
Shell-model study of weak
β-decays relevant to astrophysical
processes

Toshio Suzuki1,2,3* and Noritaka Shimizu4

1Department of Physics, College of Humanities and Sciences, Nihon University, Tokyo, Japan, 2NAT
Research Center, NAT Corporation, Ibaraki, Japan, 3School of Physics, Beihang University, Beijing, China,
4Center for Computational Sciences, University of Tsukuba, Ibaraki, Japan

Shell-model studies on the weak β-decay in nuclei relevant to astrophysical
processes are carried out. The β-decay rates, as well as electron-capture rates in
the sd-pf shell induced by Gamow–Teller (GT) transition, are evaluated in
astrophysical environments. The weak rates for the Urca pair of nuclei with
A = 31 in the island of inversion, which are important for the nuclear Urca
processes in neutron star crusts, are investigated by shell-model calculations
in the sd–pf shell. The GT strength is evaluated in the sd–pf shell for selected
β-decays in the sd-shell nuclei, and the effects of the expansion of the
configuration space on the quenching of the axial–vector coupling are
examined. β-decay rates induced by first-forbidden (FF) transitions are studied
by the Behrens–Bühring (BB) method for the isotones with N = 126 and
compared with the Walecka method. The important role of the electron
distortions in the β-decays of 206Hg and 207Tl is pointed out.
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1 Introduction

Weak transition rates in stellar environments relevant to astrophysical processes in stars
were evaluated with new shell-model Hamiltonians in the sd shell [1] and pf shell [2–4],
which can describe spin responses in nuclei quite well. Electron-capture and β-decay rates
thus obtained were applied to study nuclear Urca processes in ONeMg cores of stars with
8–10 M⊙ [5–7] and nucleosynthesis of iron-group elements in type Ia supernova (SN)
explosions [8, 9]. New shell-model calculations lead to remarkable improvements in the
weak rates induced by GT transitions. The quenching of the axial–vector coupling constant
is introduced to take into account the effects of the truncation of the shell-model space as
well as the coupling to non-nucleonic degrees of freedom such as Δ33 resonance.

Neutron-rich nuclei in the island of inversion (sd–pf shell) [10] have been studied by
shell-model [11] calculations with phenomenological interactions whose cross-shell part is
constructed based onmonopole-based universal interactions [12]. One of such interactions,
SDPF-M [13], which induces a large admixture of pf-shell components, was successful in
reproducing reduced excitation energies of 21 states and enhanced B (E2) values. However,
it failed to explain low-lying levels of 31Mg. The new effective interaction, EEdf1 [14, 15],
obtained by the extended Kuo–Krenciglowa (EKK) method [16], is shown to be successful
in explaining the structure of 31Mg. The weak rates for nuclei in the island of inversion are
investigated in the sd–pf shell with the use of the effective interaction, EEdf1, especially for
the pair of nuclei with A = 31, 31Al-31Mg, which are important for the nuclear Urca
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processes in neutron star crusts [17]. The β-decay rates for sd-shell
nuclei induced by GT transitions are evaluated by shell-model
calculations in the sd–pf shell using an effective interaction
obtained by the EKK method. The effects of the extension of the
configuration space on the quenching factor of gA are investigated.

β-decay and e-capture rates induced by second-forbidden
transitions in 20F-20Ne were evaluated with the
Behrens–Bühring (BB) [18, 19] and Walecka [20, 21] methods.
The difference between the two methods was found to be
insignificant as far as the conserved vector-current (CVC)
condition was taken into account [22]. A possible important
role of double e-capture reactions in 20Ne on the heating of the
ONeMg cores in the late stages of star evolution was discussed
[22–25]. The e-capture rates induced by first-forbidden transitions
in 78Ni were studied with both the BB and the Walecka methods.
The effect of electron distortion was found to be rather minor for
the nucleus [22]. β-decay rates induced by first-forbidden
transitions were studied with the BB method for the isotones
with N = 126 and applied to r-process nucleosynthesis [26–28].

Here, the β-decay rates induced by first-forbidden (FF)
transitions in 206Hg and 207Tl are investigated with both the BB
and the Walecka methods, and the two methods are compared. The
effects of the electron distortion are examined.

