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As the most prevalent element on our planet, carbon manifests a wide variety of
allotropic phases, significantly contributing to its complex physical properties.
Recently, several carbon allotropes have been reported to possess abundant
topological phases in theory and experiment. This work focuses on a sp3 carbon
allotrope, Z-ACA allotrope, which consists of 5-6-7-type Z-ACA carbon rings.
This allotrope has been reported previously as a superhard material comparable
to diamond. In this study, we report that it is a candidate for both an obstructed
atomic insulator and a real Chern insulator. It is worth mentioning that Z-ACA
exhibits an unconventional bulk-boundary correspondence due to its hinge
boundary state manifestation. Our current research indicates that Z-ACA is a
suitable carbon phase platform for studying the real topology and second-order
bulk-boundary correspondence.

KEYWORDS

topological carbon material, obstructed Wannier charge center, real topology, hinge
states, Z-ACA allotrope

Introduction

Carbon [1–3] is widely regarded as the most active element inside the periodic table
owing to its extensive capacity for sp, sp2, and sp3 hybridization. The flexibility of carbon’s
bond hybridizations enables it to exhibit a wide range of allotropes, such as diamond,
graphite, and amorphous carbon. There is considerable variety observed in the
physicochemical features of these allotropes. Researchers are presently involved in the
theoretical and experimental production of new carbon allotropes [4–10] with the aim of
identifying materials that exhibit desirable electronic, magnetic, mechanical, thermal, and
topological properties.

Discovering the topological properties and their physical origins for carbon materials is
currently a very active area in condensed matter physics [11]. In recent years, there has been
a significant surge in interest surrounding the phenomenon of magic-angle twisted bilayer
graphene [12, 13]. The recently developed 2D material class, which is based on carbon,
demonstrates a wide range of appealing electronic states, such as superconductivity and
topological nontrivial electronic states. Several three-dimensional (3D) carbon allotropes
[14–17] have been shown to display intriguing topological electronic states in addition to
2D twisted bilayer graphene. Note that 1D carbon systems, like certain graphene
nanoribbons, may also host topological behaviors [18–20].

The field of topological quantum chemistry theory has made significant progress in
reclassifying insulators that were previously regarded as trivial ones. These reclassifications
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of trivial insulators now include obstructed atomic insulators (OAIs)
and atomic insulators [21–28]. This reclassification is based on the
Wyckoff positions (WPs) of the orbitals that induce the band
representations (BRs). Orbitals situated at atomic-occupied WPs
induce the BRs of atomic insulators. On the other hand, the BRs of
OAIs are generated by orbitals situated at both atom-occupied and
atom-unoccupied WPs. The term “Obstructed Wannier charge
centers (OWCCs)” [29, 30] pertains to atom-unoccupied
WPs in OAIs.

In addition, it is crucial that the band eigenstates exhibit real
topology [31–35] due to specific symmetry constraints, including
spacetime inversion symmetry and the lack of spin-orbit coupling
(SOC) phenomenon. The real Chern insulator (RCI) state has been
discovered in numerous two-dimensional systems [36–41]. The
notion is expanded to include 3D systems, which is of
considerable importance. 3D RCIs are commonly linked to
unconventional bulk-boundary correspondence, namely, hinge
states [42–44], as they depict boundary states in two dimensions
that are smaller than the 3D bulk.

In this work, using first-principle calculations, we will report
that the sp3 carbon allotrope, Z-ACA allotrope, is a new candidate
for OAI and RCI. We would like to point out that the stability,
electronic, and mechanical properties of the Z-ACA allotrope have
been investigated using a first-principles method by He et al. [45].
However, other researchers have not investigated the OAI and RCI
states for Z-ACA due to materials with nontrivial real band
topology having become a focus of current physics research
within the last 2 years. Figure 1 shows the crystal structure of
Z-ACAwith Pmmn space group; the C atoms occupy an equivalent
Wyckoff position of 2a (0.00000, 1.00000, 0.95706), 2b (0.00000,
0.50000, 0.93126), and 4e (0.00000, 0.76406, 0.82886). The
optimized lattice constants a = 2.521 Å, b = 4.759 Å, and c =
7.930 Å in this work are comparable with others (a = 2.521 Å, b =
4.76 Å, c = 7.930 Å) [45].

