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We introduce a tensor network algorithm for the solution of p-spin models. We
show that bond compression through rank-revealing decompositions performed
during the tensor network contraction resolves logical redundancies in the
system exactly and is thus lossless, yet leads to qualitative changes in runtime
scaling in different regimes of the model. First, we find that bond compression
emulates the so-called leaf-removal algorithm, solving the problem efficiently in
the “easy” phase. Past a dynamical phase transition, we observe superpolynomial
runtimes, reflecting the appearance of a core component. We then develop a
graphical method to study the scaling of contraction for a minimal ensemble of
core-only instances. We find subexponential scaling, improving on the
exponential scaling that occurs without compression. Our results suggest that
our tensor network algorithm subsumes the classical leaf removal algorithm and
simplifies redundancies in the p-spin model through lossless compression, all
without explicit knowledge of the problem’s structure.
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1 Introduction

Spin glass physics appears in disciplines far-removed from its origin in condensed
matter, including theoretical computer science [1], biology [2], and machine learning [3].
Spin glass models are generally easy to describe, yet hard to solve. One reason is that such
models exhibit rugged energy landscapes [4], trapping optimization algorithms in local
minima and leading to exponentially long run times.

A notable counterexample is the p-spin model [5], which is in fact easy to solve [6]. By
mapping the model to a linear system of equations modulo 2, Gaussian elimination (GE)
allows one to obtain the zero-temperature partition function of the model in polynomial
time. While this model is a restricted version of a general spin glass model, its tractable
analysis provides useful insights into the physics of spin glasses. Yet the p-spin model also
exhibits rugged energy landscapes in certain regimes of the parameters, which is why it is a
standard benchmark for classical [7–9] and quantum [10–15] optimization algorithms. In
these regimes, simulated annealing fails or is inefficient for any p> 2 [13, 15], and the same
is true for quantum annealing [11], even when no phase transition is encountered [15].
Boolean satisfiability and local solvers also struggle with these models [16–21].

In this work, we introduce a tensor network algorithm for solving p-spin models. A
tensor network (TN) is a data structure that allows for compact representation of a given
(weighted) graphical model, including (quantum) spin Hamiltonians and constraint
satisfaction problems, and whose contraction amounts to a (weighted) count of the
solutions to the model [22–26]. While exact TN contraction is computationally hard in
general even for restricted graph classes, such as planar grids [27], techniques involving
tensor compression can lead to accurate and efficient approximate estimation of classical
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partition functions or quantum expectations in specific cases
[28–30]. TN methods have also previously been used in mean-
field studies of graphical models and disordered spin
Hamiltonians [31, 32].

Here, we show that compressed TN contraction applied to the
p-spin model automatically emulates previously discovered
algorithms for the solution of the model in its different phases.
In contrast to previous works, the compression we perform is exact,
meaning that it only resolves and simplifies redundancies in the TN
at each step without loss of information. We illustrate the above with
an application to the 3-spin model, in which the average number of
interactions per spin α controls transitions to different
thermodynamic phases in the structure of the problem [5]. We
find that compressed TN contraction automatically implements the
leaf removal algorithm [5] and thus efficiently solves the problem
when α< αd, at which point a dynamical transition occurs. In
contrast, compressed TN contraction scales superpolynomially
when α> αd but improves substantially on the exponential
scaling of TN contraction without compression. We further show
that when α ∈ [2/3, 3/4], compressed TN contraction outperforms
naive GE. Finally, by devising a graphical scheme that exactly
captures the dynamics of compressed TN contraction in the
special case of spins appearing in exactly two interaction terms,
for which no leaf removal occurs, we show numerically that the TN
method solves the problem in subexponential time.

2 Definitions

2.1 The p-spin model

We can write the p-spin model by specifying a bipartite graph
G � (U,V, E), where U is the set of nodes representing the n � |U|
spins, V is the set of nodes representing the m � |V| interaction
terms, and E is the set of edges connecting spin nodes to interaction
nodes. We can then write the Hamiltonian of the p-spin model as:

H � 1
2

m − ∑
v∈V

Jv ∏
u∈N v( )

σu⎡⎢⎣ ⎤⎥⎦, (1)

where Jv ∈ −1, 1{ } are the couplings for the interaction at node v,
σu ∈ −1, 1{ } is the value of the spin at node u, andN(v) is the set of p
neighbours for the interaction described by node v. The minimum
energy is zero, and it occurs when every interaction satisfies
Jv � ∏u∈N(v)σu. In this paper, we are interested in counting the
number of zero-energy configurations for a given ensemble of
bipartite graphs, that is, evaluating the zero-temperature partition
function of the model.

By letting σu � (−1)xu and Jv � (−1)bv , we can rewrite the
search for zero-energy configurations from Equation 1 as

A �x � �bmod 2, (2)
where A ∈ {0, 1}m×n is the biadjacency matrix of the graph G, with
Avu � 1 indicating u ∈ N(v) and zero otherwise, �x ∈ 0, 1{ }n encodes
the spin configuration, and �b ∈ 0, 1{ }m encodes the couplings.
Finding the zero-energy configurations for Equation 1 is
equivalent to solving the matrix Equation 2. Counting the
number of configurations also involves manipulating Equation 2.

With this form, we can then cast the problem into the language of
Boolean satisfiability (SAT), which we detail below.

2.2 The #p-XORSAT problem

2.2.1 Definition
In its most general form, a SAT problem is the problem of

deciding whether a logic formula built from a set of boolean
variables {x} � {x1, x2, . . . , xn} and the operators ∧ (conjunction),
∨ (disjunction), and ¬ (negation) evaluates to true, i.e., is satisfiable
[33]. The SAT problem is characterized by the conjunction of
clauses, each comprising disjunctions of variables where the
negation operator may be applied. The SAT problem is NP-
complete, and the same is true for many of its variants.

