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The outbreak of an epidemic often stimulates the generation of public awareness
about epidemic prevention. This heightened awareness encourages individuals to
take proactive protective measures, thereby curbing the transmission of the
epidemic. Previous research commonly adopts an assumption that each
individual has the same probability of awakening self-protection awareness
after infection. However, in the real-world process, different individuals may
generate varying awareness responses due to the differences in the amount of
information received. Therefore, in this study, we first propose a coupled
awareness-epidemic spreading model, where the self-initiated awareness of
each individual can be influenced by the number of aware neighbors.
Subsequently, we develop a Micro Markov Chain Approach to analyze the
proposed model and explore the effects of different dynamic and structural
parameters on the coupled dynamics. Findings indicate that individual awareness
awakening can effectively promote awareness diffusion within the proposed
coupled dynamics and inhibit epidemic transmission. Moreover, the influence of
awareness diffusion on epidemic transmission exhibits a metacritical point, from
which the epidemic threshold increases with the increase in the awareness
diffusion probability. The research findings also suggest that the increase in
the average degree of virtual-contact networks can reduce the value of the
metacritical point, while the change in the average degree of the physical-
contact networks does not affect the metacritical point. Finally, we conduct
extensive experiments on four real networks and obtain results consistent with
the above conclusions. The systematic research findings of this study provide
new insights for exploring the interaction between individual awareness and
epidemic transmission in the real world.
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1 Introduction

The spread of infectious diseases poses a significant threat to
human health and can lead to substantial economic losses [1].
Throughout history, human society has repeatedly suffered
devastating impacts from infectious diseases. For example, in the
16th and 17th centuries, the rampant smallpox virus led to a sharp
decline in the population of indigenous peoples in the Americas. The
outbreak of novel coronavirus pneumonia (COVID-19) in 2019 has
caused nearly seven million deaths worldwide [2–4]. It is worth
noting that the large-scale outbreak of an epidemic often effectively
stimulates individuals to develop self-initiated awareness, which can
effectively curb the spread of the epidemic [5–9]. For example, after
the outbreak of the COVID-19 pandemic, information related to it
started diffusing on social networks or community networks,
thereby sparking the development of individual awareness about
epidemic prevention [10, 11]. After developing self-initiated
awareness, individuals will actively take a series of self-protective
measures to reduce the risk of infection, such as wearing masks,
frequent hand-washing, reducing outdoor activities, maintaining
social distancing, and more [12]. These self-protective measures can
effectively interrupt the transmission pathways of the virus, thereby
suppressing further transmission of the disease [13–17]. Therefore,
how to model and analyze the coupled awareness-epidemic
dynamics has long been a subject of significant interest among
scholars from various fields.

In real life, individuals can not only have physical contact with
others, such as shaking hands and sharing meals, which promote the
spread of diseases but also communicate with others to receive
disease-related information and generate awareness of self-
protection [18–22]. Therefore, in recent years, scholars typically
adopt a two-layer multiplex network structure to establish the
coupled awareness-epidemic dynamics in their research, aiming
to explore the interaction between awareness diffusion and
epidemic transmission in the real world [23–27]. In the two-layer
multiplex network structure, the first layer is the physical-contact
network, where nodes represent individuals in the real world, and
edges represent physical contact relationships between individuals;
the second layer (virtual contact) is the network with the same nodes
as the physical-contact network, while edges represent information
interaction between individuals [28–31]. In 2013, Granell et al.
proposed a coupled awareness-epidemic dynamics model with
the multiplex network structure to investigate the real-world
coupled awareness-epidemic dynamics. They identified the
presence of a metacritical point for awareness diffusion rate, and
when the awareness diffusion rate is larger than this point, the
epidemic threshold will increase with it [32]. Subsequently, scholars
have proposed several improved models from different perspectives
to consider the effects of various real-world factors on the coupled
awareness-epidemic dynamics. For instance, Granell et al. further
integrates mass media into the awareness diffusion process,
elucidating that the metacritical point for epidemic outbreaks
vanishes under the influence of mass media [33]. Chen et al.
introduced a resource-epidemic coevolution model on a
multiplex network and discovered an optimal heterogeneity of
self-awareness at which the disease can be suppressed to the
greatest extent [34]. Wu et al. introduce a two-layer network
where the inter-layer coupling is induced by the movement of

