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The distortions of measured beta spectra are addressed by means of unfolding
algorithms. Two different approaches, the Maximum-Likelihood Expectation-
Maximization and the Tikhonov regularization, are tested on various simulated
spectra, for which the initial spectrum to retrieve is known, and on a 99Tc
spectrum measured with our dedicated setup. Statistical uncertainties of
distorted measured spectra are propagated by determining the covariance
matrices. Both algorithms provide satisfactory results but Tikhonov performs
overall better for most of the studied radionuclides. Highlight is made on the
necessity to employ at least two independent methods to ensure the accuracy of
the unfolded spectra and to estimate the internal bias of each algorithm.
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1 Introduction

The study of the beta spectrum, i.e., the energy distribution of electrons emitted from
radioactive isotopes undergoing beta decay, is of great interest in many fields of modern
Physics. In fundamental physics, the shape of beta spectra is used to test the StandardModel
[1], to search for evidences of new physics [2], or to investigate the antineutrino reactor
anomaly (see, e.g., [3–7]). A precise knowledge of beta spectra is also essential in ionizing
radiation metrology for primary standardization of pure beta emitters [8–11], or in nuclear
medicine for microdosimetry [12, 13] and internal radiotherapy [14].

Precise measurement of beta spectra is challenging because the beta particles are very
likely to (back)scatter, to lose energy in dead volumes or to emit bremsstrahlung radiation.
The measured spectrum is therefore distorted by the various interactions of the beta
particles with the detection system, as well as by its geometrical acceptance and energy
resolution. The traditional method to account for these effects is to incorporate the
influence of the detection system into the adjustment procedure of the beta spectrum
shape [1]. However, this solution requires a theoretical a priori for the beta spectrum and
thus biases the deduced results. Some of the theoretical ingredients of the modelling can also
be very difficult to recalculate by other researchers, which complicates the reproducibility of
the results. Alternatively, experimental distortions can be corrected without relying on any
theoretical model using a procedure called unfolding.

Unfolding is a statistical procedure which aims at recovering the true, initial distribution
from the observed one. Such a procedure is non-trivial because the unfolding problem is
mathematically ill-posed. This problem is common across many fields and numerous
algorithms have been developed to tackle similar challenges in the context of neutron
spectroscopy [15], tomography [16–18], high-energy physics (HEP) [19–21], or total
absorption gamma-ray spectroscopy (TAGS) [22]. However, application of these
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techniques to beta spectrometry still remains poorly explored.
Paulsen et al. in [23] developed a matrix inversion approach to
correct for bremsstrahlung photon escape in order to unfold this
phenomenon from the beta spectra measured with high-precision
low-temperature detectors. Based on this pioneering work, our beta
spectrometry group recently adapted the method to unfold beta
spectra measured with silicon detectors [24, 25], accounting for the
geometrical acceptance and the various materials and dead layers.
This approach was nevertheless incomplete as it did not include the
energy resolution of the detector.

The present study investigates the performance of unfolding
methods applied to the analysis of beta spectra that can be measured
with our setup. Close attention was paid to estimate the uncertainty
of the unfolded spectrum in order to allow the extraction of physical
quantities, such as endpoint energy and shape factor, with well-
controlled accuracy. Two different approaches have been selected:
the Maximum-Likelihood Expectation-Maximization (MLEM)
algorithm and the Tikhonov regularization. In Section 2, these
two approaches are presented together with a method to
propagate statistical uncertainties. In Section 3, validation and
comparison of both algorithms are performed in two steps: first
by unfolding a series of simulated spectra, with known input shape;
and then by unfolding a 99Tc spectrum measured with our silicon-
based detection system. Eventually, we provide some
recommendations drawn from our findings. One should note
that if the response matrix employed is based on precise pulse
simulations of our apparatus, similar conclusions are expected for
different experimental configurations as long as the simulation
reproduces accurately the phenomena that distort the spectrum.

