. For instance, Li et al. Li
et al. [47] developed a Knowledge-driven Encoding, Retrieval, and
Paraphrasing (KERP) model to improve medical image descriptions.
Our research focuses not on designing a new captioning model per se
but on employing image caption generation as an auxiliary module.
To the best of our knowledge, this study is the first attempt to
explore caption generation in medical image segmentation.

2.3 Multi-task learning

Multi-task learning aims to enhance the performance of
individual or multiple tasks by jointly training related tasks,
utilizing the correlations and shared information between them
for mutual benefit. For example, Wu et al. Wu et al. [50] introduced
the CGG framework, which combines image caption generation and
referring image segmentation tasks. This framework employs

caption generation loss to supervise the model, improving image
segmentation quality. Similarly, Sun et al.‘s PFOS model Sun et al.
[51], which integrates the tasks of Referring Expression
Comprehension and Generation, leverages cross-attention and
multimodal fusion mechanisms to boost overall model
performance significantly. Moreover, Zhang et al. Zhang et al.
[52] demonstrated significant performance improvements in
medical image analysis by combining gastric cancer segmentation
with lymph node classification tasks, effectively managing the inter-
task relationships and heterogeneity through multi-scale features
and refined attention mechanisms. Following this concept, Cap2Seg
merges the functions of image caption generation andmedical image
segmentation. The goal is to utilize the generated textual annotations
as supplementary information to the image modality, thereby
enhancing the performance of the segmentation task.

3 Proposed method

This section elaborates on the proposed method, encompassing
four components: the Multimodal Synergistic Dual-Flow Encoder
(MSDFE) module, the Multimodal Semantic Enhancement and
Captioning Module (MSECM), the Scale-aware Textual Attention
Module (SATaM), and the Language-Aware Visual
Decoder (LAVD).

3.1 Overview

The caption-driven multimodal COVID-19 segmentation
framework proposed in this paper is illustrated in Figure 2A.
This framework addresses two primary tasks: medical image
captioning and medical image lesion segmentation. The MSDFE
module initially processes the input image, mapping it into a
multimodal space that combines visual and textual data, thereby
providing a comprehensive set of features for both tasks. The
MSECM then refines these features to enhance their relevance to
each task. Concurrently, the SATaM and Semantic Consistency Loss
(SCloss) are employed to apply focused attention to the textual
features, thereby minimizing the model’s reliance on non-relevant
or potentially misleading information and concentrating efforts on
lesion areas. Finally, the LAVD integrates and upsamples the textual
and visual features to produce the final segmentation results. In
summary, our proposed framework leverages the synergistic effects
of multitask learning to exploit the rich complementary information
contained in generated text annotations, thereby enhancing the
segmentation quality of COVID-19 and providing additional
textual diagnostic support.

3.2 Multimodal synergistic dual-
flow encoder

Given the high variability in the shape, size, and location of
COVID-19 infection-related issues, and the requirement for the
Cap2Seg model to perform both image segmentation and image
captioning tasks, extracting richer features from the input images is
crucial. Convolutional Neural Networks (CNN) can accumulate
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spatial information of images, focusing on capturing local
information such as the texture and contours of lesion areas. At
the same time, the self-attention mechanism can explore long-range
dependencies in images, focusing on capturing global information.
To fully extract diverse features, this paper proposes a Multimodal
Synergistic Dual-Flow Encoder (MSDFE), which combines the
strengths of CNN and Transformer. As shown in Figure 2B,
MSDFE consists of two parallel feature extraction branches: the
first branch is the “trans flow” processed by TransBlock (indicated
by dashed lines in the figure), and the second branch is the “conv
flow” processed by ResBlock (indicated by solid lines in the figure).
MSDFE can extract local, global, and long-range dependency
features from images through this combination, thus providing a
more expressive feature set for both tasks.