The constraint stipulating that every clause must consist of
exactly p variables defines the p-SAT problem, which is also NP-
complete. Counting the number of solutions that satisfy a given SAT
problem, if any exist, defines the #SAT problem, which is even more
challenging, falling under the #P-complete class. This property
extends to #p-SAT problems for p≥ 2.

The variant of the #p-SAT problem that lets us count the
number of zero-energy configurations of a given p-spin model is
the #p-XORSAT problem, defined below.

The #p-XORSAT problem requires only a modification of the
operators within the clauses from the standard p-SAT
formulation. The disjunction is replaced by the exclusive-or
(XOR) operator, which is mathematically represented by the
summation modulo 2 operator (⊕). Given A and �b as in
Equation 2, we can define an instance ϕ of the p-XORSAT
problem as:

ϕ x{ }( ) � ∧
m

i�1
ci,

ci � 1 ⊕ bi ⊕ Ai · �x,
�x � x1, x2, . . . , xn( ) ∈ 0, 1{ }n,

(3)

whereAi ∈ 0, 1{ }n is the i-th row ofA and bi is the i-th component of
�b, Ai · �x indicates the dot product between Ai and �x (modulo 2), and
ci � 1 implies the clause is satisfied (bi ⊕ Ai · �x � 0).

When one generates A by placing p ones in each row uniformly
at random with no repeated rows and uniformly chooses �b ∈ 0, 1{ }m,
the clause density α ≡ m/n characterizes much of the problem. In
particular, p-XORSAT has two phase transitions [5]. The first
occurs at αd, which indicates a dynamical transition in the
structure of the solution space by dividing solutions into well-
separated (in Hamming distance) clusters. The second occurs at
the critical transition αc, where, with high probability, any instance
becomes unsatisfiable (no solutions). This point signifies a similar
phase transition even when �b � 0, meaning the configuration �x � 0
is always a solution [20]. For p � 3, the constants are αd ≈ 0.818
and αc ≈ 0.918 [5].

2.2.2 Gaussian elimination
Given a p-XORSAT instance ϕ( x{ }), as defined in Equation 3,

we first translate it into the form of Equation 2. Then, we apply GE
on the augmented matrix [A| �b]. If the system is inconsistent, there
are no solutions. Otherwise, the solution count is:

#Solutions � 2n−rank A( ), (4)
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where all operations are modulo 2, as in applying GE. #p-XORSAT
is thus in P since it can be solved using Equation 4 in at mostO(n3)
time and O(n2) memory.

In Ref. [34], the authors studied the time and memory
requirements for solving Equation 2 for p � 3 using a “simple”
version of GE. This version solves the linear equations in the order
they appear in Equation 2 and with respect to a random variable.
The authors showed that this simple algorithm will solve the
problem in ∝ n time and memory when α≤ 2/3, and in ∝ n3

time and ∝ n2 memory when α> 2/3.
The authors also presented a “smart” version of GE, where one

first looks for the variable appearing in the least number of equations
left to be solved (ties broken arbitrarily), then solves for that variable
and substitutes it into the remaining equations. They argued that
this smarter version of GE will solve the problem in ∝ n time and
memory when α< αd, and in ∝ n3 time and ∝ n2 memory when
α> αd.

When one solves an equation that contains a variable which only
appears in that equation, one can interpret the process graphically as
a “leaf removal” algorithm [5]. We describe it below because it
provides intuition as to why the “smart” version of GE is more
efficient and will help explain the behaviour of our TN algorithm.

2.2.3 Leaf removal
Suppose we have an instance for p � 3 and the variable x only

appears in the linear equation x ⊕ y ⊕ z � b. No matter what values
y and z take, it is always possible to choose x to make the equation
true. We can therefore solve this equation for x, and only fix it once
we have solved the rest of the (fewer) linear equations. But removing
this equation may now cause y or z to only appear in a single other
equation, so we solve those equations for y and z, and then what
remains is an even smaller linear system. The process will continue
until the remaining variables participate in at least two equations. In
terms of the matrix A in Equation 2, each column will have at least
two 1s (Note that if a variable appears in no equations it is, in
essence, not part of the problem and so we can ignore it and simply
multiply the count by 2.)

This algorithm is called leaf removal [5], and it allows us to
simplify the p-XORSAT problem. Graphically, the algorithm begins
with the bipartite graph G representing the problem, then iteratively
finds variable nodes u ∈ U such that deg(u) � 1, and deletes the
clause node v ∈ N(u) and v’s associated edges. The algorithm
continues until either no clause nodes remain (and therefore, no
edges) or a “core” remains, a subgraph ofGwhere each variable node
has degree at least two. One can then construct a solution to the
original formula by working backwards from a solution to the
formula corresponding to the core graph.

In Ref. [5], the authors showed that, for the ensemble where
p � 3 and one picks each clause uniformly at random from the (n3)
distinct tuples of variables, the leaf algorithm will succeed in
reducing the corresponding graph to the empty graph when
α< αd ≈ 0.818. Because at each step of the algorithm one can fix
a variable node of degree 1 in order to remove a clause node, when
no core remains the count will be 2n−m, where m is the number of
clauses (or variables we have fixed). When α> αd, a core will remain,
which means leaf removal is not enough to solve the entire problem.
The value αd indicates a dynamical transition in the problem, and it
corresponds to a change in the structure of the set of solutions. The

“smart” GE uses this principle to achieve a speedup over the
standard version.

We also note that when no core remains at the end of leaf
removal, one can interpret the algorithm as finding a permutation
of the rows and columns of the matrix A such that one can
transform A into triangular form. Suppose the variable xi only
appears in equation j. One would then permute the rows 1 and j of
A, as well as the columns 1 and i. Ignoring the first row and
column of A, repeat the same procedure. Continuing in this way
will yield a matrix A′ which is in triangular form and has the same
rank as A. The triangular form of A′ implies that its rank is simply
the number of rows, allowing one to calculate the number
of solutions.