2 Methods

2.1 Statement of the problem

In beta spectroscopy, as with any detector-based spectroscopic
analysis, the observed energy distribution of the emitted beta
particles is influenced by the interaction between the electrons
and the detection system. These interactions typically result in
phenomena such as scattering, finite energy resolution or limited
efficiency, which distort the measured spectrum. The recorded
spectrum, therefore, represents a convolution of the true beta
spectrum with the response of the detection system. To recover
the information of interest, the initial emitted spectrum, a
mathematical approach is taken. Let y ∈ Rn be the measured beta
spectrum discretized over n bins. Each bin of this spectrum follows a
probability distribution with an expected value μi � E[yi], where E
is the expectation operator. By denoting x ∈ Rp as the true energy
beta spectrum discretized over p bins, the expected measured
spectrum μ can be described by the linear Eq. 1:

μ � Rx, (1)
where R ∈ Rn×p is the n × p detection system response matrix. Each
coefficient Rij is the conditional probability of measuring an event in
the energy bin i knowing that it was emitted in the energy bin j. The
response matrix is usually built by assembling a series of mono-
energetic electron simulations for each energy bin. Such a procedure

requires a Monte Carlo simulation that describes as precisely as
possible the geometry of the detection system, the various physical
processes through which the emitted particles can interact, and
possibly other experimental information such as detector energy
resolution.

The goal of the unfolding problem is to estimate the true
spectrum x from the measured spectrum y and the response
matrix R. Consistently with the characteristics of the detection
process and the statistical nature of radioactive decay, the counts
in each bin of the measured spectrum are assumed to follow a
Poisson distribution. The corresponding likelihood function is then

L x; y( ) � p y|x( ) � ∏
i

∑jRijxj( )yi
yi!

e
−∑j

Rijxj . (2)

The true spectrum x can be estimated simply using the
Maximum Likelihood Estimator (MLE). However, this method
often leads to a non-physical solution with spurious high-
frequency oscillations in the estimated spectrum. When the
response matrix is square (n � p) and not singular, the system
described by Eq. 1 can be solved directly by inverting the response
matrix: x̂ � R−1y. In this case, the matrix inversion estimator is
identical to the MLE. It can be shown that the MLE of the true
spectrum is a minimum-variance unbiased estimator, but with an
extremely large variance [26]. This is a consequence of the ill-
posedness of the unfolding problem, a common feature when
dealing with inverse problem. To obtain a more stable solution,
one needs to intentionally introduce a bias to limit the variance of
the solution. This bias is based on prior assumptions on the solution,
such as spectral smoothness or positive emission probability. It can
be introduced through different so-called regularization algorithms.

In the present work, we investigate two different types of
algorithm for unfolding beta spectra. First, the Maximum-
Likelihood Expectation-Maximization, an iterative algorithm
aiming to find the MLE and for which the regularization is
achieved by stopping the algorithm before convergence. Second,
the Tikhonov regularization that formulates unfolding as an
optimization problem and adds a penalty term to the cost
function to stabilize the solution. The usage of two different
types of algorithm provides a simple way to better understand
the results of the unfolding process and its associated limitations.

2.2 Maximum-Likelihood Expectation-
Maximization

MLEM is a well-known method for solving the unfolding
problem. It is based on the Expectation-Maximization (EM)
algorithm, an iterative method for determining the MLE of
parameters from incomplete data [27]. For a Poisson regression
model with likelihood function, such as in Eq. 2, the iterative MLEM
algorithm is written as

∀j ∈ 0 . . .p{ }, ∀k ∈ N, x k+1( )
j � x k( )

j

εj
∑n
i�1

Rij
yi∑p

l�1Rilx
k( )
l

, (3)

where εj � ∑n
i�1Ri,j is the detection efficiency for an energy bin j.

The algorithm starts with a first initial guess x0; then at each
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iteration, the algorithm increases the likelihood that the estimated
spectrum x reproduces the measured data y. Hence, the estimated
spectrum converges towards the MLE of x with increasing of
iterations. However, the inherent Poisson noise affecting the
measurement is enhanced during this process because of the ill-
posedness of the problem, leading to a non-physical solution. This
issue can be sorted out by stopping the algorithm before
convergence to the MLE, but it relies on the construction of a
stopping criterion. Different procedures are available in the
literature and we chose in this work the indicator introduced by
Ben Bouallègue et al. in [18] and defined by the Eq. 4:

J k( ) � ∑i yi − q k( )
i( )2∑iq

k( )
i

, with q k( )
i � ∑

j

Rijx
k( )
j , (4)

where J (k) is the mean square error between the measured
spectrum y and the forward-projector q(k). Due to the Poisson’s
law properties, the iterative algorithm reconstructs a noise-free
unfolded spectrum when the expected mean square error
between y and q(k) equals the expected measured spectrum μ,
i.e., E[(y − μ)2] � μ. Therefore, the estimator x̂MLEM is obtained
with the iteration kT for which the condition J (kT) � 1 is satisfied
(condition referred to as the MLEM-STOP criterion in the
following). Prematurely stopping the MLEM algorithm creates a
bias toward the initial guess x0. Its choice could thus have a strong
impact on the MLEM estimate. To avoid introducing any a priori
information and being totally independent from any theoretical
model, we have chosen a uniform distribution in this article.