Specifically, The ResBlock comprises a pair of 3 × 3
convolutional blocks, each succeeded by batch normalization
Ioffe and Szegedy [53] and the ReLU activation function Nair
and Hinton [54]. The architecture is finalized with a residual
connection featuring 1 × 1 convolution that synergistically
integrates the input with the convolutional layers’ outputs, as
specified in the following Equations 1, 2:

~xout � σ BN Conv3×3 xin( )( )( ) (1)
xout � σ BN Conv3×3 ~xout( )( )( ) + σ BN Conv1×1 xin( )( )( ) (2)

In this context, σ denotes the ReLU activation function, BN stands
for Batch Normalization, Conv3×3 and Conv1×1 are the convolutions
of size 3 × 3 and 1 × 1, respectively.

As for TransBlock, it initially processes the input image
x ∈ R(H,W,C) into flattened uniform non-overlapping patches
xp ∈ R(P2×C,N), where (H,W,C) are the input image’s resolution
and channels, (P, P) is the resolution per image patch, and N �
HW/P2 is the number of patches. These patches are then mapped
onto a k-dimensional embedding space z0 by a trainable linear layer
E ∈ R(P2×C,K). The definition of z0 is provided as follows in
Equation 3:

z0 � x1
pE; x

2
pE; . . . ;x

N
p E[ ] (3)

Subsequently, the embedded feature z0 ∈ R(N,K) serves as the input
for TransBlock, comprising a Multi-Head Self Attention module
followed by a 2-layer MLP with interposed with a GELU activation
function. A LayerNorm layer is applied before each MAS module
and each MLP, and a residual connection is applied after each
module Dosovitskiy et al. [55]; Vaswani et al. [56]. Which can be
expressed as Equations 4, 5:

zi′ � MSA LN zi−1( )( ) + zi−1, i � 1 . . .M (4)
zi � MLP LN zi′( )( ) + zi′, i � 1 . . .M (5)

FIGURE 2
Overall framework of the proposed method. (A) The leading network comprises the following components: (B) The multimodal synergistic Dual-
Flow Encoder (MSDFE) module, (C) the Multimodal Semantic Enhancement and Captioning Module (MSECM), the Scale-aware Textual Attention Module
(SATaM), and (D) the Language-Aware Visual Decoder (LAVD).
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Herein, MSA signifies multi-head self-attention, LN(·) denotes
layer normalization, and MLP comprises two linear layers with
GELU activation functions. i is the intermediate block identifier, and
M is the number of transformer layers.

Throughout the encoding process, the MSDFE module is
configured with four instances. Initially, in the first two MSDFE
modules, each branch functions independently, extracting features
without interacting with each other. In the latter two modules, the
outputs of these branches are amalgamated and then transferred to
the next “conv flow” stage, facilitating collaborative learning.
Specifically, in these later stages, the output from the “trans flow”
zi ∈ R(N,K) undergoes dimensional transformation and up-
sampling to yield z ∈ RH×W×Cout

2 , aligning with the dimensions of
the “conv flow,” followed by merging the outputs from both
branches through a concatenation operation. This integrated
process is mathematically represented in Equation 6:

FD
vi � Ecomv FD

v i−1( )( ), Etrans zi−1( )[ ] i � 1 . . . 4 (6)

In this equation, FD
v(i−1) symbolizes the down-sampling output from

the previous (i − 1)th encoder layer, with Econv and Etrans signifying
the ResBlock and TransBlock, respectively, and [·] represents the
concatenation of the two features. In our model configuration, the
input image dimensions are set to H � W � 224, and the
TransBlock’s layer configuration M is designated as 4, 3, 3, 2,
with a patch size of P � 16 × 16, P � 768, resulting in a total
patch count of N � 196. This approach to MSDFE effectively
maps visual information to multimodal spaces, significantly
improving the model’s performance in subsequent tasks such as
medical image segmentation and image captioning. It lays a robust
foundation for addressing complex cross-modal challenges.

3.3 Multimodal semantic enhancement and
captioning module

To leverage the multimodal features FD
v4 ∈ R(hi,wi,Ci) extracted

during the encoding phase for image segmentation and captioning
tasks, we devised a Multimodal Semantic Enhancement and
Captioning Module (MSECM). As depicted in Figure 2D, the
MSECM consists of two main components: Visual Semantic
Enhancement (VSE) and Textual Semantic Enhancement (TSE).
VSE adjusts FD

v4 to generate visual features Fs ∈ R(hi ,wi ,Ci) tailored for
segmentation tasks. In contrast, TSE refines features Fg ∈ R(N,K) for
the image captioning task and produces the associated medical text
descriptions. The MSECM precisely fine-tunes these features to
cater to the specific requirements of each task, ensuring that the
extracted features are highly task-specific.

