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Depression is a prevalent mental health problem across the globe, presenting
significant social and economic challenges. Early detection and treatment are
pivotal in reducing these impacts and improving patient outcomes. Traditional
diagnostic methods largely rely on subjective assessments by psychiatrists,
underscoring the importance of developing automated and objective
diagnostic tools. This paper presents IntervoxNet, a novel computeraided
detection system designed specifically for analyzing interview audio.
IntervoxNet incorporates a dual-modal approach, utilizing both the Audio
Mel-Spectrogram Transformer (AMST) for audio processing and a hybrid
model combining Bidirectional Encoder Representations from Transformers
with a Convolutional Neural Network (BERT-CNN) for text analysis. Evaluated
on the DAIC-WOZ database, IntervoxNet demonstrates excellent performance,
achieving F1 score, recall, precision, and accuracy of 0.90, 0.92, 0.88, and
0.86 respectively, thereby surpassing existing state of the art methods. These
results demonstrate IntervoxNet’s potential as a highly effective and efficient tool
for rapid depression screening in interview settings.
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1 Introduction

Depression is a common psychological disorder worldwide characterized by persistent
and long term depression, leading to self harm and suicide in the worst cases [1]. According
to theWorld Health Organization prediction, by 2022, the number of people suffering from
depression worldwide will reach about 322 million [2], and depression will become the
second most common mental illness in the world. Several studies have shown that
intervening early in the course of depression is crucial to arresting the further
development of depressive symptoms [3]. If there is a fast and convenient method for
diagnosing depression, large scale screening or self examination of patients can be realized
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to achieve the purpose of early diagnosis. However, the current
clinical diagnosis methods for depression mainly rely on
psychiatrists to conduct subjective assessments through
interviews, combined with the results of self rating scales such as
the Patient Health Questionnaire-9 (PHQ-9) for comprehensive
assessment [4]. The entire diagnosis process is time consuming and
takes up a lot of medical human resources. Therefore, the number of
patients who can be helped is limited, and the course of depression
may already be late at the time of diagnosis.

Recently, with the rapid development of machine learning,
especially deep learning, many computer-aided depression
diagnosis methods have been proposed to improve the above
problems. By collecting audio, video, and text data from the
patients, researchers analyze their associations with depression.
The specific steps are to use the data of different modalities as
the input of the machine learning network, and the depression
related features are subsequently extracted and fed to the classifier to
obtain the final prediction results. Although great progress has been
made in improving diagnostic accuracy, great difficulties remain in
practice. First of all, interview videos that include facial features may
not be available due to privacy concerns. Secondly, the recorded
interview data lasts for a long time, and it needs to be compared and
evaluated before and after to make an overall judgment. However,
processing long sequence information has always been a challenge in
deep learning. Thirdly, the judgment of depression is based on
information from multiple perspectives, including the language,
expressions, and actions of the interviewee. Therefore, how to
effectively integrate representative features from different sources
in deep learning models requires continuous exploration and
investigation [5]. Therefore, the task of automatic detection of
depression still has many challenges, the specific related work
will be reviewed in Section 2.

The most common networks used in automated depression
detection systems are those based on CNN or RNN. And the
Convolutional Neural Networks (CNNs) have been widely used
to achieve state of the art (SOTA) performance in many tasks [6–8].
However, the amount of local information that a CNN can acquire
depends on the size of convolutional kernel and the number of
corresponding channels. Increasing the size of the convolution
kernel or the corresponding number of channels will increase the
model complexity. Meanwhile, CNNs focus on local information,
and this mechanism makes it difficult to capture long range
dependent information [9]. Therefore, the CNN has strengths in
extracting and learning features from spatiotemporal data, but has
limited ability to reflect the features of time series data. To address
this issue, Recurrent Neural Networks (RNNs) have been widely
applied to extract temporal information for depression detection in
recent years [10–12]. The RNN model is a model that work
specifically for time series data. However, as the data becomes
longer, problems such as gradient loss and explosion occur [13,
14]. Models that address the above problems include the Long Short
TermMemory (LSTM), the Bidirectional Long Short TermMemory
(Bi-LSTM) and the Gated Recurrent Units (GRUs), which are
variants of the RNN model. The LSTM model removes
unnecessary information by adding an input gate, a forget gate,
and an output gate to the memory cell of the hidden layer. Then, the
problem of gradient loss and explosion is alleviated by passing the
necessary information to the next state. Bi-LSTM is an improvement