Beyond retrieving the unfolded spectrum, it is critical for many
applications to have a robust estimation of the associated
uncertainties. The covariance matrix can be calculated from the
uncertainty propagation of y. By denoting Σ̂ the estimated
covariance matrix of the measured spectrum, the covariance of
x(k+1) can be estimated from a linearized approximation of Eq. 3:

ĉov x k+1( )( ) � J k+1( )Σ̂ J k+1( )( )T, (5)

where J(k+1) is the Jacobian of x(k+1) evaluated at y. Introducing the
matrix elements defined by Eq. 6

M k( )
i,j � x k( )

j

εj

Ri,j∑p
m�1Ri,mx

k( )
m

, (6)

the elements of the Jacobian are given by the Eq. 7 as shown in [19]

J k+1( )
j,i � ∂x k+1( )

j

∂xi
� M k( )

i,j + x k+1( )
j

x k( )
j

J k( )
j,i − ∑p

m�1
∑n
l�1

εmxl

x k( )
m

M k( )
l,j M

k( )
l,mJ

k( )
m,i .

(7)
The variance of the MLEM unfolded spectrum is then estimated
from the diagonal elements of ĉov(x(kT)).

2.3 Tikhonov regularization

Tikhonov regularization aims to solve the unfolding problem by
adding a penalty term to the least squares problem. As beta spectra
are well known to be smooth, the penalty term can introduce this
information by favoring solutions with a small bin-to-bin variation.
This results in the following objective function to be minimized:

x̂Tik � argmin
x∈Rp

+

Rx − y( )TΣ̂−1
Rx − y( ) + 2δ Lx‖ ‖22{ }, (8)

where the parameter δ is the regularization parameter that controls
the trade-off between the fidelity to the data and the smoothness of
the solution, and where L denotes the second derivative operator.
The first term of the minimization (8) is a Gaussian approximation
of the Poisson likelihood given in Eq. 2. Such an approximation may
generate a non-physical solution with bins of negative content. A
non-negativity constraint was thus enforced, preventing
unfortunately a closed form (i.e., analytical) solution. In this
work, the estimator x̂Tik is computed using the SciPy function
optimize.nnls, which is based on the NNLS algorithm described
in [28]. The regularization parameter was determined in the present
work using the Generalized Cross Validation (GCV) method [29,
30]. With this algorithm, the regularization parameter is obtained by
minimizing the GCV function defined in Eq. 9

GCV δ( ) � ‖Rx̂Tik − y‖2
Tr I − Pδ( )[ ]2, (9)

where Pδ � R(RTΣ̂
−1
R + 2δLTL)−1RTΣ̂

−1
is the projection matrix.

Regarding uncertainty estimation, the covariance of x̂Tik is
calculated from the propagation of each bin uncertainty in y,
leading to the following estimate:

ĉov x̂Tik( ) � RTΣ̂
−1
R + 2δΩ( )−1

RTΣ̂
−1
R RTΣ̂

−1
R + 2δΩ( )−1

. (10)

It is noteworthy that the GCV function and the covariance only
take the analytical form given above in the case where the
minimization of Eq. 8 does not involve any non-negativity
constraint. Nevertheless, we found that they are good
approximations for our analysis because the average counting
rate per bin is high enough in our practical cases, which was
validated with various bootstrap tests.

3 Validation and comparison of
unfolding methods

In the following sections, the unfolding methods are applied to
simulated spectra and to an experimental spectrum. The former
were obtained from Monte Carlo simulations of the detection
system, described in [24], using theoretical spectra as input. For
both simulated and measured spectra, the response matrix was
generated from a series of mono-energetic, isotropic electron
simulations performed with the Penelope 2014 Monte Carlo code
[31]. For comparison purpose, an identical energy binning of 1 keV
was considered for all beta spectra in both true andmeasured spaces.
In accordance with the performances of our detection system, an
energy threshold of 15 keV and a 9 keV energy resolution
were applied.

3.1 Quantification of the comparisons

One of the challenges in unfolding is the optimal determination
of the regularization parameter that best reproduces the true
spectrum. For the MLEM method, this parameter is the number
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of iterations, determined with the MLEM-STOP criterion. For the
Tikhonov method, the GCV criterion was chosen to estimate the
regularization parameter.