We utilize atrous Chen et al. [57] convolution in the VSE to
refine the multimodal features. Atrous convolution extends the
receptive field by adjusting the dilation rate, allowing it to
capture broader contextual information. Specifically, we use
different dilation rates (1, 3, 6, 9) to ensure effective information
acquisition across various scales. This multi-scale information
capture enhances the specificity of visual features for
segmentation tasks, providing a solid foundation for achieving
accurate segmentation results. Furthermore, due to the
Transformer’s strong ability to model the two modalities, we

integrate the output of TSE into VSE, forming a comprehensive
feature set F′ ∈ R(hi ,wi,Ci) for the image segmentation task. This
feature set will be employed in the subsequent upsampling decoding
process, represented by the following Equations 7–10:

Fvai � σ BN Convd�i3×3 FD
v4( )( )( ) i � 1, 3, 6, 9 (7)

Fs � σ BN Conv3×3 Fva1, Fva3, Fva6, Fva9[ ]( )( ) (8)
Fg � Transformer FD

v4( ) (9)
F′ � Fs,Conv3×3 Re Fg( )( )[ ] (10)

In these equations, Convd�i3×3 symbolizes atrous convolution, d � i
indicates the dilation rate, Transformer(·) is shorthand for
Transformer operation, and Re(·) represents the reshape operation.

In the TSE, as illustrated in Equation 9, the Transformer module
is utilized to optimize the multimodal features, with its self-attention
mechanism enabling extensive context capture from within the
image. This enhances feature coherence and provides a solid
foundation for generating text closely related to the image. We
employ a lightweight Long Short-Term Memory (LSTM) network
Hochreiter and Schmidhuber [58] as the caption generator for the
subsequent generation of medical image captions. This network
comprises several interconnected LSTM units, enabling it to
effectively process sequential data, which is crucial for generating
coherent and informative medical texts. To quantitatively assess the
accuracy of the generated texts, we use the cross-entropy loss
function Lgen to guide the LSTM network’s training. The loss
function is defined in Equation 11:

Lgen � −∑NT

t�1
log pt yt | y1, y2, . . . , yt−1; θ( )( ) (11)

In this formula, pt(yt | y1, y2, . . . , yt−1; θ) signifies the probability
that the model predicts the current word yt, contingent upon the
antecedent words and the model parameters θ. This approach
ensures a high degree of alignment between the accuracy of the
generated text and actual texts. Subsequently, the generated texts are
tokenized and converted into embeddings via a trainable embedding
layer, resulting in the linguistic feature L ∈ R(T,CL). This feature is
further refined by subsequent modules, specifically tailored for
applications in the decoding and analysis processes.

3.4 Scale-aware textual attention module

To mitigate the impact of variances between model-generated texts
and labeled descriptions in a minority of samples, which may
compromise the model’s segmentation performance, this research
has integrated a Scale-aware Textual Attention Module (SATaM).
This module exploits multimodal features FD

vi ∈ R(Hi,Wi,Ci) extracted
at different stages of encoding to enhance the quality of linguistic
features L. Multimodal features FD

vi(i � 1, 2, 3, 4) from varying
encoding layers encapsulate distinct information: superficial layers
provide comprehensive, sentence-level insights, while deeper layers
deliver granular details, such as lesion-specific word-level
information. Both levels are instrumental in guiding the
development of linguistic features. Furthermore, SATaM additionally
incorporates a semantic consistency loss function (SCloss) to enhance
further the attention of linguistic features on key lesion areas. SATaM is
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designed to allocate higher attention weights to lexical or sentence
features while minimizing focus on irrelevant or misleading
information. This approach ensures the emphasized features
maintain a solid semantic correlation with the visual content.
Figure 3 illustrates the architecture of the SATaM. Initially, FD

vi and
L are mapped through a fully connected layer to a unified subspace,
where a cross-modal attention mechanism is applied. This generates an
attention map Ai ∈ RHW×T, delineating the correlations between T
words and every pixel in the image. Subsequently, the map Ai

undergoes summation across the HW dimensions and is
normalized, resulting in the attention matrix ~ai ∈ RT. This process
is graphically represented in the following Equations 12–14:

Ai � ωvFvi( ) ω1L( ) (12)

ai � ∑HW

j�1
Aj

i (13)

~ati �
exp ati/ ai‖ ‖2( )

∑T
k�1 exp aki / ai‖ ‖2( ) (14)

Herein, ωv and ωl are projection parameters, ‖ · ‖2 denotes the L2-
norm, Aj

i ∈ RT the feature relevance between T words and the jth
pixel. The term ~ati ∈ RT indicates the significance of the t-th word
about the current visual features. Hence, we employ ~ai to linearly
recombine L across the word dimension, deriving an adaptive, scale-
aware sentence features Lsi ∈ RCL . This feature dynamically adjusts
its representation in response to visual content of varying scales,
enhancing its ability to encompass and articulate overall visual
information. Expanding upon this, Lsi is concatenated with L to
forge a novel T + 1 dimensional linguistic feature Li′ ∈ R(T+1,CL).
This improved feature is then processed through a self-attention
mechanism, and subsequently, it is combined with L to produce
Lvi ∈ R(T+1,CL). This operation aims to enrich the original linguistic
features of L with visual context provided by Lsi while preserving the
integrity of L’s textual structure. The steps of this procedure are
detailed in the following Equations 15, 16:

Li′ � Conv1×1 Ls( ), L[ ] (15)
Lvi � Conv1×1 Self Li′( ) + L( ) (16)

Here, Self(·) refers to the self-attention mechanism. Finally, we
remove the token that represents Lsi from Lvi, resulting in
�Lvi ∈ R(T,CL), which retains the contextual understanding of the
original text structure and incorporates scale-level visual
information. Thus, �Lvi is utilized as the input for textual
information in the decoding phase.

Furthermore, before each skip connection within the model, the
SATaM produces four adaptively scale-aware sentence features,
Lsi(i � 1, 2, 3, 4). These features are designed to concentrate on
lesion areas consistently. To ensure this consistent focus, this
study further introduces a SC (Semantic Consistency) Loss
comprising three Mean Squared Error (MSE) loss functions: L1,
L2 and L3. These functions are designed to minimize differences
between the sentence-level features Lsi at various stages, enhancing
their focus consistency. The implementation includes the following
Equations 17–20:

L1 � 1
N

∑N
i�1

Ls1 − Ls2‖ ‖2 (17)

L2 � 1
N

∑N
i�1

Ls1 − Ls3‖ ‖2 (18)

L3 � 1
N

∑N
i�1

Ls1 − Ls4‖ ‖2 (19)

Lcon � L1 + L2 + L3 (20)
The introduction of SCloss ensures that each SATaM can effectively
share insights and impose constraints on one another. This
mechanism enables the linguistic features �Lvi, guided by Lsi, to
target lesion areas that critically affect the segmentation more
precisely. Consequently, the interaction of these two mechanisms
provides linguistic features relevant to the visual content,
complementing the segmentation process during the decoding

FIGURE 3
Architectures of the scale-aware textual attention module.
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stage and significantly enhancing the overall quality of the
segmentation results.

3.5 Language-aware visual decoder

To optimize the decoding phase of segmentation, we have
implemented a Language-Aware Visual Decoder (LAVD). This
module is specifically designed to enable more effective
integration of features, thereby facilitating the subsequent up-
sampling steps. As shown in Figure 2C, the designated input
features consist of the decoding features FU

vi ∈ R(Hi,Wi,Ci) from the
preceding stage, the linguistic features �Lvi, and the features FD

vi from
the encoding phase, which serve as skip connections. The decoder
aggregates �Lvi along the pixel dimension, creating feature vectors
specific to the image pixel positions, which gather the language
information most relevant to the current local area. This culminates
in spatial attention maps FAi ∈ R(Hi,Wi,Ci), Concretely, we obtain FAi

from the following Equations 21–24:

VQi � UP ωqi F
U
vi−1( )( ) (21)

LKi � ωki
�Lvi( ) (22)

LVi � ωvi
�Lvi( ) (23)

FAi � softmax
VQiLKi

di

√( )LVi (24)

Within this framework, ωqi, ωki and ωvi denote the mappings from
linear layers, with UP(·) denoting up-sampling. Using the visual
feature FU

vi as query and linguistic features �Lvi as both keys and value,
the module accomplishes scaled dot-product attention Vaswani
et al. [56]. Finally, the acquired FAi is concatenated with the
multimodal features from the encoding phase FD

vi and then
inputted into the for further learning, as detailed in the following
Equation 25:

FU
vi � Res Res FAi, F

D
vi[ ]( ) i � 1, 2, 3, 4 (25)

In our approach, the LAVD is set to 4, and after four iterations of up-
sampling, FU

vi yields the final segmentation mask of the lesion area.

3.6 Overall loss functions

The overall training loss is divided into two main components:
segmentation loss Lseg and caption generation loss Lgen. For the
segmentation part, we have chosen two commonly used losses in
medical image segmentation, Lce and Ldice as well as the semantic
consistency loss Lcon introduced in this study. These are defined in
the following Equations 26–28:

Lce � − 1
N

∑N
i�1

yi log pi( ) (26)

Ldice � 1 − 2∑N
i�1piyi

∑N
i�1p

2
i + ∑N

i�1y
2
i

(27)

Lseg � 1
2
Lce + 1

2
Ldice + λcLcon (28)

The overall loss function is formulated in Equation 29:

Ltotle � αLseg + βLgen (29)

Within this construct, pi and yi respectively represent the binary
segmentation prediction probability for the i-th pixel of each input
image and the corresponding label classification. N represents the
number of pixels. λc, α and β signify the hyperparameters applied for
weighting various losses. Through the incorporation of Lseg and
Lgen, Cap2Seg effectively narrows the gap between segmentation
maps and labels while generating high-quality medical text
annotations, thereby enabling the model to utilize linguistic
insights to enhance the segmentation process.

4 Experimental

This section comprehensively evaluates our Cap2Seg network
using the QaTa-COV19 and MosMedData + datasets. Each
experiment is meticulously described, and the results are
rigorously analyzed.

4.1 Implementation details

This study’s methodology was executed on an NVIDIA RTX
4080 using PyTorch. The optimization of model parameters was
carried out with an AdamW optimizer that includes a weight decay
of 0.0001. Following Li et al. [14], the initial learning rates were
configured at 3e-4 for the QaTa-COV19 dataset and 1e-3 for the
MosMedData + dataset; due to the differing data sizes of the
datasets, batch sizes were specifically configured at 4 for the
QaTa-COV19 dataset and 8 for the MosMedData + dataset. The
hyperparameters α, β, and λc were established at 5.0, 2.0, and
0.5 values, respectively. For performance evaluation, we utilized
the Dice Thomas et al. [59] coefficient and Mean Intersection over
Union (mIoU) Ouyang et al. [60] to assess our model’s effectiveness
relative to other state-of-the-art methods. These evaluations are
computed using the following Equations 30, 31:

DSC A,B( ) � 2 ×|A ⋂ B|
A + B

(30)

mIoU A,B( ) � 1
N

∑N
i�1

|A ⋂ B|
|A ⋃ B| (31)

Here, A and B denote the labels and segmentation predictions,
respectively.