traveler individuals between layers, and they find that travelers’
hopping preference for different layers can lead to non-monotonic
changes in the epidemic threshold and spreading coverage [35].
Furthermore, many scholars have delved into the effects of the
spatio-temporal characteristics of networks on epidemic spreading.
Liu et al. proposed a spatio-temporal network model based on co-
location interactions using massive cellphone data. They reveals that
universal laws underlying spatio-temporal contact patterns among
residents is essential for epidemic spreading [36]. Furthermore, Li
et al. introduced a temporal multiplex network consisting of a static
information spreading network and a temporal physical contact
network with a layer-preference walk. They found that the epidemic
threshold decreases with the decrease of the effective information
spreading rate and the increase of the layer [37].

As mentioned above, scholars have made significant progress in
the study of coupled awareness-epidemic dynamics. However, there
is limited research that incorporates individualized self-initiated
awareness into the coupled awareness-epidemic dynamics. In the
real world coupled awareness-epidemic spreading, different
individuals generate varying awareness responses due to the
differences in the amount of information received from their
neighbors. Hence, research on the coupled awareness-epidemic
dynamics that takes into account individualized self-initiated
awareness holds significant importance. In light of this, this study
first proposes a coupled awareness-epidemic dynamics model that
incorporates individualized self-initiated awareness, where the
probability of infected individuals developing self-initiated
awareness is influenced by the number of their aware neighbors.
Subsequently, we develop the Microscopic Markov Chains
Approach to theoretically analyze the aforementioned model and
investigate the effects of crucial dynamics and structural parameters
on the coupled awareness-epidemic dynamics.

The paper is structured as follows: Section 2 provides a detailed
description of the coupled awareness-epidemic dynamics with
individualized self-initiated awareness. In Section 3, we introduce
the Micro Markov Chain Approach to analyze the previous model,
and derive the stationary spread range and transmission threshold of
the epidemic. In Section 4, we explore the effects of different
dynamics and structural parameters on the coupled awareness-
epidemic dynamics. Finally, Section 5 summarizes the entire
work and outlines potential avenues for further study.

2 Model description

In the study, we consider the coupled awareness-epidemic
dynamics on top of a two-layer multiplex networks as shown in
Figure 1. The nodes of the two network layers are one-to-one
correspondence, but the connectivity between them is different.
Awareness of the epidemic diffuses on the second layer of the
multiplex network (namely, the virtual-contact layer), and the
epidemic takes place on the first layer (namely, the physical-
contact network).

In the virtual-contact layer, an unaware-aware-unaware (UAU)
model is adopted to depict the diffusion of epidemic awareness.
Unaware (U) nodes have no epidemic awareness and will take no
precautions against the epidemic, while aware (A) nodes know about
the epidemic and will take certain preventive measures. The
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diffusion of epidemic awareness occurs from the A-state node to the
U-state node with a probability of λ, while the A-state node can
revert to the U-state due to loss of awareness with a probability of δ.
Besides, the moment when the U-state node is infected with the
disease, it will develop a self-initiated awareness with the probability
given by Eq. 1:

σ i t( ) � 1 − 1 − σ0( )ηA t( )+1 (1)
where ηA(t) is the count of neighbors in A-state of node i.

In physical-contact layer, a susceptible-infected-susceptible
(SIS) model is adopted to describe the epidemic-transmitting
process. The susceptible (S) node, both with and without
epidemic awareness, can become infected by its infected (I)
neighbor with the certain probability of β, and βA � γβ,
respectively, where 0≤ γ≤ 1 is an attenuation factor reflecting the
influence of preventive measures taken by A-state nodes.
Additionally, the likelihood of an infected node recovering
spontaneously is represented by μ.