In the case of the p-XORSAT problem, this algorithm
demonstrates that we can graphically identify and eliminate
redundancy, reducing the problem’s size by focusing on the
remaining core. Graphically, this problem does not only exhibit
this rank-1 variable redundancy; two more are explained in the
following section.

2.2.4 Graphical simplifications
There exist graphical rules, such as the leaf removal explained in

Section 2.2.3, that let us simplify a p-XORSAT problem. These will
be used in Section 3.3, where we develop a complementary graphical
method for TN contraction. Note that we will study the case where
�b � 0 for simplicity. Then, we have the following examples of
simplifications.

The first example is the Hopf law [35], where a clause involves
the same variable multiple times. In this case, since i ⊕ i � 0 for
boolean indices, when there are t occurrences of a variable in a
clause, only t mod 2 of them are necessary and the rest are
redundant. In Figure 1, we show an example for t � 2.

The second example is the bialgebra law [35], where a set of
clause nodes are all connected to a set of variable nodes. An example
for two clauses and two variables is shown in Figure 2. These
structures simplify to a single clause and single variable, as
shown in Figure 2.

FIGURE 1
Graphical representation of the Hopf law. Clause nodes are blue
squares, and variable nodes are green circles.

FIGURE 2
Graphical representation of the bialgebra law. Clause nodes are
blue squares, and variable nodes are green circles.
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These simplifications correspond to eliminating redundancies in
the problem. Resolving these redundancies can be exploited to solve
the problem faster.

2.3 Tensor networks

TNs are a data structure that encodes a list of tensor
multiplications. Intuitively, one can imagine a TN as a graph
where each node represents a tensor, and edges represent the
common axes along which one multiplies two tensors1. By
contracting together neighboring nodes—multiplying the
corresponding tensors together—one can sometimes efficiently
compute a variety of quantities, making it a useful numerical
method. Originally developed to efficiently evaluate quantum
expectation values and partition functions of many-body systems,
this tool now has applicability in many domains, including quantum
circuit simulation [36] and machine learning [37]. As shown in [22],
this tool can also be used for p-SAT problems.

For our work, contracting all of the tensors in the network
together will yield the number of solutions to Equation 2. Below, we
review the main ideas for TN methods that are relevant for us and
determine the performance of our algorithm. These elements are:
how to perform contractions, the importance of contraction
ordering, and how to locally optimize the sizes of the tensors
(which affect the memory requirements). We then describe our
TN algorithm for the #p-XORSAT problem in Section 3.1.

2.3.1 Contraction
A single tensor is a multidimensional array of values.

Graphically, the number of axes (or rank) of the tensor is the
degree of the corresponding node, and the size of the tensor is
the number of elements (the product of the dimensions of the axes).
The size of the TN is then the sum of all the tensor sizes. For any TN
algorithm, one must keep track of the size of the TN to ensure the
memory requirements do not exceed one’s computational limits. In
particular, one must consider how contracting tensors together
changes the TN’s size.

A simple example of contraction is the matrix-vector
multiplication, which is represented graphically in Figure 3.Here,
the vector �u (a rank-1 tensor) is represented by a node with a single
edge connected to it and the matrix M (a rank-2 tensor) is also a

node, but with two edges. The matrix-vector multiplication shown
in Figure 3 can also be written as the following summation:

∑
j

Mijuj � vi. (5)

In general, one can write the contraction of a TN by this summation
over all the common (shared) axes. We will sometimes call tensors
with common axes adjacent, in reference to a TN’s
graphical depiction.

When contracting tensors where each axis has the same
dimension, we can graphically determine the resulting size by
looking at the degree of the new node. In Figure 3, the resulting
tensor has rank 1, which is the same as �u’s rank. However, the
resulting tensor size can be much larger than the original tensors.
Suppose we contract tensors of rank d1 and d2 which share a single
common axis and each axis has dimension 2, then the size of the
resulting tensor will be 2d1+d2−2 and thus scales exponentially in
tensor ranks.

2.3.2 Contraction order
Though we can carry out the contraction of a TN in any order,

the size of the TN in intermediate steps of the contraction can vary
widely. Ideally, a contraction will choose an order that limits the
memory required to store the TN during all steps of the contraction,
making it feasible. Given a contraction order, we can define the
contraction width W of the TN [38] in two equivalent ways:

W � maxv∈Pdeg v( ) graphical( ),
maxT∈T log2s T( ) tensors( ).{ (6)

For the graphical representation, P is the set of nodes representing
the tensors present at any stage of the contraction. In the tensor
representation, T is the set of all tensors that are present at any stage
of the contraction, and s(T) is the size (number of elements) of the
tensor T. Note thatW depends on the TN and the contraction order.
Then, up to a prefactor [38], 2W captures the memory requirements
for the entire contraction.We use the contraction width as a proxy to
runtime because it defines the largest tensor that one must
manipulate during the contraction using multilinear operations,
which take polynomial time in the size of that tensor [38]. Finding
such orderings is an optimization problem and algorithms exist to
find optimized contraction ordering according to the TN structure.
While finding the optimal contraction order is easy in some cases,
for example, a square lattice, it is muchmore complex in others, such
as random networks [30]. In general, the computational demands of
a TN contraction grow exponentially with the number of tensors in
both time and memory. Even so, a method called bond compression
allows us to further optimize the contraction by accepting a little
error. We review this method below, and we explain in Section 2.2.4
how we use bond compression in a novel way.