To quantify the accuracy of the two algorithms, the root mean
square error (RMSE) between the unfolded spectrum x̂, composed of
p bins, and the true spectrum x was calculated as

RMSE �

������������
1
p
∑p
i�1

xi − x̂i( )2
√√

. (11)

A small RMSE indicates an accurate reconstruction of the true
spectrum while a large value suggests a strong deviation.

When applying a givenmethod to a simulated spectrum, the true
spectrum is known: it is the input theoretical spectrum. The RMSE
can then serve as a criterion for the unfolding algorithm to estimate
the true spectrum: by selecting the regularization parameter that
minimizes the RMSE, one can construct an optimal estimator of the
true emitted spectrum. This optimal estimator is used as a reference
to study the regularization parameter deduced without any a priori
on the initial spectrum.

For the comparative analysis conducted in Section 3.2, four
statistical indicators have been defined: RMSEMLEM

min and RMSETikmin

represent the minimum RMSE between the true spectrum and the
unfolded spectra using the MLEM and Tikhonov methods,
respectively; RMSEMLEM

stop and RMSETikgcv denote the RMSE between
the true spectrum and the unfolded spectra estimated with the
MLEM-STOP and GCV criteria for MLEM and Tikhonov,
respectively.

3.2 Evaluation on simulated data

In this section, the performances of the MLEM and Tikhonov
algorithms are evaluated on simulated beta spectra. Twelve pure
beta-emitting sources, with various spectrum shapes, energy ranges
and counting statistics, were considered to investigate the
performance of the two unfolding methods and their sensitivity
to statistical fluctuations. Special care was taken to select isotopes
whose decay matches the experimental limitations of our detection
system: sufficiently long half-lives, simple decay schemes (i.e., a
single or a very dominant beta transition), and endpoint energies
ranging from 60 keV to 800 keV. Simulated beta spectra were
determined from theoretical spectra provided by the BetaShape
code [32] convoluted with the response matrix of our apparatus
and adding Poisson noise. To minimize the computational time, the
size of the response matrix was adapted to the transition energy, with
no effect on the unfolding because the simulated spectrum vector is
null above the endpoint energy.

We provide as Supplementary Material the full results of our
investigation for the twelve selected isotopes: the four RMSE
described in Section 3.1 in different tables; and the plots of the
theoretical and unfolded spectra. A typical example of unfolding can
be seen in Figure 1 for a 36Cl beta source simulated with 107 counts,
where the unfolded beta spectra obtained with the MLEM and
Tikhonov methods are displayed, as well as the relative deviation
between the unfolded and the true spectra. MLEM shows high-
frequency oscillations across the entire spectrum with deviations
from the true spectrum within ±2%, excluding the spectrum edges.

The MLEM estimate thus seems not to be sufficiently regularized,
preventing the removal of the spurious oscillations described in
Section 2.1. Conversely, Tikhonov shows good agreement with the
true spectrum, with deviations smaller than 0.5% from 30 keV to
665 keV. For both methods, these deviations are more pronounced
close to the spectrum edges. This behavior close to the energy
threshold is explained by the low detection efficiency, leading to
ill-conditioned response matrix in this energy range, a point
discussed below. Close to the endpoint, this behavior is merely
due to the poor statistics of the input spectrum.

The performance of the algorithms was studied in a two-steps
approach: i) using the knowledge of the input theoretical spectrum; and
ii) without any a priori, as in the analysis of a real measurement. The
direct comparison between the unfolded spectra was first made using
RMSEMLEM

min and RMSETik
min, i.e., when the regularization strength is

chosen to obtain an unfolded spectrum as close as possible to the input
theoretical spectrum. A study over the different isotopes and counting
statistics shows that overall, Tikhonov algorithm provides a smaller
RMSE than MLEM, i.e., an optimal unfolding closer to the true
spectrum. Tikhonov algorithm thus seems to be more appropriate
than MLEM in the context of beta spectrometry, what next needs to be
confirmed when the regularization strength is chosen without any
knowledge on the input spectrum.