to the LSTMmodel, which includes a temporal element to reflect all
the information of the past and future [15–17]. However, they
cannot handle long term sequences satisfactorily. As the length of
sequences increases, the performance of RNN-based networks
rapidly decreases due to the forgetting problem. The forgetting
problem of RNNs means that in the scenario of processing long
term sequences, RNNs will lose the primary information when
reading later series [18]. Meanwhile, the serial structure of the
RNN model makes it impossible to realize parallel operations,
resulting in low computational efficiency. However, the
application scenarios of the interviews are primarily based on
audio, even though text is derived from audio in some cases.

In this study, we focus on a novel dual-modal feature fusion
network based on the Transformer structure for the automatic
detection task of depression. The main contributions of this
paper can be summarized as follows:

• We propose an IntervoxNet model based on the Transformer
architecture, which simultaneously extracts audio and text
features and effectively improves long-term dependencies;

• We introduce the Long Short Term Attention Fusion Network
(LSTAFN) to learn alignment weights between audio frames
and text words, effectively capturing the correlation between
audio and text features in the temporal dimension;

• Our experiments involve two modalities, audio and text, of
depression patients, which helps avoid over reliance on any
single modality, thereby better protecting individual privacy.

The remainder of this paper is organized as follows. Section 2
briefly reviews the related published works. Section 3 provides the
implementation details of the proposed network. Subsequently,
Section 4 shows the details of the experiments. Section 5 presents
the results and discussions. Finally, conclusion and challenges for
future work are presented in Section 6.

2 Related work

2.1 Single-modal depression detection

Automatic detection methods for depression are usually to
analyze and process of the patients’ video, audio and text
information. A system that processes only one of the different
types of information above for depression prediction is a single
model depression detection scheme.

Depression automatic detection schemes are mainly based on
two types of models, traditional machine learning and deep learning.
Methods based on traditional machine learning algorithms include
Support Vector Machine (SVM), Random Forest (RF), etc. [19–21].
However, although traditional machine learning algorithms can
achieve depression detection to some extent, they are often
limited by handcrafted feature extraction and complexity, making
it difficult to capture the complex, nonlinear relationships in the
data. Therefore, in recent years, the application of deep learning
methods to extract audio and text features from patients for
depression detection has become a hot research topic, with
significant progress achieved in the utilization of audio features.
In [22], Long Short-Term Memory (LSTM) networks are employed
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to model the temporal relationships of subject features for evaluating
depression tendencies. They utilize a single modality, which can be
either audio or text, primarily detecting depression through features
such as pitch, intensity, and formant frequencies of speech. In [23], a
model based on LSTM+CNN is proposed, which, compared to [22],
extracts spatial features from the audio patterns through
convolutional operations on the mel-spectrogram in the temporal
dimension using 1D CNN, to predict the presence of depression. In
[24], a 1D CNN model is proposed for feature extraction on the
temporal dimension of speech signals followed by depression
prediction. Compared to the LSTM, the 1D CNN method saves
computational efficiency and achieves good performance on the
DAIC-WOZ dataset. In [25], a text-based multitask Bi-LSTMmodel
is proposed, utilizing pretrained word embeddings to predict
depression. The method of extracting word-level features from
text is formally introduced into depression detection tasks. This
model also achieves high performance on the DAIC-WOZ dataset.
Similarly, authors in [26] analyzed the interview transcripts of
participants and the text features are extracted from questions
related to certain topics.