2.3.3 Bond compression
Bond compression involves, in its simplest form, performing a

contraction-decomposition operation on adjacent tensors within the
TN. The term “bond” refers to the common index between tensors.
The decomposition step primarily uses rank-revealing methods such
as QR or singular value decomposition (SVD). Of these, the SVD
plays a central role in TN algorithms. By setting a threshold value for
singular values, either absolute or relative, we retain only the

FIGURE 3
Matrix-vector multiplication in TN format.

1 Though this does not factor into our work, it is also possible to have “free”

edges with only one end connected to a node, indicating an axis in which

no tensor multiplication occurs.
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singular values above the threshold and corresponding singular
vectors, thereby approximating subsequent contractions. This
approach facilitates the contraction of larger TNs by reducing the
contraction width during the process. However, in general, this
comes at the expense of approximating the final result.

We implement bond compression as follows. Given two
adjacent tensors TA and TB in the network, we transform them
into the approximate tensors ~TA and ~TB as

TATB � QARARBQB

� QARABQB

� QA UΣV†( )QB

≈ QA
~U~Σ ~V

†( )QB

� QA
~U~Σ

1
2( ) ~Σ

1
2 ~V

†
QB( )

� ~TA
~TB.

(7)

The first equality comes after applying a QR decomposition to the
tensors. Since the QR decomposition operates solely on matrices, we
first need to reshape those tensors into matrices before decomposing
them. Concretely, if we have a tensor T that has indices
(i1, i2, . . . , ik) and we want to apply the QR on the index i3, then
the reshaping would give a matrix with indices (∏j≠3ij, i3) (where
the product signifies grouping the indices into a composite index).
This matrix allows for the direct application of the QR
decomposition on the desired dimension. The second equality
comes from multiplying the matrices RA and RB to get the
matrix RAB. The third equality comes after performing the SVD
on RAB. Then, the threshold is applied, reducing the sizes of the
singular values matrix, of U and of V and possibly approximating
the result. The following equality comes from splitting this diagonal
singular values matrix into two equal ones. The final equality comes
from multiplying the matrices together in each parenthesis to get
two new tensors with a “compressed” bond between them. This
schedule optimizes the bond compression since the contraction
between two tensors of possibly high dimensions is avoided.

3 Methodology

3.1 Tensor networks for p-XORSAT

As shown in Ref. [22], we can map any p-XORSAT instance as a
TN. Contracting it will yield the number of solutions to the problem.
As with the p-spin model in Section 2.1, we can define a p-XORSAT
instance by a bipartite graphG � (U,V, E) and a vector �b of parities.
Then, to each node u ∈ U we will assign a “variable” (or COPY)
tensor, which has the form:

TCOPY u{ }
i1i2 ...id

� 1, if i1 � i2 � . . . � id,
0, else,

{ (8)

where the indices i1i2 . . . id are boolean and d � deg(u). For each
node v ∈ V, we will assign a “clause” (or XOR) tensor of the form:

TXOR v{ }
i1 i2...ip � 1, if i1 ⊕ i2 ⊕ . . .⊕ ip � bv

0, else
{ , (9)

where the indices are also boolean, p � deg(v) and bv is the
parity associated to clause v. Finally, the edges E indicate which

indices are common between different tensors in the TN and
need to be summed over. Obtaining the solution count for the
problem involves writing a summation over all of the common
indices, yielding an expression similar (but much more involved
for larger TNs) to Equation 5. In Figure 4, we give an example of
a 3-XORSAT instance with n � |U| � 5 and m � |V| � 3 where
the green circles represent tensors built following Equation 8
and the blue squares represent tensors built following
Equation 9.

As explained in Section 2.3.2, we can evaluate the contraction
widthW of those TNs by extracting the highest tensor rank reached
during its contraction.

3.2 Eliminating redundancies through bond
compression

There are several possible simplifications for a p-XORSAT
problem that occur during the intermediate steps of the TN
contraction. By recognizing these simplifications, we can reduce
the size of the TN and therefore the time and memory requirements
for its contraction. We will focus on the case where �b � �0, so all
parities are even.

We will use bond compression to contract and decompose all
adjacent tensors in the TN, a process commonly called a sweep,
which is standard practice in TN methods. However, we will not

FIGURE 4
An example of a TN representing a 3-XORSAT instancewith n � 5
(green circles), m � 3 (blue squares).

FIGURE 5
Applying bond compression on a rank-1 variable tensor (green
circular node labelled x1 on the left) connected to a rank-4 clause
tensor (blue square node labelled c1 on the left). The result is a scalar
and a rank-3 tensor that is equivalent to the tensor product of
three rank-1 variable tensors.
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remove any nonzero singular values in the decomposition. If the
tensors are full-rank, this is useless; the tensors remain unchanged
after performing bond compression. On the other hand, TNs
representing p-XORSAT problems often contain redundancy (see
Section 2.2.4), which results in singular values that are zero to
numerical accuracy. Therefore, performing bond compression and
removing null singular values allows us to reduce the tensor sizes
while keeping the resulting contraction exact.

An interesting fact with this method is that applying bond
compression to the bond between a rank-1 variable tensor and a
rank-d clause tensor will effectively remove the bond, leading to a
scalar (rank-0 tensor) and a rank-(d − 1) tensor. This rank-(d − 1)
tensor will be composed of only ones (with a prefactor), which is
equivalent to the tensor product of d − 1 rank-1 variable tensors. We
illustrate an example of this in Figure 5. The following sweep step
will then remove those d − 1 bonds (because they connect to a rank-
1 variable, or COPY, tensor). This means the algorithm effectively
removes the clause tensor and all its bonds, which is equivalent to
one step in the leaf removal algorithm. This process could cascade
through the entire TN, potentially eliminating all its bonds or
resulting in a leafless core, giving the same outcome as the leaf
removal algorithm. Therefore, bond compression sweeps
automatically implement the leaf removal algorithm.