3 Theoretical analysis

3.1 Microscopic markov chain approach

We will provide an analytical derivation based on the
Microscopic Markov Chain Approach (MMCA) for our model in
this section. Denote A � (aij)N and B � (bij)N as the adjacency

matrixes for the virtual-contact layer and physical-contact layer,
respectively, where N represents the number of nodes. Taking both
the virtual-contact layer and physical-contact layer into
consideration, nodes within our model have four possible states,
i.e., unaware-susceptible (US), aware-susceptible (AS), unaware-
infected (UI), and aware-infected (AI). Let PUS

i (t), PAS
i (t),

PUI
i (t), PAI

i (t) denote the probability of node i being in US-state,
AS-state, UI-state, AI-state at time t, respectively. The probability of
node i being in A-state, U-state, I-state, and S-state can be calculated
as PA

i � PAS
i (t) + PAI

i (t), PU
i � PUS

i (t) + PUI
i (t), PI

i � PAI
i (t)

+PUI
i (t), and PS

i � PUS
i (t) + PIS

i (t), respectively. Besides, the
probability of the U-state node i not being informed by any
neighbor at time t can be given by Eq. 2.

θi t( ) � ∏
j

1 − aijP
A
j t( )λ[ ] (2)

The probabilities of node i being in the unaware-susceptible (US)
state and the aware-susceptible (AS) state, and not being infected at
time t, are given by Eqs 3 and 4, respectively.

qUi t( ) � ∏
j

1 − bijP
I
j t( )βU[ ] (3)

qAi t( ) � ∏
j

1 − bijP
I
j t( )βA[ ] (4)

Figure 2 shows the transition probability trees for the four possible
states of nodes in our model. The dynamics governing PUI

i (t),
PUS
i (t), PAS

i (t), and PAI
i (t) are encapsulated in Eqs 5–8, respectively.

FIGURE 1
(Color online) A schematic illustration showcasing the coupled awareness-epidemic dynamics with individualized self-initiated awareness in
multiplex networks. The first layer (physical-contact network) employs a susceptible-infected-susceptible (SIS) model to delineate the transmission of
the epidemic. Within this layer, susceptible (S) nodes can be infected by their infected (I) neighbors. The second layer corresponds to the virtual-contact
network, sharing identical nodes with the physical-contact network. In this layer, an unaware-aware-unaware (UAU)model captures the diffusion of
epidemic awareness. Nodes in the unaware (U) state lack epidemic awareness and consequently take no preventive measures. Conversely, the aware (A)
nodes possess knowledge about the epidemic and implement specific precautionary measures. Additionally, when a node in the unaware state becomes
infected, it has a probability of σ i to develop epidemic awareness autonomously.
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PUI
i t + 1( ) � PUI

i t( )θi t( ) 1 − μ( ) + PAI
i t( )δ 1 − μ( )

+PUS
i t( )θi t( ) 1 − qUi t( )[ ] 1 − σ i t( )[ ]

+PAS
i t( )δ 1 − qUi t( )[ ] 1 − σ i t( )[ ]

(5)

PUS
i t + 1( ) � PUI

i t( )θi t( )μ + PAI
i t( )δμ

+PUS
i t( )θi t( )qUi t( ) + PAS

i t( )δqUi t( ) (6)

PAS
i t + 1( ) � PUI

i t( ) 1 − θi t( )[ ]μ + PAI
i t( ) 1 − δ( )μ

+PUS
i t( ) 1 − θi t( )[ ]qAi + PAS

i t( ) 1 − δ( )qAi (7)

PAI
i t + 1( ) � PUI

i t( ) 1 − θi t( )[ ] 1 − μ( ) + PAI
i t( ) 1 − δ( ) 1 − μ( )

+PUS
i t( ) 1 − θi t( )[ ] 1 − qAi t( )[ ] + θi t( ) 1 − qUi t( )[ ]σ i t( ){ }

+PAS
i t( ) δ 1 − qUi t( )[ ]σ i t( ) + 1 − δ( ) 1 − qAi t( )[ ]{ }

(8)

3.2 Threshold analysis

The epidemic threshold is given by the parameter ρI, i.e., the fraction
of I-state nodes in the system, and is calculated as shown in Eq. 9.