2 β-decay and e-capture rates induced
by GT transitions

2.1 Weak rates in stellar environments

The β-decay rate at finite density and temperature is given as
follows in the multipole expansion method by Walecka [20, 21]:

λβ T( ) � V2
udg

2
Vc

π2 Zc( )3 ∑i ∑
f

∫Qif

mec2
Sf,i Ee, T( )Eepec Qif − Ee( )2 1 − f Ee( )( )dEe

Sf,i Ee, T( ) � 2Ji + 1( )e−Ei/kT

∑j 2Jj + 1( )e−Ej/kT G2
F

2π
F Z + 1, Ee( )Cf,i Ee( )

Cf,i Ee( ) � ∫ 1
4π

dΩ] ∫ dΩk
1

2Ji + 1
∑
J≥1

1 − �̂] · �̂q( ) �β · �̂q( ) |〈Jf‖Tmag
J ‖Ji〉|2[({⎛⎝

+ |〈Jf‖Telec
J ‖Ji〉|2] + 2 �̂q · �̂] − �β( )Re〈Jf‖Tmag

J ‖Ji〉〈Jf‖Telec
J ‖Ji〉*}

+∑
J≥0

1 − �̂] · �β( ) + 2 �̂] · �̂q( ) �β · �̂q( )|〈JF‖LJ‖Ji〉|2{
+ 1 + �̂] · �β( )|〈Jf‖MJ‖Ji〉|2
− 2 �̂q · �̂] + �β( )Re〈Jf‖LJ‖Ji〉〈Jf‖MJ‖Ji〉*}),

(1)

where Vud � cos θC is the up–down element in the
Cabibbo–Kobayashi–Maskawa quark mixing matrix with θC the
Cabibbo angle; gV � 1 the weak vector coupling constant; Ee and pe

are electron energy and momentum, respectively; and f(Ee) is the
Fermi–Dirac distribution for the electron. GF is the Fermi coupling
constant, F(Z + 1, Ee) is the Fermi function, and �q = �k + �] with �]
and �k are the neutrino and electron momenta, respectively, �̂q and �̂]
are the corresponding unit vectors, and �β = �k/Ee. Ei (Ji) and Ef (Jf)
are the excitation energies (spins) of initial and final nuclear states,
respectively. TheQ value is determined fromQif � Mi −Mf, where
Mi and Mf are the masses of parent and daughter nuclei,
respectively. The Coulomb, longitudinal, transverse magnetic, and

electric multipole operators with multipolarity J are denoted asMJ,
LJ,T

mag
J , andTelec

J , respectively, and the factor 1 − f(Ee) denotes the
blocking of the decay by electrons in high-density matter.

In the case of an allowed GT transition, the sum of the axial
electric dipole and axial longitudinal dipole terms contribute to the
rate, and the shape factor Cf,i(Ee) becomes independent of the
electron energy.

Cf,i Ee( ) � Bif GT( ) � gA/gV( )2 1
2Ji + 1

|〈f‖∑
k

σktk−‖i〉|2, (2)

where Ji is the total spin of the initial state and t−|n〉 � |p〉. This
formula for the allowed transition given by Eq. 2 is equivalent to
that in [3, 4, 29], which is based on the
Behrens–Bühring method [18].

The e-capture rate at finite density and temperature is given by
changing the integral in the first line of Eq. 1 as [20, 21],∫∞
Eth

Sf,i(Ee, T)EepecE2
]f(Ee)dEe,, where Eth is the threshold

energy for the electron capture and E] � Ee + Qif + Ei − Ef is the
neutrino energy. F(Z + 1, Ee) is replaced by F(Z, Ee) in the second
line of Eq. 1. The shape factor Cf,i(Ee) is expressed in the same way
as shown in Eq. 1, except that an integral 1

4π ∫ dΩk is replaced by 1.
�q � �] − �k is the momentum transfer, and the phase of the lepton
matrix elements in the interference term of magnetic and electric
form factors is reversed. In the nuclear transition matrix, t− is
replaced by t+ and t+|p〉 � |n〉.