The contraction width will be the figure of merit for the
performance of this algorithm because of its relation with the
maximum intermediate tensor size (see Equation 6).

3.3 Graphical contraction

When α< αd, leaf removal is likely to completely simplify the
graph encoding the problem (Section 2.2.3). Translated to TN
contraction, the bond compression shown in Figure 5 would be
enough to dramatically simplify the TN contraction. This allows us
to scale our simulations to large system sizes. However, when α> αd,
a core will likely remain. In this case, the remaining TN to contract
comprises a core, and this will change the scaling of resources. In
particular, the presence of a core will increase the contraction width
(and therefore the memory requirements) much more quickly than
when α< αd. This limits our ability to test the performance of our
algorithm on large instances in this regime.

To bypass this bottleneck and provide further scaling evidence,
we develop a graphical algorithm that allows us to study the
contraction width throughout a contraction by only studying the
connectivity of the instance’s graph. As discussed in Section 2.3.1,
this is always possible for any exact contraction of a TN, since one
simply needs to keep track of the tensor ranks at each step of the
contraction (regardless of the tensors’ contents). However, because
we seek to study the performance of our TN algorithm that detects
simplifications through bond compression, we must also encode the
graphical patterns that will lead to simplifications. We will make use
of the graphical simplifications discussed in Section 2.2.4, as well as
more discussed in Section 3 of Ref. [35].

The graphical algorithm works as follows. Starting from a graph
G encoding the instance, each node will always represent either a
variable or a clause, and by default we will assign each node to a
distinct “cluster”. The algorithm “contracts” two nodes by assigning
them to the same cluster. One can think of the cluster as a contracted

tensor. Then, whenever the algorithm performs a “sweep”, it will
search for any possible simplifications between clusters involving
variable and clause nodes. If the algorithm finds any, it will perform
the simplifications by removing edges in the problem2. The
algorithm alternates between sweeping and contracting until
every node in the graph belongs to the same cluster, in which
case it terminates. It uses the same contraction ordering as in our TN
algorithm. In graphical contraction, the goal is to obtain the sizes of
intermediate tensors encountered in the contraction, not the values
of the tensors themselves. Therefore, the graphical algorithmwill not
produce a solution count, just a contraction width. We also note that
a degree-2 variable tensor is, in its tensor representation, equal to a
2 × 2 identity matrix (see Equation 8). Knowing that, we can replace
any degree-2 variable nodes in a cluster by edges.

The rank of an intermediate tensor is the number of outgoing
edges from a cluster, and its size is:

sizecluster � 2#outgoing edges. (10)
Taking the maximum number of outgoing edges over all contraction
steps and clusters directly yields the contraction width.

We now interpret the sweeping method as implementing
graphical simplifications. Recall that the TN contraction is a sum
over all the boolean indices of the tensors and only the indices which
satisfy the logic of the TN will contribute 1 to the sum (and
0 otherwise), yielding the solution count to the problem.
Therefore, any simplifications from bond compression must
correspond to redundancy in specifying the logic of the TN.
Suppose the algorithm is compressing the bonds between tensors
TA and TB. For concreteness, suppose there are k bonds. The
algorithm will first transform the k bonds of dimension 2 into a
single bond of dimension 2k. Then, the algorithm will compress that
bond according to Equation 7, yielding new tensors ~TA and ~TB such
that their shared bond is minimized due to the SVD.We observe that
the new shared bond has dimension 2k′ for k′≤ k, and k′
corresponds to the minimum number of bits needed to preserve
the logic of contracting TA and TB. Note that we can interpret a
single bond of dimension 2k′ as k′ bonds of dimension 2, which is
how we display our graphical simplifications.

For example, in the leaf removal algorithm, compressing the
bond of a rank-1 variable tensor TCOPY with a rank-4 clause tensor
TXOR will yield a shared “bond” of dimension 20, due to redundancy
in the representation of contracting those two tensors. This
dimension 1 “bond” signifies that the contraction of those
tensors will be a tensor product that reduces to an element wise
multiplication of tensor ~T

XOR
with the scalar value of ~T

COPY
.

Similarly, we show below that there are several known logical
simplifications present between tensors in these TNs which
minimize the number of bits needed to preserve the contraction,
implying the QR/SVD will find them. We observe as much in our
experiments, which led us to developing our graphical algorithm.

The algorithm must detect and simplify any tensor that our
TN algorithm would simplify. For the (2,3)-biregular graph
ensemble (α � 2/3 leaf-free instances) we consider, only a

2 The algorithm can also remove edges within a cluster, if it is part of the

simplification (see Figure 7).
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subset of the possible p-XORSAT simplifications are present.
Following the examples in Ref. [35], our graphical algorithm
detects the following possible simplifications (we assume �b � �0
for simplicity):

• Fusion rule,
• Generalized Hopf law,
• Triangle simplification,
• Multiple edges between nodes of the same type,
• Scalar decomposition.

The fusion rule says that neighboring clause nodes in the same
cluster can be contracted together to form a bigger clause node, and
the same is true for variable nodes. In this case, we actually replace
the two nodes with a single node representing them. Their
corresponding tensor representations would then be exactly those
of a clause or variable tensor of larger rank. This rule is schematically
shown in Figure 6. One can also apply the same rule for nodes of the
same type which share multiple edges. However, for clause nodes,
there will be an overall numerical factor of 2#shared edges−1 in the
entries of the tensor, corresponding to the summation over shared
indices. Since we are only concerned with the size of the tensors, this
coefficient is not relevant.

The generalized Hopf law ensures that if a clause node and a
variable node share t edges and the degree of each is greater than t, a

sweep will leave t mod 2 edges between them (as discussed in
Section 2.2.4).