Although existing models have achieved good results in
automatic depression detection tasks based on single modality,
most of the methods for extracting audio and text features rely
on SVM-based approaches or CNN and RNNmodels. These models
often struggle to capture long range dependency information and
are computationally inefficient. Additionally, for text feature
extraction, the majority of methods still use word-level feature
representations, lacking contextual information. Therefore, it is
necessary to explore an efficient and effective single-modality
encoding branch that can capture long-range features.

2.2 Dual-modal depression detection

Dual-modal learning is one of the most important strategies
for depression detection. Previous studies have shown that dual-
modal learning can obtain comprehensive information from
data. By utilizing audio features such as fundamental
frequency, loudness, formant resonances, speech duration and
pauses, dynamic range, and mel-spectrogram, while also
capturing semantic information through semantic embeddings
and lexical features in text, the recognition accuracy and model
robustness can be improved [27–30]. Currently, most dual-
modal fusion approaches use late fusion or decision fusion to
fuse different information, integrating features such as audio and
text in the late stages of information processing. In [5, 31, 32], the
authors achieve modality fusion through simple concatenation of
dual-modal features. While this fusion method utilizes
information from different modalities, the authors treat
different modalities as equally important without considering
their respective weights in depression classification. Moreover,
directly concatenating dual-modal features mapped to different
feature spaces may lead to ambiguity in the features between
different modalities. In [18, 33], the authors adopt decision
fusion to combine the results of single-modal classification.
Although this method is intuitively effective, the final result
depends solely on the sum of different single-modal prediction
results, neglecting the relationship between modalities.

Therefore, it is essential to explore a fusion network that can
facilitate interaction between dual-modal features, learn the
contribution weights of different modalities to depression
detection, and effectively utilize the fusion of different
modal features.

2.3 Transformer

The Transformer [15] has significant implications in the field of
Natural Language Processing (NLP). It introduces the self-attention
mechanisms, allowing the model to process all positional
information in input sequences simultaneously, overcoming the
limitations of traditional RNNs and CNNs in handling long-
range dependencies. The emergence of the Transformer model
has greatly advanced NLP technology, particularly in tasks such
as machine translation, text generation, and text
classification [34–36].

Despite the transformative impact of Transformers on
various NLP tasks, their application in the domain of
automatic depression detection remains limited. This may be
because depression detection requires indepth analysis of
individuals’ emotional states, including data from various
sources such as speech, text, and behavior, while most
Transformers are primarily focused on processing textual data.
Additionally, depression detection involves sensitive personal
health information, raising concerns about data privacy and
security, which further complicates the application of models.

In our experiment, we validate the use of the Transformer for
extracting features from mel-spectrograms in the field of
automatic depression detection. The experimental results
indicate that Transformers can effectively extract spatial
features from mel-spectrograms, demonstrating in a novel way
the efficacy of the Transformer in the domain of automatic
depression detection.

3 Proposed methods

In this section, we introduce the overall architecture of the
proposed method. The framework of the proposed methods is
shown in Figure 1. Specifically, we design AMST and BERT-
CNN to extract mel-spectrogram based spectrotemporal features
for audio and contextual sentence features for the text modality
respectively. Subsequently, to effectively fuse audio-text bimodal
feature representations, we design the LSTAFN to compute
temporal weight relationships between modalities, generating a
more powerful fusion feature. Finally, the fusion feature is
inputted into a decision layer for classification.

3.1 The AMST module

The proposed Audio Mel-Spectrogram Transformer (AMST)
model is based on the Transformer architecture [15], which was
originally proposed for natural language processing tasks. In
traditional natural language processing tasks, the input to a
Transformer model typically consists of a sequence of tokens or
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word embeddings, representing the sequential information of the
text to be processed [37]. However, our task is based on speech
recognition, where the input should be the spectrogram of audio.
Compared to the raw spectrogram, the Mel-Spectrogram better
reflects perceptual features of sound, particularly exhibiting
higher resolution in the low-frequency region, preserving more
detailed information, and possessing better discriminative power,
which aligns more closely with the perceptual characteristics of the
human auditory system. Therefore, utilizing Mel-Spectrograms as
input can enhance the performance and stability of speech
recognition systems, as demonstrated by Ref. [33]. Finally, we
integrate Mel-Spectrograms into our method.