Electron-capture and β-decay rates in the sd shell were evaluated
with the USDB Hamiltonian [1], with the quenching of the
axial–vector coupling (qA = geff

A /gfree
A = 0.764 [30]) at high

temperatures (T = 108 -1010 K) and high densities (ρYe = 108

-1010 g cm−3 with Ye the electron fraction) and applied to nuclear
Urca processes in ONeMg cores. The e-capture rates increase, while
the β-decay rates decrease, as the density increases due to the
increase in electron chemical potential at high densities. Both the
weak rates coincide at a certain density, called an Urca density,
almost independent of temperatures. Both ] and �] are emitted at the
Urca density, thus taking away the energy from the star, which
results in a drastic cooling of the core of the star. This mechanism,
called the nuclear Urca process, occurs quite efficiently for the
nuclear pairs with A = 23 and 25, where the transitions between
the ground states (g.s.s) are GT ones [5, 6]. The weak rates for the
nuclear pairs, 23Na–23Mg and 25Mg–25Na, and the cooling of the
ONeMg core of a star with 8.8 M⊙ were studied in Refs [5, 7].

2.2 Weak rates of nuclei in the island
of inversion

Urca processes for nuclear pairs in the island of inversion [10]
such as 31Mg–31Al and 33Mg–33Al pairs have been pointed out to be
important for the cooling of neutron star crusts [17]. We discuss the
weak rates of the 31Mg–31Al pair. The SDPF-M interaction fails to
reproduce the energy levels of 31Mg, that is, 7/2− state becomes the
g.s., while the experimental g.s. is 1/2+. The Urca density cannot be
clearly assigned for the weak rates for SDPF-M, as the transitions
between the g.s.’s are forbidden. This shortcoming can be improved
for the effective interaction obtained by the EKK (extended
Kuo–Krenciglowa) method [14], starting from the chiral EFT
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N3LO [31] and Fujita–Miyazawa 3N interaction [32]. The EKK
method can treat Q-box calculations in two major shells without
divergence problems [16]. For this interaction, referred to as
EEdf1 [15], neutron effective single-particle energies between
sd-shell and pf-shell orbits become much closer in the neutron-
rich region,Z = 10–12, compared with the conventional sd–pf shell
Hamiltonian, SDPF-M [13]. This results in larger admixtures of
pf-shell components for the EEdf1. Including up to 6p–6h
excitations, energy levels of 31Mg can be well-explained by the
EEdf1 [14, 15]. The g.s. of 31Mg is calculated to be 1/2+, which is
consistent with the experimental observation [33]. The first excited
state is predicted to be 3/2+, which is very close to the g.s. 1/2+. As
the g.s. of 31Al is 5/2+, the GT transition between the 3/2+ state in
31Mg and 5/2+g.s. in

31Al gives the main contribution to the e-capture
and β-decay rates for the A = 31 pair. The weak rates in stellar
environments obtained with the EEdf1 are shown in Figure 1. The
GT transitions between 31Mg (3/2+, 1/2+) and 31Al (5/2+, 1.2+, 3/2+)
are taken into account. The free value for gA is used as the shell-
model space is large. There exists an Urca density at log10(ρYe) =
10.14, as shown in Figure 1 (left panel) for the EEdf1, since the
excitation energy of the 3/2+ state in 31Mg is as small as 0.05 MeV. If
the g.s. of 31Mg is taken to be 7/2−, there does not exist an Urca
density, as shown in Figure 1 (right panel), because of the non-
existence of GT transitions between low-lying states. The transitions
between the g.s.’s of 31Mg (1/2+) and 31Al (5/2+) are second-
forbidden transitions. Their rates can be evaluated with the
method explained in Refs [22, 23], and their contributions to the
weak rates prove to be quite tiny and negligible in contrast to the case
for the 20Ne (0+)-20F (2+) pair.