ρI � 1
N

∑
N

i�1
PI
i �

1
N

∑
N

i�1
PUI
i + PAI

i( ) (9)

In the steady state, by summing Eqs 5, 8, we acquire

PI
i � PI

i 1 − μ( ) + PUS
i θi 1 − qUi( ) + 1 − θi( ) 1 − qAi( )[ ]

+ PAS
i δ 1 − qUi( ) + 1 − δ( ) 1 − qAi( )[ ].

(10)

Near the epidemic threshold, the fraction of I-state nodes is close
to zero, i.e., PI

i � εi ≪ 1. Accordingly, qUi and qAi can be
approximately calculated as

qUi ≈ 1 − βU ∑
j

bjiεj � 1 − ωi, (11)

and

qAi ≈ 1 − γβU ∑
j

bjiεj � 1 − γωi, (12)

respectively, where ωi is given by Eq. 13:

ωi � βU ∑
j

bjiεj. (13)

Substituting Eqs 11, 12 into Eq. 10 leads to

εi � εi 1 − μ( ) + PUS
i θiωi + 1 − θi( )γωi[ ]

+ PAS
i δωi + 1 − δ( )γωi[ ]

� εi 1 − μ( ) + PU
i θi + PA

i δ( )ωi

+ PU
i 1 − θi( ) + PA

i 1 − δ( )[ ]γωi.

(14)

FIGURE 2
Transition probability trees are illustrated for four distinct node states: (A) unaware-infected (UI), (B) aware-infected (AI), (C) unaware-susceptible
(US), and (D) aware-susceptible (AS). The tree roots denote the state of each node at time t, while their possible states at time t + 1 are denoted by
the leaves.
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Since εi ≪ 1 in the stationary state, we should have PUS
i � PU

i −
PUI
i ≈ PU

i and PAS
i � PA

i − PAI
i ≈ PA

i . Thus, removing O(εi) terms in
the stationary state of Eqs 6, 7 we get

PU
i � PU

i θi + PA
i δ (15)

and

PA
i � PU

i 1 − θi( ) + PA
i 1 − δ( ). (16)

Then, substituting Eqs 15, 16 into Eq. 14 leads to Eq. 17:

εi � εi 1 − μ( ) + PU
i ωi + PA

i γωi

� εi 1 − μ( ) + PU
i + PA

i γ( )βU ∑
j

bjiεj, (17)

which can be written as

∑
j

βU 1 + γ − 1( )PA
i[ ]bji − μδij[ ]εj � 0, (18)

where δij are the elements of the identity matrix. Defining matrixH
with elements as given by Eq. 19:

hji � PU
i + γPA

i( )bji � 1 + γ − 1( )PA
i[ ]bji, (19)

the nontrivial solutions of Eq. 18 are eigenvectors of H, whose
largest real eigenvalues are equal to the epidemic threshold

βc �
μ

Λmax H( ). (20)

Equation 20 provides a quantitative representation indicating that
the epidemic threshold is dependent on the spreading dynamics on
both network layers.

4 Simulation results

In this section, we explore the effects of various dynamics and
structural parameters on the proposed coupled awareness-
epidemic dynamics. In reality, the behavior of the same
individual on the virtual-contact network and the physical-
contact network may not be consistent. For example,
individuals who appear active on the virtual-contact networks
may have rare physical contact with others. To imitate the
variability in individual behavior between the virtual-contact
layer and the physical-contact layer, we employ three multiplex
networks with varying inter-layer degree correlation rs, namely,
G−1, G0, and G1, whose rs are set to −1, 0, and 1, respectively. The
physical-contact layers of the three multiplex networks are all sale-
free networks with the number of nodes N � 1000, the average
degree KA � 5, and the degree exponent ε � 5. In addition, the
virtual-contact layers are scale-free networks, sharing identical
node counts and degree exponents with the physical-contact
layers, but with the average degree KB � 10. The setting of
KA >KB on the three multiplex networks is intended to imitate
the real-world phenomenon where the density of virtual-contact
networks is typically larger than that of physical-contact networks.
We obtain the numerical simulation results presented in this
section by averaging the outcomes of over 1,000 independent
simulation experiments conducted on the aforementioned
multiplex networks. Furthermore, we consistently set the initial
infected nodes proportion in the epidemic transmission process
at 0.2.