The triangle simplification is an implementation of the Hopf law
between two clusters that, between them, contain a “triangle” of
nodes. Those triangles contain two nodes of one type (clause or
variable) and one of the other. Because we always contract nodes of
the same type within a cluster using the fusion rule, a triangle
simplification can only occur when the nodes of the same type are in
different clusters. When we sweep between these clusters, applying
the fusion rule and then a basic Hopf law will remove edges, as
shown in Figure 7.

The simplification of multiple edges between nodes of the same
type is a variant of the fusion rule. Consider the example in Figure 8.
If the nodes are in different clusters, sweeping would not contract
the nodes, but would simplify all the edges except one in the same
way as a the fusion rule (ignoring once again an overall factor).

Finally, the scalar decomposition occurs when there are two
nodes of the same type and at least one shares all its edges with the
other. A sweep will merge the two nodes, and then only factor out a
scalar (degree-0 node) in the decomposition to return to two tensors.
However, the sweep will remove all edges between the tensors.

We now argue that these simplifications are sufficient to
characterize any possible simplification present in the (2,3)-
biregular graph ensemble. Each variable node has degree 2, so
the bialgebra law and any higher-order generalizations cannot
occur because they require variable nodes of degree at least 3.
Because we replace any degree-2 variable node in a cluster by an
edge and the fusion rule combines clause nodes within a cluster,
most clusters will be a single clause node of some degree. Our rules
above capture simplifications between such clusters. The one
exception is that variable nodes are their own clusters at the start
of the algorithm before being contracted with other nodes. In this
case, the simplifications given by Figure 7 may apply. Therefore, our
set of graphical rules should be sufficient to capture all possible
simplifications in this ensemble. We also provide evidence of this
claim in Section 4.2.

3.4 Numerical experiments and tools

3.4.1 Generation of random instances
To generate our instances at a given α and n, we choose m � αn

tuples3 of p variables uniformly at random without replacement

FIGURE 6
The fusion rule on two nodes that are in the same cluster,
identified as red here. Nodes of diamond shape represent nodes that
could be either of type clause or of type variable.

FIGURE 7
One of the two possible cases of the triangle simplification. Node
c1 is in one cluster (yellow), and nodes (c2 , x1) are in the other (red).
There are initially two shared edges between the clusters. After the
sweep, edges c1x1 and c2x1 disappear, resulting in only one
shared edge remaining between the two clusters.

FIGURE 8
The multiple edges between nodes of the same type
simplification. The nodes are in different clusters (yellow and red), and
initially share multiple edges. After a sweep, only one edge is needed
to represent the same tensor structure.

3 Note that we choose m,n, and α such that m and n are integers.
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from {x}, the set of variables defined in Section 2.2. This means that
each variable tensor’s rank d conforms to the following Poisson
distribution:

P rank xi( ) � d( ) � pα( )d
d!

e−pα.

This rank is defined as the number of times that a variable is
present in the problem. In the language of Equation 2, we
randomly place p ones in each row of A and the rank of the
variable xi corresponds to the number of ones in column i. For our
numerical experiments, we set p � 3. We also exclusively focus on
the case �b � �0 (the unfrustrated version of the p-spin model). We
do so because in the regime α< αc that we study, the problem will
contain at least one solution for any given �b (with high probability
in the limit of large problem size), which allows us to redefine the
problem such that �b � �0 [5, 34] and the solution count
remains the same.

3.4.2 Generation of leaf-free instances
Since we are mainly concerned with the scaling of resources for

instances which contain a core, we choose a minimal ensemble with
this property. We will study the ensemble of connected 3-regular
graphs on m clause nodes generated uniformly at random using the
Degree_Sequence function in igraph with the Viger-Latapy
method [39]. To create a 3-XORSAT instance, we place a variable
node along each edge of the regular graph. This ensures the variable
nodes all have degree two, and the clause nodes have degree three.
Therefore, the ensemble of instances is for α � 2/3. Note that this is
below αd, but the method of construction explicitly ensures a core.

3.4.3 Implementation of contraction methods
For TN contractions, we use quimb, a Python package for

manipulating TNs [40]. For the graphical method, we use igraph,
an efficient network analysis library [41], in order to work with node
attributes on the graph directly. Those attributes let us define the
node types (clause and variable) and the nodes’ clusters.

The TN contraction order, as discussed in Section 2.3.2,
determines the contraction width. Without applying our
sweeping method, one can track this quantity without actually
performing the tensor contraction. One must simply keep track
of the ranks of the tensors at any point in the contraction, noting as
in Section 2.3.1 that combining two tensors yields a new tensor of
known rank. We use cotengra, a Python package for TN
contractions, to track this quantity [38]. In order to track this
quantity when sweeps are applied, we use quimb in order to
read the tensors’ sizes during the contraction and calculate the
contraction width using Equation 6.

For random TNs such as ours, there exist multiple heuristic
algorithms for finding contraction orderings [30, 38] which lower
the contraction width and are practically useful for carrying out
computations. For the results in Section 4, we determine the
ordering using a community detection algorithm based on the edge
betweenness centrality [42] (EBC) of the network. This algorithm is
implemented as community_edge_betweenness in the Python
package igraph [41]. We use the EBC algorithm because it looks for
communities in the graph, thus contracting dense sections first. This is
useful in random TNs because it minimizes the chances of having to
work with huge tensors quickly, which could result in a tensor of large

rank (and therefore, large contraction width). This algorithm is also
deterministic, ensuring reproducibility of the contraction orderings.
Furthermore, in Section 4.2, we compare the results obtained using this
contraction orderingwith two others:KaHyPar [43, 44] andgreedy,
both from the Python package cotengra.