2.3 β-decay strengths of sd-shell nuclei in
sd–pf shell configurations

Although β-decay rates in sd-shell nuclei are usually
evaluated within the sd shell with a quenching for the
axial–vector coupling, qA = 0.764 for USDB [30]; for example,
we study here β-decay strengths of sd-shell nuclei in an extended

shell-model space, that is, in sd-pf shell. An effective interaction
obtained with the EKK method is used. A modified version of EEdf1,
which will be referred to as EEdf2 [34], is used. In EEdf2, the chiral
N2LO three-nucleon interaction [35] is adopted instead of the
Fujita–Miyazawa force. The following β-decay transitions
treated in Ref. [36] except for 34P → 34S and four additional
ones with A = 21 and 23, 21Na (3/2+) → 21Ne (3/2+), 23Mg (3/2+)
→ 23Na (3/2+), 23Mg (3/2+) → 23Na (5/2+), and 23Ne (5/2+)
→ 23Na (3/2+) are examined. The quenching factor for gA is
obtained by chi-squared fittings to the experimental data of the
GT matrix element, which is defined as

FIGURE 1
β-decay and e-capture rates for the nuclear pair, 31Mg–31Al, as a function of density log10 (ρYe) for various temperatures; log10(T) = 8.0, 8.10–8.85 (in
steps of 0.15), 8.95, 9.05, and 9.15. The β-decay (e-capture) rates decrease (increase) as the density increases. The left figure shows the rates evaluated
with the EEdf1 interaction obtained by the EKK method [14]. The right figure shows the rates obtained with the SDPF-M Hamiltonian [13].

FIGURE 2
Gamow–Teller matrix elements M(GT) obtained with the
EEdf2 in the sd–pf shell and the USDB in the sd shell are compared
with the experimental values. Filled triangles and circles show the
EEdf2 and USDB cases, respectively. Horizontal axis values
correspond to the calculated values with the quenching factors of
qA = 0.86 (0.81) for the EEdf2 (USDB), while the vertical axis values
denote the experimental values. Solid, dashed, and dash-dotted lines
show the cases with qA = 0.86, 0.81, and 1.0, respectively.
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M GT( ) � �������������
2Ji + 1( )B GT( )√

B GT( ) � 1
2Ji + 1

|〈f‖∑
k

σktk∓ ‖i〉|2, (3)

where Ji is the spin of the initial state. The quenching factor for gA

is obtained to be qA = 0.86 ± 0.06 for the EEdf2 for the
configurations including up to 2p–2h excitations outside the
sd shell. The quenching factor is obtained to be qA = 0.81 ±
0.02 for the USDB in the sd shell. Calculated M(GT) for the
EEdf2 and USDB as well as the experimental data [37, 38] are
shown in Figure 2 and Table 1. The quenching factor for gA in the
sd–pf shell is found to become closer to qA = 1, compared
with the case within the sd shell. The inclusion of more
transitions is in progress. When about 90 more transitions in
nuclei with A = 19–34 are included, qA for EEdf2 remains higher
than that for USDB by ~0.05, while the latter comes close to qA =
0.77, which is consistent with the value reported in Ref. [30]
for USDB [39].

An ab initio calculation with the valence-space in-medium
renormalization group (VS-IMSRG) approach gives qA = 0.89 ±
0.04 and qA = 0.96 ± 0.06 for the case without and with the two-
body current contributions, respectively [36]. The quenching
factor would come closer to qA = 1 with the two-body current
contributions.

3 β-decay rates induced by first-
forbidden transitions

The shape factors in the low momentum transfer limit obtained
by the Walecka method are given as follows [22]:

C0−
β � ξ′v + 1

3
wW0( )2

, C1−
β � ξ′y + 1

3
u − x( )W0[ ]2 + 1

18
W2

0 u + 2x( )2

+W −4
3
ξ′yu − W0

9
4x2 + 5u2( )[ ] + W2

9
4x2 + 5u2( )

C2−
β � 1

3
z2 W0 −W( )2 +W2 − 1{ },

(4)
where

ξ′v � −
�
3

√������
2Ji + 1

√ gA〈f‖ 1
M

�σ × �∇[ ] 0( )‖i〉,

w � −
�
3

√������
2Ji + 1

√ gA〈f‖r C1 Ω( ) × �σ[ ] 0( )‖i〉ξ′

y � 1������
2Ji + 1

√ 〈f‖ �∇

M
‖i〉, x � 1������

2Ji + 1
√ 〈f‖rC1 Ω( )‖i〉

u �
�
2

√������
2Ji + 1

√ gA〈f‖r C1 Ω( ) × �σ[ ] 1( )‖i〉,

z � 1������
2Ji + 1

√ gA〈f‖r C1 Ω( ) × �σ[ ] 2( )‖i〉, (5)

withW as the electron energy (=Ee). Here,W0 � |Q|, where Q is the
Q-value for the reaction and Ji is the angular momentum of the
initial state. The matrix elements,w, u, and z, are contributions from
spin-dipole transitions. x, ξ′y, and ξ′v are Coulomb, transverse
electric, and γ5 terms, respectively. The relation, ξ′y = ΔEfix with
ΔEfi � Ef − Ei, is satisfied from the CVC.