Figure 2 illustrates the process of handling raw audio in the
experiment. For an input audio clip, it is first sampled and
discretized, then processed through framing and windowing,
followed by FFT to obtain the spectrum, and finally transformed
into Mel-spectrogram using Mel filter bank. The Mel-spectrogram is
computed by multiplying the short-time Fourier transform
magnitude coefficients with the corresponding Mel filters [33].
Thus, it can be regarded as a nonlinear transformation of the
spectrogram, which maintains high level details of the sound [5].
The relationship between the normal spectrogram and the Mel-
spectrograms is depicted in Eq. 1, where f is the frequency of the
spectrogram.

mel f( ) � 2595 × log10 1 + f

700
( ) (1)

Figure 3 illustrates the proposed AMST architecture. Firstly,
by computing at every 10 ms interval using a 25 ms Hamming
window, the original audio of duration T seconds is
transformed into a sequence of 128-dimensional log Mel
filter-bank features. This results in a Mel-spectrogram of
dimension 128 × 100T as input to the AMST. We then split
the Mel-spectrogram into a sequence of 16 × 16 sized patches
with an overlap of 6 in both time and frequency dimensions. In
the time dimension, if there are 100T frames, then we can take
Nt � [(100T − 16)/10) + 1] integer patches, while in the
frequency dimension, we have Nf � �(128 − 16)/10 + 1� � 12.
Therefore, the total number of patches M � 12[(100T − 16)/10]
is the effective input sequence length for the Transformer. Each
16 × 16 2D (two-dimensional) image is then flattened into 1D
(one-dimensional) embedding features of size 768 by linear
projection, which is corresponding to E[1]~E[8], an E[cls] is
added as the starting marker in front of the 1D embedding
features. Divide the Mel-spectrogram into 8 patches, with the
middle 8 patches exactly corresponding to E[1]~E[8]. Since the
Transformer structure cannot capture sequence position
information like RNN or LSTM structures, a trainable

FIGURE 1
Overall system framework of the proposed method.

FIGURE 2
The flow chart of Mel-Spectrogram extraction.
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position embedding is added after the 1D embedding features,
corresponding to P[0]~P[8]. This operation allows the model to
capture the spatial structure of the 2Dpatch obtained from the
Mel-spectrogram. The original structure of the Transformer
consists of multiple encoders and decoders [15]. Since the
AMST model is designed for classification tasks, only the
encoder part of the Transformer is required. Coming out of
the encoder, a linear layer with sigmoid activation maps the
audio spectrogram representation to labels for classification.
Actually, the patch embedding layer in the Transformer
Encoder can be viewed as a single convolution layer with a
large kernel and a large stride size. The Transformer model
consists of multiple Transformer blocks. The projection layer in
each Transformer block is equivalent to a 1 × 1 convolution.
However, the design differs from conventional CNNs with
multiple layers, small kernel and small stride size. Increasing
the stride size and kernel size in the Transformer enlarges the
query window at each position, enabling the model to capture
longer-range dependencies, thus enhancing its performance in
handling long sequences. Meanwhile, it strengthens the model’s
learning capacity for local information, directing more
attention to local semantic and syntactic structures, which
contributes to improving the model’s performance in

understanding the internal structure of sentences from
depressive patients.

3.2 The BERT-CNN module

The architecture of BERT-CNN is shown in Figure 4. The first
step is to clean the text data, including the removal of meaningless
words and the retention of words that contain actual meaning and
information. The input text is then divided into words, which are
tokenized and converted into tokens. Finally, the tokens are
converted into a series of word vectors E1, E2 . . . En that can be
understood by the machine through word embedding and input into
the BERT-CNN model. The input of the above BERT-CNN model
consists of token embedding, segment embedding and position
embedding [36]. Adding these three embeddings together yields
the word vectors E1, E2 . . . En with an E [cls] as the starting marker.