4.2 Datasets

The study utilized two primary public datasets: QaTa-COV19
Degerli et al. [61] and MosMedData + Morozov et al. [62]. The
QaTa-COV19 dataset comprises 9,258 chest X-ray images of
COVID-19, each with a 224 × 224 pixels resolution. Of these,
5,716 were designated for training, 1,429 for validation, and 2,113 for
testing. The MosMedData + dataset contains 2,729−ΔΔCT scans depicting
lung infections, with each image having a resolution of 512 × 512 pixels.
It includes 2,183 images for training, 273 for validation, and another
273 for testing purposes. Notably, the original datasets did not include
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medical text annotations; these were added subsequently by the LVIT Li
et al. [14], which provided detailed descriptions of the lesions in terms of
their areas, quantities, and locations. Such as “bilateral lung infection,
two infection zones, upper left lung and upper right lung.” indicating
bilateral lung infections with two infection zones in the upper left and
upper right lungs, and “unilateral lung infection, one infection zone,
lower left lung.” indicating a single-sided lung infection with the
infection zone in the lower left lung. Each lesion image corresponds
to a medical text annotation, with more detailed textual annotation
information available in Li et al. [14].

4.3 Results and analysis

We first validated the effectiveness of our method on the
MosMedData + dataset and compared it with existing methods
under three different conditions. The first condition is that no text
modality is used as auxiliary input during inference, corresponding
to the “w/o Text” column in the table. The second condition involves
using generated medical text annotations to assist segmentation
during inference, as shown in the “Generated Text” column in the
table. These annotations are generated by Cap2Seg at its optimal
performance and are used as inputs for other models. A detailed
qualitative evaluation of these generated texts is provided in Section
4.4. The third condition is that real labeled medical text annotations
assist segmentation during inference, corresponding to the “Ground
Truth Text” column in the table. Since our model does not use any
text input during inference and the model generates the auxiliary
text, our method falls under the first two conditions. Therefore, we
perform inference only under these two conditions and compare it
with existing methods. We compared our method with mainstream
text-guided image segmentation methods Yang et al. [32]; Li et al.
[14]; Huemann et al. [16]; Tomar et al. [17] and some state-of-the-

art segmentation methods Ronneberger et al. [9]; Zhou et al. [10];
Oktay et al. [63]; Katore and Thanekar [64]; Chen et al. [65]; Cao
et al. [66]; Zhao et al. [67]. The corresponding comparison results
are listed in Table 1, with the best results highlighted in bold.

Our findings reveal that Cap2Seg substantially exceeded the
performance of existing approaches in the three conditions outlined
above. It is important to note that when using generated annotations
with discrepancies from real text annotations for segmentation
assistance, Li et al. [14]; Huemann et al. [16]; Tomar et al. [17]
that did not account for this issue generally saw reduced
performance. Nevertheless, Cap2Seg effectively addressed and
mitigated this issue. Specifically, using generated medical text
annotations, Cap2Seg increased the mIoU score by 3.66% and
the Dice score by 2.71% compared to the suboptimal LViT. Even
against LViT utilizing real medical text annotations, Cap2Seg still
improved the mIoU score by 1.69% and the Dice score by 1.3%.
These results suggest that Cap2Seg adeptly learned lesion-related
visual cues, minimized its dependency on potentially misleading
information, and underscored its superior capability.

In further evaluations conducted on the QaTa-COV19 dataset,
the quantitative comparisons of our Cap2Seg are detailed in Table 2.
Specifically, Cap2Seg achieved a mean Intersection over Union
(mIoU) of 71.61% and a Dice coefficient of 81.32%. Cap2Seg
achieved the best or near-best results in all three evaluated
scenarios, demonstrating its significant superiority over the
previously discussed state-of-the-art methods.

4.4 Visual comparison of
segmentation results

We have conducted visual qualitative assessments of our Cap2Seg
method on the MosMedData+ and QaTa-COV19 datasets,

TABLE 1 Compares the state-of-the-art segmentation methods on the MOSMEDDATA + dataset. GRAY-SHADED methods exclude text input, while others
include text input.