The bias caused by the GCV and MLEM-STOP criteria are then
evaluated by comparison with the optimal regularizations. The ratios
RMSETik

gcv/RMSETikmin and RMSEMLEM
stop /RMSEMLEM

min are calculated for all
the beta spectra and simulated statistics. A ratio equal to unity indicates
that the criterion has reached the optimal regularization parameter,
while a larger value indicates a discrepancy. For the Tikhonov method,
this ratio is plotted on Figure 2B. Over all statistics and isotopes
considered, the RMSETik

gcv is on average 8.6% larger than RMSETikmin.
For theMLEMmethod, the corresponding ratio is plotted on Figure 2A.
The RMSEMLEM

stop is on average 11% larger than RMSEMLEM
min , and

becomes 8.8% without 63Ni. A larger discrepancy can be observed
with increasing statistics for all isotopes, due to the MLEM-STOP
criterion being satisfied too early. This effect, not observed with
Tikhonov approach, might be mitigated reducing the bin width. In
a different context, a dependency on counting statistics has already been
observed in neutron fluence spectra unfolding [33]. Nevertheless, the
unfolding performance of both algorithms increases with the counting
statistics, as expected, regardless of the relative performances of
the criteria.

Figure 3 presents the direct comparison of the performances of
the MLEM and Tikhonov methods, evaluated respectively with the
MLEM-STOP and the GCV criteria. The ratio RMSETik

gcv/RMSEMLEM
stop

shows that the Tikhonov method outperforms MLEM in the vast
majority of cases. Indeed, RMSETikgcv is on average 37% smaller than
RMSEMLEM

stop . Even though the GCV criterion introduces a greater
bias than MLEM-STOP, as shown in Figure 2 below 107 counts, the
optimal MLEM spectrum deviates more from the true spectrum,
RMSETikgcv being smaller than RMSEMLEM

min . However, the MLEM
method better estimates the true spectrum for two radionuclides,
namely, 14C and 79Se. This specific behavior seems to be related to
the similar shape and range of the two beta spectra. Our analysis is
that this behavior is linked to the low detection efficiency closed to
the energy threshold, which causes the response matrix to be
particularly ill-conditioned in this energy range. This leads to a
faster increase of the MLEM spectrum than the Tikhonov spectrum,
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which is found to better describe the shape of the 14C and 79Se
spectra at the threshold level.

The spectra uncertainties were estimated by propagation of the
statistical component in Eqs 5, 10. The results are plotted at the 68%
confidence level in Figure 1 but cannot be distinguished from the
main shape when looking at the whole spectrum. As a matter of fact,
the relative uncertainties are below 1% for both methods except in
the energy bins close to the endpoint, where they can reach 10% or
more due to the small number of counts. It important to highlight
that, most notably at low statistics, the deviation between the two
algorithms are often larger than the propagated statistical
uncertainties. This implies that the choice of an unfolding

algorithm introduces a systematic bias at least comparable to the
statistical fluctuations. Such phenomenon was expected, and it was
recently addressed at the cost of an iterative bootstrap bias-
correction [34]. However, a similar treatment was not considered
in the present work because the systematic uncertainties on the
response matrix are expected to be dominant.

3.3 Evaluation on measured data

In order to evaluate the performance of MLEM and Tikhonov
methods on realistic data, the beta spectrum from a 99Tc source

FIGURE 1
Comparison between the true spectrum of the simulated 36Cl beta source with the unfolded spectra obtained with the MLEM method (A) and with
the Tikhonov method (B). The relative deviations with the true spectrum are respectively plotted in panel (C, D).
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FIGURE 2
Evolution of the RMSE ratios for the 12 radionuclides as a function of the counting statistics. Panel (A) shows the ratio of RMSEMLEM

stop to RMSEMLEM
min .

Panel (B) shows the ratio of RMSETikgcv to RMSETik
min.

FIGURE 3
Evolution of the ratio of RMSETik

gcv to RMSEMLEM
stop for the 12 radionuclides as a function of the counting statistics.
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previously measured with our detection setup was unfolded. For this
measurement, the total event counts was 92.8 · 107 and the energy
threshold was 25 keV. In [25], this measured spectrum was unfolded
with the matrix inversion method. With such an approach, the
energy resolution had to be omitted from the unfolding process in
order to ensure a triangular, invertible matrix, sufficiently well-
conditioned. The 99Tc spectra fromMLEM and Tikhonov unfolding
are displayed in Figure 4, together with the spectrum obtained with
the matrix inversion unfolding.

For the MLEM algorithm, the MLEM-STOP stopping
criterion is reached after six iterations. For the Tikhonov

regularization, the GCV minimization estimates a
regularization parameter of 5.8 · 10−4. Both methods are in
very good agreement, between 40 keV and 280 keV, with the
unfolding obtained by matrix inversion but provide
smoother spectra, which is due to the intrinsic
regularization property of the algorithms. Besides, some
discrepancies with the inversion matrix method are observed
close to the edges of the spectrum. Contrary to Tikhonov and
inversion matrix methods, MLEM flattens close to the energy
threshold, probably because of the uniform distribution chosen
as input to the algorithm.