Methods

The Vienna ab initio simulation package (VASP) [46] was
employed to carry out the calculations within the framework of

density functional theory. The Perdew-Burke-Ernzerhof [47]
functional with generalized gradient approximations [48] was
adopted to describe the exchange-correlation interactions. The
computations were conducted using a plane-wave cutoff of
500 eV. The convergence criterion for the electronic self-
consistence loop was established at 10−7 eV on the 13 × 7 ×
4 Monkhorst-Pack k-point mesh. In terms of structural
relaxation, the Hellmann-Feynman forces acting on each atom
were assumed to be −0.01 eV/Å. The real Chern number νR can
also be evaluated by using the Wilson-loop method, similar to the
well-known Wilson-loop method for conventional topological
insulators [49, 50]. The Wilson loop method traces the Wannier
charge centre (Berry phase) evolution of valence wavefunctions
between time-reversal-invariant momentum. The Wannier tight-
bindingmethod utilizes localizedWannier functions as basis orbitals
to capture the compound’s physics. These basis Wannier functions
are obtained from first-principles simulations. This procedure is
implemented in the Wannier90 code [51].

Results and discussion

Firstly, we will assess the feasibility of identifying Z-ACA as an
OAI. The OAI state of Z-ACA can be determined by applying the
theory of elementary band representation (EBR). The EBRs
correspond to the smallest sets of band structures that can be
obtained using maximally localized atomic-like Wannier
functions. The EBRs for the space group I4/mmm can be derived
by combining the EBRs of the maximal WPs (2a, 2b, 4c, and 4d).
Hence, we select the maximal WPs 2a, 2b, 4c, and 4d for the EBR
decomposition of Z-ACA (see Figure 2).

The electronic bands of trivial insulators can be represented by
nonnegative integer Linear Combinations of Elementary Band
Representations (LCEBRs) according to the topological quantum
chemistry (TQC) theory [52]. Supplementary Table S1 presents the
LCEBRs derived from the populated electronic bands of Z-ACA.
Curiously, in the instance of Z-ACA, all the LCEBRs display a
nonzero integer combination for EBR (Ag@4d). Hence, it may be
deduced that the EBR is inseparable and must be linked to the
electron-containing WPs by 4d. The carbon atom is situated at the

FIGURE 1
(A–C) The primitive cell and corresponding side and top views of Z-ACA carbon. Here, Z denotes that the framework of the system is constructed
with zigzag carbon chains along the [100] direction. The numbers in the side view panels indicate the number of carbon atoms in the rings. Z-ACA
contains 5-, 6- and 7-carbon rings.
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2a, 2b, and 4e locations, while the 4d position remains unoccupied.
Z-ACA fulfills the requirements to be categorized as an OAI, and the
4d WP is the OWCC. The locations of OWCC are illustrated in
Figure 2 with green pentagram. Figure 3 depicts the band structure
of Z-ACA along the selected high-symmetry paths. Figure 3 clearly
displays an insulating gap. Hence, Z-ACA can be viewed as a
promising candidate for 3D OAI.

In addition to itsOAI nature, Z-ACA exhibits spacetime inversion
symmetry and lacks the spin-orbit coupling (SOC) effect (see
Supplementary Figure S1), making it a potential candidate for RCI.
In order to verify the real Chern topologies of the 3D Z-ACA, it is
necessary to calculate the vR values for the 2D kz-slices. In light of the
system’s global band gap, it can be inferred that all 2D kz-slices are
adiabatically connected, hence necessitating a shared νR.