In the Behrens–Bühring (BB) method, distorted electron wave
functions are used, which results in extra interference terms between
the operators and the electron wave functions: ξ′v → ξ′v + ξw′,
where ξ = αZ/2R with α the fine structure constant, for λπ = 0−,
and ξ′y → ξ′y − ξ(u′ + x′) for λπ = 1− (see Refs [18, 22] for the
details). When these distortion effects are added to Walecka’s
formulas, Eqs 4, 5, the method will be referred to as “Walecka
with distortion.” Moreover, the following higher-order terms are
usually added in the BB method. They can become important
when dominant terms cancel to each other.

δC0−
β− � −2

3
μ1γ1 ξ′v + ξw′ + 1

3
wW0( )w/W + 1

9
w2

δC1−
β− � 1

9
x + u( )2 − λ2

18
2x − u( )2 − 4

9
μ1γ1u x + u( )

+ 1
18

W2 λ2 − 1( ) 2x − u( )2 + 2
3
μ1γ1 ξ′y − ξ u′ + x′( )( ) x + u( )/W

δC2−
β− � 1

3
z2 λ2 − 1( ) W2 − 1( ),

(6)
where γ1 =

��������
1 − (αZ)2

√
and λ2 and μ1 are distortion parameters, which

are usually taken to be 1.0. The values of λ2 and μ1 are close to 1, but λ2
can become as small as 0.7 in the low electron momentum region for Z
≈ 80 [40]. x′, u′, and w′ are modified from x, u, and w, respectively, by
taking account of the finite-size effect of the nucleus. The β-decay rate λ
is obtained from the shape factors, and the half-life is given by t1/2 � ln2

λ .
The shape factors and log ft values are evaluated by (A) the BB

method, (B) BBmethodwith λ2 = μ1 = 1.0, and (C) the BBmethodwith
λ2 = μ1 = 1.0, but without the subdominant term (Eq. 6), which is
equivalent to theWalecka method with distortion effects added (ξ ≠ 0):
“Walecka with distortion” and (D) Walecka method (without the
distortion (ξ = 0); Eqs 4, 5), and they are compared to each other.
Calculated results of the averaged shape factors [26] and log ft values

TABLE 1 Calculated values of the Gamow–Teller matrix elements (Eq. 3)
obtained by the EEdf2 and USDB interactions as well as the experimental
values. Numbers in the parentheses for the experimental values (EXP.) show
experimental errors.

Transition EEdf2 USDB EXP.

19Ne (1/2+) → 19F (1/2+) 2.318 2.350 1.794 (07)

37K (3/2+) → 37Ar (5/2+) 1.391 1.765 1.582 (45)

37K (3/2+) → 37Ar (3/2+) 1.348 1.243 0.937 (12)

25Al (5/2+) → 25Mg (5/2+) 1.833 1.921 1.56 (0)

30Mg (0+) → 30Al (1+) 0.9338 0.9549 0.751 (35)

26Na (3+) → 26Mg (2+) 0.450 0.853 0.721 (9)

28Al (3+) → 28Si (2+) 0.6646 0.750 0.602 (1)

24Ne (0+) → 25Na (1+) 0.534 0.453 0.4060 (14)

33P (1/2+) → 33S (3/2+) 0.462 0.326 0.269 (2)

24Na (4+) → 24Mg (4+) 0.2846 0.2650 0.161 (2)

21Na (3/2+) → 21Ne (3/2+) 1.250 1.394 1.131 (27)

23Mg (3/2+) → 23Na (3/2+) 0.687 1.035 0.893 (3)

23Mg (3/2+) → 23Na (5/2+) 0.9932 0.9664 0.749 (5)