FIGURE 4
Comparison of the unfolded spectra obtained with the matrix inversion method, the MLEM method and the Tikhonov method of the measured
spectrum of 99Tc decay. The upper panel (A) shows the full energy range of the spectra along with two insets which display the energy bins closed to the
energy threshold and the endpoint energy. Panel (B–D) depict the relative deviation between the MLEM and matrix inversion spectra, between the
Tikhonov and matrix inversion spectra and between the Tikhonov and MLEM spectra, respectively.
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At the endpoint, both MLEM and matrix inversion spectra
exhibit a comparable trend and have counts up to 298 keV, while
Tikhonov spectrum falls down more rapidly to 295 keV. A higher
endpoint energy is expected for the matrix inversion method as
energy resolution is not accounted for. However, the MLEM
unfolding process takes this resolution into account and
consequently, the spectrum should be closer to the Tikhonov
unfolded spectrum. Similarly to previous observations, this effect
is caused by the MLEM-STOP criterion that underestimates the
correct number of iterations, leading to an over-regularized
spectrum. On the opposite, the endpoint energy obtained with
Tikhonov is much more consistent with the most precise 99Tc
Q-value of 295.82 (16) keV determined recently with cryogenic
detectors [35].

Statistical uncertainties have been propagated following the
procedure described in Section 2. Average relative uncertainties
have been calculated from 30 keV to 280 keV for the measured
spectrum (0.22%) and for the unfolded spectra with matrix
inversion (0.09%), MLEM (0.12%) and Tikhonov (0.06%)
approaches. The average uncertainties are smaller for the
unfolded spectra due to the account of the covariances between
the energy bins in the algorithms. The matrix inversion uncertainty
appears comparable to the other approaches but the specific
response matrix of this method does not include the energy
resolution of the detection system.

4 Conclusion

The precise knowledge of beta spectra is valuable for several
communities and new measurements are expected in the near
future [36]. Robust unfolding algorithms will be necessary to
establish unbiased spectrum shapes. In this work, we have studied
in minute detail the unfolding of a beta spectrum from all the
experimental distortions caused by our 4π silicon-based
detection system. Two different algorithms have been tested
based on Tikhonov regularization and the MLEM approach.
Their performances was first assessed on calculated beta
spectra, distorted using an accurate Monte Carlo simulation of
our apparatus. The two approaches successfully reconstructed all
the twelve input spectra considered in this study, with a clear
dependence of the performances on the counting statistics. The
two approaches have next been tested on a measured 99Tc
spectrum, leading to results consistent with those from a
matrix inversion method developed in a previous work.
Special care was taken to estimate the uncertainties associated
with the unfolded spectrum. This uncertainty propagation can
only account for the statistical component, but not for the
internal bias of the unfolding approach.

The present study highlights that unfolding a beta spectrum
remains a thorny process that can easily lead to a misbehavior of any
algorithm. The performances of a given algorithm can be sensitive to
the spectrum shape, in a way that for sure depends on the detection
system. Overall, Tikhonov approach seems to perform better than
MLEM, most notably at the edges of the spectrum. However, a
reversed conclusion was found for some specific spectrum shapes
and counting statistics. We recommend to analyze experimental
data with at least two independent algorithms to test the sturdiness

of their results. A reasonable analysis can thus be based on Tikhonov
approach as the main unfolding method, and the use of MLEM to
confirm the results and estimate an internal bias. Finally, it is worth
mentioning that all the spectra of our study are single dominant beta
transitions, while most beta decaying nuclei feed several nuclear
states. Due to the smooth nature of beta spectra, MLEM and
Tikhonov algorithms should provide comparable performances
on a total spectrum with several branches.

Additional algorithms could also be explored to better estimate
this systematic uncertainty component, e.g., based onMarkov Chain
Monte Carlo methods [15, 34] that allow to choose the
regularization strength in a Bayesian framework. Finally, it will
also be of importance to assess the uncertainty of the response
matrix by quantifying the influence of the simulation input
parameters, such as the detection system geometry, the cross-
sections of the various scattering processes, or the source auto-
absorption. This uncertainty is expected to be the dominant
component over the unfolding process.
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