Method w/o Text Generated Text Ground Truth Text

mIoU[%] Dice[%] mIoU[%] Dice[%] mIoU[%] Dice[%]

U-Net 50.73 64.60 – – – –

Att-Unet 52.82 66.34 – – – –

UNet++ 58.39 71.75 – – – –

TransUNet 58.44 71.24 – – – –

Swin-Unet 50.19 63.29 – – – –

SCOAT-Net 56.87 70.51 – – – –

COPLE-Net 60.93 74.08 – – – –

ConTEXTualNet 56.81 70.60 56.03 70.08 58.19 71.66

LAVT 56.52 70.23 55.43 69.86 60.41 73.29

TGANet 60.18 73.30 59.28 71.81 59.28 71.81

LViT-T 60.40 72.58 59.86 73.41 61.33 74.57

Cap2Seg(Ours) 63.02 75.87 63.02 75.87 – –

Bold values represent the best performance.
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benchmarking it against current methodologies. As illustrated in
Figure 4, segmentation inaccuracies are noticeable in the outputs
from CopleNet Katore and Thanekar [64], ConTEXTualNet
Huemann et al. [16], TGANet Tomar et al. [17], and LViT Li et al.
[14] across the first, third and fourth rows, where these methods exhibit
erroneous segmentation zones. In contrast, our approach effectively
delineates the primary regions of lesions. Moreover, the sixth row
demonstrates that while existing methods struggle with identifying
lesion peripheries and finer details, Cap2Seg excels in recognizing these
critical features, showcasing our network’s enhanced capability to
capture lesion-specific areas accurately. The visual evidence indicates
that our method achieves comparable or superior segmentation results
relative to other models.

4.5 Ablation study

The proposed method is structured around three principal
components: MSDFE, MSECM, and SATaM, with SATaM
integrating SCloss, a feature proven effective in our analysis. The
following ablation experiments were conducted to evaluate the
efficacy of each component individually. MSDFE, MSECM, and
SATaM were initially removed from our model to create a baseline.
These components were then incrementally reintroduced to assess
their contributions. This methodology was validated using the
results from the MosMedData + dataset, summarized in Table 3,
which indicated that the gradual reintroduction of these modules
allowed our complete model to achieve an optimal mIoU score of
63.02% and a Dice score of 75.87%. The segmentation results for
different configurations, illustrated in Figure 5, reveal that our full
model achieves exceptional segmentation precision, especially in the
location and border areas of lesions.

4.5.1 Effectiveness of MSDFE
In this study, the MSDFE module extracts a comprehensive

set of multimodal features, effectively tackling complex cross-
modal challenges. To ascertain the efficacy of this approach, we
analyzed the segmentation performance differences between the
“Baseline” and “Baseline*“. According to the results in Table 3,
“Baseline*” reached mIoU and Dice scores of 60.96% and 74.18%
respectively, showing improvements of 1.72% and 1.35% over
“Baseline. “The visual segmentation outcomes depicted in
Figure 5 corroborate these findings, showing that
incorporating the MSDFE module notably decreases
segmentation errors, particularly within lesion regions.

Furthermore, the study delved into the effects of interactions
between two designated sub-modules, ResBlock and TransBlock,
within various MSDFE modules during the encoding stage. Table 4
reveals that initiating these interactions from the third MSDFE
module optimizes model performance. This evidence collectively
emphasizes the MSDFE module’s pivotal role in enhancing feature
recognition capabilities in lesion areas and elevating overall
segmentation accuracy.

4.5.2 Effectiveness of MSECM
The proposed MSECM module finely tunes the encoded

multimodal features to enhance their task specificity. This
adjustment results in two more features aligned with the
intended tasks. To evaluate the effectiveness of MSECM, we
analyzed the data presented in Table 3. The introduction of
MSECM improved the mIoU and Dice scores of “Baseline* +
MSECM” by 0.74% and 0.68%, respectively, compared to
“Baseline*.” These findings demonstrate that integrating MSECM
into our network markedly improves mIoU and Dice scores,
confirming its beneficial impact on the model’s performance.

TABLE 2 Compares the state-of-the-art segmentation methods on the QaTa-COV19 dataset. GRAY-SHADED methods exclude text input, while others
include text input.