Firstly, we assess the efficacy of the MMCA method in
describing the coupled awareness-epidemic dynamics proposed in
this study on a group of multiplex networks. Figure 3 compares the
dynamicsal results of the MMCA method and Monte Carlo (MC)
simulation regarding ρI and ρA as a function of β on network G0,
which is a two-layer network with inter-layer degree correlation
rs � 0. In addition, Figure 4 shows the comparison results of ρI as a
function of β and λ on three multiplex networks (that is,G−1,G0 and
G1) with distinct inter-layer degree correlations. It can be observed
that the results obtained by the MMCA method have a good
consistency with MC simulation in both Figures 3, 4, which
verifies the accuracy and suitability of the MMCA method in
solving the coupled awareness-epidemic spreading dynamics we
proposed in this study. Hereinafter, we study the coupled dynamics
proposed by the MMCA method.

Secondly, we conducted an analysis of how two significant
dynamics parameters influence the stationary states of the
proposedawareness-epidemic dynamics, namely, the basic self-
initiated awareness probability σ0 and infection attenuation factor
γ, where σ0 is the basic self-initiated awareness probability and the
parameter γ governs the infection probability among aware
individuals. Figures 5A–C illustrate the change of stationary
I-state individuals fraction ρI with respect to the infection
probability β on the multiplex networks G−1, G0, and G1,
respectively, when different values of σ0 are considered.
Observing the results, it can be concluded that when the value of
σ0 is non-zero, indicating that individuals on the networks

FIGURE 3
(Color online) Results comparisons between the Microscopic
Markov Chains Approach (MMCA) and Monte Carlo (MC) simulations
regarding the stationary fractions. (A) Comparisons between the
stationary I-state individuals’ fraction ρI obtained by MC
simulations (dotted line) and the MMCA (solid line). (B) Comparisons
between the stationary A-state individuals’ fraction ρA obtained by
Monte Carlo simulations (dotted line) and theMMCA (solid line). All the
numerical simulations are performed on top of multiplex network G0

and Additional parameters include μ � 0.5 and γ = 0 in the physical-
contact layer, λ � 0.15, σ0 � 0.5, and δ � 0.6 in the virtual-
contact layer.
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spontaneously generate self-initiated awareness, the stationary
fraction of I-state individuals will be decreased on all the
networks studied. It indicates that individual self-initiated
awareness can suppress the process of epidemic transmission
within the employed networks effectively. Figures 5D–F depict
how the stationary A-state individuals fraction, denoted as ρA,
varies in response to the infection probability βwhen considering
different values of σ0 on the multiplex networks G−1, G0, and G1,
respectively. Conclusions drawn from the results suggest that in
the presence of a non-zero σ0, ρA exhibits an increase across all
the networks studied. Besides, with an increase in the σ0 value,
there is a corresponding rise in the value of ρA. Moreover, Figures
6A–C show the variation of ρI with respect to β on the multiplex
networks G−1, G0, and G1, respectively, when different values are
set to γ. Upon scrutinizing the findings presented in the figures, it
can be deduced that a decrease in the γ value results in a
diminishment of ρI across all the networks studied. This is
because in the proposed model, it is established that βA � γβU.
As the γ decreases, βA also decreases, indicating a lower infection
probability among aware individuals. Therefore, under the same
dynamics conditions, the stationary fraction of ρI decreases with
the decrease in γ.