Even with these better contraction orderings, exactly contracting
these randomTNs without bond compression will generally result in
an exponential growth in n of time and memory (see Section 4).
However, we will show that by manipulating the TN after each
contraction using the algorithm defined in Section 3.4.4, we can alter
the scaling of resources for a range of parameter values in
the problem.

3.4.4 Sweeping method
To ensure lossless compression in bond sweeping, we set the

relative threshold for zero singular values to be 10−12. We sweep the
TN in arbitrary order until the tensor sizes converge. During a sweep,
we compress all the bonds using the compress_all method
implemented in quimb, which uses the compression schedule
described in Equation 7. We perform sweeps before each
contraction, potentially finding simplifications (see Section 2.2.4) in
the structure of the TN during each step of the full contraction.

4 Results

4.1 Numerical contraction for
random instances

Numerical TN contractions were performed on an AMD EPYC
7F72 @ 3.2 GHz processor, with a maximum allocated RAM of 1 TB.
Each point in the figures of this section corresponds to the median
contraction width or contraction runtime over 104 instances for a
given number of spins n, except for Figure 9 which shows the average
scaling of the contraction width. The contraction width determines,
to leading order, the contraction runtime. As is common in random

FIGURE 9
Average contraction width for α � 2/3 without (light) and with
(dark) compression.
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graph ensembles for spin-glass models or Boolean variable graphical
models, the instance samples contains outliers that are much harder
to solve than the typical instance.

In Figure 9, we show the average contraction width with and
without compression (sweeping) for α � 2/3. Without compression,
the scaling of the average contraction width is linear, indicating
exponential growth of tensor sizes. By contrast, compression
changes the scaling to one that is well described by a logarithmic
curve, indicating polynomially growing tensor sizes and hence
contraction runtimes.

We studied larger values of α and we show in Figure 10 how the
scaling of both the median contraction width and median
contraction runtime evolve as α increases. For the largest system
sizes, out of 104 instances, a few outliers require times beyond any
reasonable timeout we have tried, as expected. We therefore cannot
report unbiased runtime averages for these sizes. However, when
plotted against system size, the data for the average and median of
the contraction width are comparable (likewise for the contraction
runtime). Note that we observe that the average contraction width is

a smoother function of system size than the median contraction
width; though we show the median contraction width in Figure 10,
we use the average contraction width data to extract a scaling. We do
the same for the contraction runtime. In this case, the curves in the
bottom of Figure 10 are already smooth.

The results in Figure 10A highlight linear scaling of the curves
for α � 5/6 and α � 8/9 while Figure 10B clearly shows the
logarithmic nature of the curves for α � 2/3 and α � 3/4. For
α � 4/5, this median scaling seems to be of logarithmic nature in
Figure 10B, but analysing the average shows that it actually starts to
“peel-off” from logarithmic scaling.

The logarithmic scaling for α � 2/3 and α � 3/4 is mainly due to
the TN algorithm automatically implementing leaf removal, since
α< αd. Indeed, this leads to a high probability that the initial sweeps
will remove all the edges in the TN even before the first contraction,
leaving only scalars to be multiplied. For α � 5/6 and α � 8/9, values
that are greater than αd, we find that the algorithm is less efficient
due to a core that remains after the initial sweeps. Those cores lead to
actual tensor contractions instead of scalar multiplications, so the

FIGURE 10
Scaling of the contraction width and runtime of compressed TN contraction for the 3-spin model. (A) The median contraction width. (B) The same
data as in (A), but on a logarithmic horizontal scale to accentuate the curves which follow a logarithmic scale (which can be fitted with straight lines). (C)
Our algorithm’s compressed contraction median runtime. This panel shows the exponential scaling by straight lines. (D) The same data as in (C), but
shown on a horizontal logarithmic scale to accentuate the curves which follow polynomial scaling (straight lines).
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instances with α � 5/6 and α � 8/9 become harder to compute,
hence the contraction widths’ polynomial scaling. As we noted, since
α � 4/5 is close to αd, there is a probability of a core remaining for
our finite system sizes, so the algorithm starts becoming less efficient
here too. Sweeping still removes all the edges in the TN in most
cases, but less so than with α � 3/4, thus the “peel-off” starting at
α � 4/5.

In Figure 10C, we see the scaling of the median contraction
runtime (in seconds) with a logarithmic vertical axis and the same
data is shown with a logarithmic horizontal axis in Figure 10D.
Accordingly with the contraction width scaling, we find
polynomial curves for α � 2/3 (∝ n1.928) and α � 3/4 (∝ n1.902).
For smaller n, we see that the time scaling for all the curves follow a
polynomial scaling. This is due to the small finite size of the TN,
since it changes for bigger TNs, or for larger n. The “peel-off”
phenomenon is thus also observed at the end of the curves for
α ∈ 4/5, 5/6, 8/9{ }, becoming more pronounced with increasing α.
This means that the scaling transitions from polynomial to
superpolynomial, like the conclusion on memory usage
in Figure 10B.

At α � 2/3 and 3/4, the compressed TN algorithm exhibits
performance between those of the standard and “smart” GE
methods (see Table 1). For these values of the α parameter, the
contraction runtime can be further improved by removing bonds of
dimension 1 after each contraction step. Indeed, when a bond is
completely compressed by our algorithm, a dimension 1 bond
remains between the two neighboring tensors. These dimension
1 bonds do not affect memory scaling, yet the sweeping algorithm
will continue trying to compress them, even though they cannot be
further compressed. Eliminating those “useless” bonds results in
improved polynomial contraction runtimes for α � 2/3 and 3/4, as
shown in Table 1, since the subsequent sweeps will not try to
compress those bonds anymore. In this same table, the memory
is defined as the maximum size of the whole TN—the sum of all its
tensors’ sizes—reached during its contraction with the sweeping
method applied.