Method w/o Text Generated Text Ground Truth Text

mIoU[%] Dice[%] mIoU[%] Dice[%] mIoU[%] Dice[%]

U-Net 69.46 79.02 – – – –

Att-Unet 70.04 79.31 – – – –

UNet++ 70.25 79.62 – – – –

TransUNet 69.13 78.63 – – – –

Swin-Unet 68.34 78.07 – – – –

SCOAT-Net 69.85 79.59 – – – –

COPLE-Net 70.81 80.12 – – – –

ConTEXTualNet 68.67 78.15 68.74 78.49 70.16 79.60

LAVT 61.21 72.61 68.10 78.04 69.89 79.28

TGANet 69.09 78.46 70.75 79.87 70.75 79.87

LViT-T 71.37 81.12 69.19 78.17 75.11 83.66

Cap2Seg(Ours) 71.61 81.32 71.61 81.32 – –

Bold values represent the best performance.
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4.5.3 Effectiveness of SATaM
SATaM assigns attention weights related to visual information to

linguistic features, thus enhancing their focus on crucial lesion areas and
ensuring a tight linkage between linguistic characteristics and these
areas. Consequently, this reduces the model’s attention to irrelevant or
misleading textual features, enhancing its segmentation capabilities. The
significant improvements in segmentation performance with the
inclusion of SATaM are evident in Figure 5, validating its utility.
Table 3 shows that “Baseline* + MSECM + SATaM” achieved
increases of 1.32% and 1.01% in mIoU and Dice scores,
respectively, compared to “Baseline* + MSECM.” The impact of
Semantic Consistency Loss (SCloss) within SATaM was also
assessed. The removal of SCloss led to diminished performance in
the “Baseline* +MSECM+ SATaM∖SCloss” configuration, highlighting

FIGURE 4
Visual comparison of the proposed method with different segmentation methods.

TABLE 3 Ablation study on the MOSMEDDATA + dataset. “Baseline”
represents the utilization OF CNN as the encoder. “Baseline*” indicates the
employment of the MSDFE introduced in this paper as the encoder.
“SATaM∖SCloss” indicates the removal of SCloss from SATaM.

Methods mIoU [%] Dice [%]

Baseline 59.24 72.83

Baseline* 60.96 74.18

Baseline* + MSECM 61.70 74.86

Baseline* + SATaM 61.56 74.59

Baseline* + MSECM + SATaM∖SCloss 62.23 74.92

Baseline* + MSECM + SATaM 63.02 75.87
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SCloss’s pivotal role within the SATaM framework. These findings
confirm that SATaM substantially boosts the model’s segmentation
accuracy, resulting in more precise and consistent predictions.

5 Conclusion

This paper proposes Cap2Seg, a network that combines image
segmentation and caption generation tasks. The introduction of the
MSECM effectively coordinates both tasks, enhancing multi-task
learning efficiency. The SATaM reduces the model’s reliance on
irrelevant or misleading textual information, while the LAVD
effectively fuses textual features with visual features. By generating
text to guide the segmentation task, Cap2Seg fully leverages the
potential of textual annotations, thereby improving the quality and
accuracy of COVID-19 image segmentation. It eliminates the
dependency on image-text pairs and provides additional textual
references for clinical diagnosis. Extensive experimental results
confirm the proposed method’s effectiveness and superiority over
existing approaches. Ablation experiments also validate the efficacy of
each core component of the proposed model. However, it is essential
to acknowledge that although our method has achieved satisfactory
results in image segmentation, we still face challenges in accurately
generating specific keywords in a few samples, affecting the
segmentation performance when dealing with complex lesion
images. Additionally, due to the scarcity of paired medical image
and text datasets, ourmethod has only been validated on two COVID-
19 datasets. Currently, we have not fully resolved the challenge. In
future research, we will expand our study to more types of disease
datasets. Meanwhile, we plan to optimize the caption generation

module to improve the model’s ability to capture key lesion areas
and explore more effective feature interaction and fusion strategies.
These improvements and extensions will help further enhance the
practicality and accuracy of our method in segmentation tasks.
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FIGURE 5
Visual comparison of the effectiveness of different components.

TABLE 4 Impact of interaction between two submodules in different MSDFEmodules during the encoding stage. ‘✓’ indicates interaction within the current
MSDFE.

MSDFE1 MSDFE2 MSDFE3 MSDFE4 mIoU [%] Dice [%]

✓ ✓ ✓ ✓ 61.89 74.78

✓ ✓ ✓ 61.43 74.54

✓ ✓ 63.02 75.87

✓ 61.02 74.06

Bold values represent the best performance.
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