23Ne (5/2+) → 23Na (3/2+) 0.3222 0.2814 0.350 (4)
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for β-decays in 206Hg and 207Tl are shown in Table 2. Shell-model
calculations are performedwith the samemodifiedG-matrix andmodel
space, as used in Refs [26, 28]. A closedN = 126 core is assumed for the
parent nucleus. For proton holes, full configurations with the 0h11/2,
0g7/2, 1d5/2, 1d3/2, and 2s1/2 orbits are taken into account. The
quenching factors for the axial-vector and vector coupling constants
are taken to be qA = 0.34 and qV = 0.68, respectively [26, 41], and the
enhancement factor for the γ5 term in 0− transition is taken to be qA =
1.75 [26, 42]. Similar large quenching of gA and gV in 1− and 2−

transitions was also reported in Ref. [27].
As we can see from Table 2, the approximation to use λ2 = μ1 =

1 is good enough, and the Walecka method with the electron
distortion, ξ ≠ 0, is satisfactory, while the deviation from the
results of the BB method becomes large when the distortion is
switched off in the Walecka method.

4 Summary and discussion

The new effective interaction in the sd–pf shell obtained by the
EKKmethod [14, 16] from fundamental interactions [31, 32, 35] proves
to be successful in the description of the structure in the island of
inversion [10] and is used to evaluate the β-decay and e-capture rates for
the nuclear pair, 31Mg–31Al, in stellar environments. The Urca density
for the pair can be assigned because dominant transitions between low-
lying states are induced by GT transition. This leads to nuclear Urca
processes in neutron star crusts [43]. The quenching of the axial–vector
coupling constant in selected sd-shell nuclei is examined with the use of
the effective interaction in the sd-pf shell. The extension of the model
space to the sd–pf shell is found to enhance the quenching factor by
~0.05 compared to the conventional Hamiltonians within the sd shell.
More systematic studies including more sd-shell nuclei with
contributions from two-body currents [36] are an interesting
future issue.

β-decays in 206Hg and 207Tl induced by first-forbidden
transitions are studied with both the Behrens–Bühring (BB)
[18] and the Walecka [20, 21] methods. The Walecka method
with electron distortion corrections is shown to give results close
to those of the BB method for the averaged shape factors and log
ft values. Unless accidental cancellations among the dominant
terms take place, the Walecka method with the distortion
corrections, simpler and more accessible than the BB method,
can be a useful approximation with enough accuracy even in the
Z ≈ 80 region. It would be interesting to find out to what extent
this statement is valid.
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TABLE 2 Calculated square roots of the averaged shape factors and log ft values for the β-decays in206Hg and207Tl obtained by the BB method, the BB
method with an approximation with λ2 = μ1 = 1, the Walecka method with electron distortion effects, and the Walecka method without the distortion
effects.

206Hg (0+) → 206Tl BB BB (λ2 = μ1 = 1) Walecka with distortion Walecka w/o distortion

206Tl; Jπ , Ex (MeV)
���
CW

√
(fm) [log ft]

���
CW

√
[log ft]

���
CW

√
[log ft]

���
CW

√
[log ft]

0− , 0.000 62.2 [5.38] 62.2 [5.38] 61.2 [5.39] 169.0 [4.51]

2− , 0.268 0.42 [9.72] 0.45 [9.65] 0.45 [9.65] 0.45 [9.65]

1− , 0.305 94.1 [5.02] 94.1 [5.02] 95.0 [5.01] 24.3 [6.19]

1− , 0.649 66.5 [5.32] 66.5 [5.32] 66.9 [5.31] 34.3 [5.89]

207Tl (1/2+) → 207Pb

207Pb; Jπ , Ex (MeV), λπ

1/2− , 0.000, 0− 46.0 [5.64] 46.0 [5.64] 45.2 [5.65] 129.5 [4.74]

1− 84.9 [5.11] 84.9 [5.11] 85.2 [5.10] 26.1 [6.13]

3/2− , 0.898, 1− 48.3 [5.60] 48.3 [5.60] 47.7 [5.61] 34.5 [5.89]

2− 2.29 [8.24] 2.49 [8.17] 2.49 [8.17] 2.49 [8.17]
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