Thirdly, we further analyzed the effects of three critical
dynamics parameters on the epidemic threshold, namely, the
infection attenuation factor γ, the diffusion probability of
awareness λ, and the forgetting probability of aware individuals

δ. Figure 7 portrays the variation of the epidemic threshold βc
concerning the infection attenuation factor γ on the multiplex
networks with different inter-layer degree correlations. Analyzing
the results from the figure, it can be inferred that a reduction in γ

leads to an enhanced inhibitory impact of awareness on the
epidemic, consequently yielding a larger value for βc.
Moreover, in network G1, the βc increases the fastest as γ

decreases. This indicates that when there is a positive inter-
layer degree correlation within the networks, the highly
connected nodes in the awareness-spreading layer are more
likely to become aware, which can enhance the epidemic
threshold. Figures 8A–C depict how the epidemic threshold βc
varies concerning the awareness diffusion probability λ across the
multiplex networks G−1, G0, and G1, respectively, while
considering distinct values for the awareness forgetting
probability. As depicted in the figures, on all the networks
studied, there is a metacritical point for the effects of
awareness diffusion on epidemic transmission. Only when the
awareness diffusion probability λ exceeds this metacritical point
λc, does the epidemic threshold increase with the increasing
awareness diffusion probability. Additionally, a decrease in the
awareness of forgetting probability δ leads to an increase in βc and
a decrease in λc. This is because a smaller forgetting probability δ
results in more persistent and widespread diffusion, which
promotes the increase of epidemic threshold βc and the
decrease of the metacritical point λc that corresponds to it.

FIGURE 4
(Color online) Results comparisons of the full phase diagrams (λ-β) of ρI obtained byMicroscopic Markov Chains Approach (MMCA) andMonte Carlo
(MC) simulations. Top: the corresponding results of MMCA performed on top of multiplex network (A)G−1, (B)G0, and (C)G1. Bottom: the corresponding
results of MC simulations performed on top of multiplex network (D) G−1, (E) G0, and (F) G1.The Additional parameters include μ � 0.5 and γ � 0 in the
physical-contact layer, λ � 0.15, σ0 � 0.5, and δ � 0.6 in the virtual-contact layer.
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Finally, we investigate the effects of the average degree KA and
KB of the virtual-contact layer and the physical-contact layer on the
epidemic threshold βc. In order to explore the role of KA in the
epidemic threshold, we construct three multiplex networks GKA−5,
GKA−10, and GKA−60 by randomly adding edges in virtual-contact
network of G1. The values of KA in these networks are set to 5, 10,
and 60, respectively, while keeping KB � 5 constant. Figures 9A–C

illustrate the changes of βc concerning the awareness diffusion
probability λ on three multiplex networks under different
combinations of awareness forgetting probability δ and infected
individual recovery probability μ. Comparing the results from the
figures, it can be concluded that on all the networks studied, an
increase in KA not only leads to an increase in βc but also causes a
decrease in the metacritical point λc that corresponds to it. This

FIGURE 5
(Color online) Effects of the basic self-initiated awareness probability σ0 on the stationary I-state individuals fraction ρI and stationary A-state
individuals fraction ρA. Specifically, the stationary infeted individuals fraction ρI versus infection probability βwhen (A) rs � −1, (B) rs � 0, and (C) rs � 1. The
stationary aware individuals fraction ρA versus infection probability βwhen (D) rs � −1, (E) rs � 0, and (F) rs � 1. The results when σ0 � 0, σ0 � 0.2, σ0 � 0.4,
σ0 � 0.6, and σ0 � 0.8 are denoted by red circle lines, blue trilateral lines, magenta square lines, black rhombus lines, and cyan inverted-triangle lines,
respectively. Additional parameters include μ � 0.5 and γ � 0 in the physical-contact layer, δ � 0.6 and λ � 0.15 in the virtual-contact layer.

FIGURE 6
(Color online) Effects of the infection attenuation factor γ on the stationary I-state individuals fraction ρI . Specifically, the stationary I-state individuals
fraction ρI versus infection probability βwhen (A) rs � −1, (B) rs � 0, and (C) rs � 1. The outcomes corresponding to γ � 0, γ � 0.5, and γ � 1 are represented
by red circular lines, blue triangular lines, and magenta square lines, respectively. Additional parameters include μ � 0.5 in the physical-contact layer,
λ � 0.15, σ0 � 0.5, and δ � 0.6 in the virtual-contact layer.
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phenomenon can be explained by the fact that a higher average degree
KA in virtual-contact network facilitates the diffusion of awareness
within the networks, resulting in a stronger inhibition on epidemic
transmitting, thus βc increases and λc decreases. To explore the influence
ofKB on the epidemic threshold, we construct three multiplex networks
GKB−5, GKB−10, and GKB−30, by randomly adding edges in the physical-
contact layer of G1. The values of KB are configured as 5, 10, and 60,
respectively, while maintaining a constant value of KA at 10. Figures
9D–F show the changes of βc concerning the diffusion probability of
awareness λ on three multiplex networks under different combinations
of awareness forgetting probability δ and infected individual recovery