4.2 Graphical contraction for leaf-
free instances

For the leaf-free ensemble, each point in the figures has been
averaged over 200 random leaf-free instances. With the graphical
method, the contraction widths are extracted from the number of
clusters’ outgoing edges during the TN contraction, as explained in
Section 3.3 (see Equation 10). All the results for the contraction

width obtained with this graphical method are shown in
Figures 11, 12.

Now having the possibility to study larger TNs without being
limited by the memory, we can compare the contraction width of the
algorithm on different contraction orderings. In Figure 11A, we
compare two of them: EBC and Random. The Random method
chooses the next tensors to be contracted completely randomly. It
can thus only be usefully studied with this graphical method because
it quickly scales to astronomical contraction widths, as seen
in Figure 11A.

From Figure 11A, we see that a good contraction ordering is an
important factor for the success of the sweeping method during the
contraction of a given TN that models a p-XORSAT problem. Two
known methods for random tensor networks have also been used in
order to compare the results obtained from the EBC method, as
shown in Figure 12.

TABLE 1 Performance comparison between optimized compressed TN
contraction and GE.

Methods α Memory Time

Standard GE 2/3 ∝ n ∝ n

Standard GE 3/4 ∝ n2 ∝ n3

Smart GE < αd ∝ n ∝ n

Compressed TN 2/3 ∝ n1.030 ∝ n1.226

Compressed TN 3/4 ∝ n1.112 ∝ n1.420

FIGURE 11
(A) Scaling of the average contraction width for instances in the
(2,3)-biregular graph ensemble (α � 2/3 leaf-free instances) using the
EBC contraction ordering with and without sweeping, and using the
Random contraction ordering with sweeping. We obtained all
results using graphical contractions. (B) Comparison of the scaling of
the average contraction width (with the EBC contraction ordering)
obtained using graphical contractions and obtained using the
numerical contractions with sweeps applied.

Frontiers in Physics frontiersin.org10

Lanthier et al. 10.3389/fphy.2024.1431810

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2024.1431810


The results demonstrate that the sweeping method finds enough
simplifications for instances in the (2,3)-biregular graph ensemble so
that the scaling of the average contraction width changes from linear
to sublinear for the EBC, KaHyPar and greedy contraction
orderings. From those results, after n ≈ 150, we see that the EBC

method is most efficient in finding those simplifications of the three,
followed by KaHyPar and then greedy. The precise functional
form of the scaling is nontrivial and we have not been able to
determine a sufficiently accurate fitting function. This means that
the sweeping method goes beyond the efficacy of the leaf removal in
the TN representation of the 3-spin model.

Note that the (2,3)-biregular graph ensemble we consider offers
a simplification of the corresponding p-XORSAT problem which
allows leaf removal—and by extension, our TN algorithm—to work
efficiently in polynomial time. Suppose A is the m × n matrix
encoding the problem. By definition of the ensemble, each
column of A has exactly two 1s. Therefore, the rows of A satisfy

A1 + A2 +/ + Am � 0 mod 2, indicating the rows are linearly
dependent. In other words, we can remove some row Ai from
the problem without changing the solution space and count. In
terms of the graph, one can remove the corresponding clause node
encoding Ai because it is made redundant by the other clauses.
However, removing a clause node allows leaf removal to begin since
the variable nodes that were connected to that removed clause node
will now be degree-1. Leaf removal will then succeed in solving the
problem and producing an empty core, implying both leaf removal
and our TN algorithm are efficient for this ensemble if we first
remove a single redundant clause.

We have verified that the graphical contraction method of
Section 3.3 yields tensor sizes identical to those found via
numerical contraction at each contraction step by comparing the
twomethods for 100 random instances with n � 81 (for the EBC and
Random contraction orderings). Moreover, all contraction widths
for the 200 random instances used to get the results in Figure 11B
with sizes up to n � 240 are identical to those obtained with
numerical contraction (for the EBC contraction ordering).

5 Conclusion

In this work, we have applied compressed TN contraction to the
p-spin model. Focusing on p � 3, we have shown that lossless
compression sweeps over the bonds of the network emulate the
leaf removal algorithm, meaning that the TN method is efficient
(i.e., polynomial-time) below the dynamical transition at αd ≈ 0.818.
Above the dynamical transition, the appearance of a leafless core
adversely affects the performance of the TN algorithm, which is now
superpolynomial-time. Nevertheless, by focusing on the restricted
ensemble of biregular instances where every spin participates in
exactly two interactions, we find that compressed contraction can be
done in subexponential time. This speedup over the anticipated
exponential scaling depends crucially on the choice of contraction
path. We note that, unlike some previous TN techniques applied to
spin-glass models [45], our methods are exact and can be made to
suffer no loss of precision for the case of XOR constraints. Indeed,
we observe that the local singular values during each sweeping step
correspond to either positive or fractional powers of two if they are
distributed properly after having applied the SVD. This means that
we either have those values or zero/numerical zero singular values. A
similar observation has been made for Clifford circuits, essentially
parity circuits, where stabilizer states possess flat entanglement
spectra [46–48]. To our knowledge, this is the first general-
purpose numerical method for spin-model partition function and
model counting computations that achieves this performance for
p-spin models without invoking GE as a subroutine. Furthermore,
we believe that this is the first nontrivial case of a spin model defined
on random sparse graphs (that are not trees) where compressed TN
contraction solves the model exactly, yet leads to an exponential-to-
subexponential speedup over direct TN contraction.

Data availability statement
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FIGURE 12
All the results were obtained using graphical contractions. (A)
Scaling of the average contraction width for instances in the (2,3)-
biregular graph ensemble (α � 2/3 leaf-free instances) using the EBC,
KaHyPar and greedy contraction orderings without sweeping.
(B) Comparison of the average contraction width for the same
ensemble using the same three contraction orderings, but with
sweeps applied.
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