FIGURE 2
The 2a, 2b, 4c, and 4d WPs 2a, 2b, 4c, and 4d. Note that the green pentagram shows the OWCC located at 4d WP.

FIGURE 3
Band structure for Z-ACA and the 3D bulk Brillouin zone (BZ) with selected symmetry points.
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That is, one can select a particular slice, such as kz = 0or kz=πplane, to
determine the νR. To calculate the vR for the planes mentioned above, one
can use the parity eigenvalues at the time-reversal invariant momentum
points on each plane, as expressed by the following formula [53, 54]:

−1( )]R � ∏
i
−1( )� n

Γi− /2( )�.

The �/� is the floor function, and nΓi− is the number of occupied
bands with negative spacetime inversion symmetry eigenvalue at
time-reversal invariant momentum point Γi.

TABLE 1 Parity information of the Z-ACA at the eight time-reversal invariant
momentum points.

kz = 0 kz = π

Γ X M Y Z U R T

n+ 18 16 16 16 14 16 16 16

n− 14 16 16 16 18 16 16 16

νR 1 1

FIGURE 4
(A) and (B) Wilson loop spectrum of Z-ACA calculated on kz = 0 and kz = π planes.

FIGURE 5
(A) Calculated band structure for the 1D tube geometry of Z-ACA. The hinge bands are shown in red. (B) Energy spectrum for Z-ACA sample with a
1D tube geometry.
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Table 1 presents the vR values of Z-ACA for the 2D kz = 0 and
kz = π planes. A nonzero vR, which reflects the real topology, is
discovered for Z-ACA. Actually, every 2D slice normal to kz has a
nontrivial νR.

The nontrivial real topology of both planes can also be assessed
using the Wilson-loop method. The computation will yield N curves
in the θ-ky diagram, which represents the Wilson loop spectrum. As
illustrated in Figure 4, theWilson loop spectrum overlaps at one point
and three points (an odd number of points) for θ = π in the kz = 0 and
kz = π planes, showing nontrivial real topology in both planes.

Typically, 3D RCIs will demonstrate unconventional
relationships between their bulk and boundary properties [44].
In other words, the 3D Z-ACA will have boundary states that exist
in two dimensions less than the 3D bulk. Specifically, these
boundary states will be confined to 1D hinges. In order to
determine the behavior of possible hinges in Z-ACA, a tight-
binding model (TB) was created for a one-dimensional tube
with the geometry of Z-ACA. The sample used in the model
retained its spacetime inversion symmetry. Later, the Wannier
function [55–58] was used to calculate the band structure of
the nanotube.

The band structure spectrum for the 1D tube geometry of
Z-ACA is displayed in Figure 5. The presence of the hinge band is
shown by the red line. Figure 6 depicts the spatial distributions of
charges for the degenerate states (represented by red dots) at kz = 0.
By examining the wave functions and seeing their localization at
the two hinges of the nanotube (see Figure 6), we confirm that the
degenerate states are indeed hinge states. As mentioned by Ref.
[38], the hinge band for 3D RCI can be viewed as formed by
stacking the corner modes of 2D RCI layers along z. Moreover,
Hossain et al. [59] pointed out that the periodicity evinces
quantum interference of electrons circumnavigating observed
around the hinges, which can be applied to efficient topological
electronic devices.

Summary

Based on first-principles calculations, we suggest that the carbon
allotrope Z-ACA, with the 4d site as OWCC, is a potential candidate
for OAI. Further analysis reveals that Z-ACA possesses a real
topology characterized by a nontrivial vR, which is safeguarded
by the symmetry of spacetime inversion. The presence of hinge
states, which are confined to the two hinges of the Z-ACA tube, was
exhibited. The Z-ACA shows excellent potential as a subject for
studying the fascinating physics related to real topological phases
and hinge states.
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FIGURE 6
(A) and (B) Charge spatial distributions of the states (at kz = 0) marked by red dots in Figure 5B under different viewpoints.
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