probability μ. Comparing the results from the figures, it can be
concluded that on all the networks studied, an increase in KB leads
to a decrease in βc when λ is constant. However, the change ofKB does
not affect the metacritical point λc.

It should be noted that all the aforementioned results are based
on the configured multiplex networks. To closely align with real-
world scenarios, we conduct extensive experiments on a large
number of real networks. The conclusions drawn from these
experiments align with those from the configured multiplex
networks. For a comprehensive overview of the detailed results,
please refer to the Supplementary Material.

FIGURE 7
(Color online) Effects of the inter-layer degree correlations rs on the epidemic threshold βc . Specifically, the epidemic threshold βc versus infection
attenuation factor γ when rs � −1, rs � 0, and rs � 1 are denoted by red circle lines, blue trilateral lines, and magenta square lines, respectively. The
corresponding colored curves represent the theoretical predictions derived from Eq. 20. Additional parameters include β � 0.5 and μ � 0.5 in the
physical-contact layer, λ � 0.15, σ0 � 0.5, and δ � 0.6 in the virtual-contact layer.

FIGURE 8
(Color online) Effects of the awareness forgetting probability δ on the epidemic threshold βc . Specifically, the epidemic threshold βc versus diffusion
probability of awareness λwhen (A) rs � −1, (B) rs � 0, and (C) rs � 1. The results when δ � 0.2, δ � 0.4, δ � 0.6, and δ � 0.8 are denoted by red circle lines,
blue trilateral lines, magenta square lines, and black rhombus lines, respectively. The corresponding colored curves represent the theoretical predictions
derived from Eq. 20. Additional parameters include β � 0.5, γ � 0, and μ � 0.8 in the physical-contact layer, σ0 � 0.5 in the virtual-contact layer.
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5 Conclusion

The outbreak of an epidemic often stimulates the development of
public awareness about disease prevention, which can effectively curb
the process of epidemic transmission. Individuals generate different
awareness responses due to varying amounts of information received
from their neighbors. Therefore, considering the diversity in individual
awareness responses is of significant research importance in the coupled
awareness-epidemic dynamics. In this study, we first introduce a
coupled awareness-epidemic dynamics model that incorporates the
differences in individual awareness responses, where the self-initiated
awareness probability of individuals is influenced by the number of their
aware neighbors. Subsequently, we develop MMCA method for the
analysis of the aforementioned model and validate the accuracy of the
MMCA method in solving the coupled spreading model through MC
numerical simulations. Next, we analyze the impact of crucial dynamics
and structural parameters on the proposed coupled awareness-epidemic
dynamics. Through abundant simulations and meticulous theoretical
analyses, it has been demonstrated that individual awareness awakening
can elevate the steady-state proportion of aware individuals on the
networks, consequently mitigating epidemic transmission.
Simultaneously, the impact of awareness diffusion on epidemic
transmission exhibits a metacritical point λc. Specifically, when the
awareness diffusion probability λ is larger than λc, the epidemic
threshold βc increases while the λ increases. Furthermore, the
increase in the average degree KA of the virtual-contact networks

reduces the value of λc, while the change in the average degree KB

of the physical-contact networks do not affect λc. Finally, we conduct
extensive experiments on a large number of real networks, yielding
conclusions consistent with the configured multiplex networks. To sum
up, this research comprehensively investigated the coupled awareness-
epidemic dynamics with individualized self-initiated awareness. The
research findings contribute to a deeper understanding of the interaction
between awareness diffusion and epidemic transmission, providing
essential theoretical insights for epidemic prevention and control.
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