The intermediate layer of the BERT-CNN consists of
12 Transformer encoders shown as Trm in Figure 4. After
passing through the intermediate layer, a series of output vectors
T1, T2 . . . Tn are obtained. These output vectors are transported to
the CNNs in the next layer of the model. The final output is obtained
through the Flatten layer.

FIGURE 3
The architecture of the proposed Audio Mel-Spectrogram Transformer (AMST). The input Mel-Spectrogram is split into a sequence of 16 ×
16 patches with overlaps, and then linearly projected to a sequence of 1D patch embeddings. Each patch embedding is augmented with a learnable po-
sitional embedding. Finally, the output embedding is input into the Transformer Encoder to obtain the final output of the Linear layer.
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3.3 The LSTAFN module

To calculate the temporal weight impact of audio and text
modality features on the classification results of final
depression prediction, the LSTAFN module is proposed.
Here, we model the temporal relationships of both speech at
the frame level and text at the word level. Specifically, we
represent the audio vector produced by AMST in the
previous step as [x_1, . . . x_N], where N represents the
dimensionality of the output audio vector.

For audio encoding, we apply the Bi-LSTM to model the
sequential structure of audio frames in Eqs 2–4:

�ai � LSTM
������→

xi( ), i ∈ 1, . . . , N{ } (2)
a
←
i � LSTM

←������
xi( ), i ∈ 1, . . . , N{ } (3)

ai � �ai, a
←
N−i+1[ ] (4)

where �ai and a←i are the hidden states of two unidirectional LSTMs,
respectively, and ai is a concatenation of them.

For the text side, we represent the text vector output by BERT-
CNN as [y1, . . .yM], where M represents the dimensionality of the
output text vector. The hidden state tj of the Bi-LSTM encodes the

j th element in the vector, which will be used for further dual-modal
alignment in Eqs 5–7.

�tj � LSTM
������→

yj( ), j ∈ 1, . . . ,M{ } (5)
�tj � LSTM

←������
yj( ), j ∈ 1, . . . ,M{ } (6)

tj � �tj, t
←

M−j+1[ ] (7)

Specifically, an attentionweight between the i th audio vector element
and the j th text vector element is calculated by the hidden state tj of the
text LSTM and the hidden state ai of the audio LSTM in Eqs 8–10:

Aj,i � tanh uai + υtj + w( ) (8)

αj,i � eAj,i

∑N
τ�1e

Aj,τ
(9)

~aj � ∑
i

αj,iai (10)

where u, v, w are trainable parameters. αj,i is the normalized
attention weight over the audio sequence, indicating the soft
alignment strength between the j th text vector element and the i
th audio vector element. ~aj is the weighted summation of hidden
states from the audio LSTM.

FIGURE 4
The architecture of the proposed BERT-CNN. The input layer consists of E[cls], E1, E2 . . . En, and 12 layers of Transformer encoder layers are applied in
BERT. (Trm). The outputlayer consists of C, T1, T2 . . . Tn. The final output vector is obtained by a set of CNN layers and a Flatten layer.
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The aligned audio feature ~aj is then concatenated with the
hidden state tj of the text LSTM to form a combined dual-modal
feature vector, which is fed into a dual-modal Bi-LSTM for feature
fusion in Eqs 11–13:

�cj � LSTM
������→

~aj, tj[ ]( ), j ∈ 1, . . . ,M{ } (11)
�cj � LSTM

←������
~aj, tj[ ]( ), j ∈ 1, . . . ,M{ } (12)

cj � �cj, c
←

M−j+1[ ] (13)

For the depression classification tasks, a maxpooling layer is
applied over all hidden states in the sequence to get a fixed-length
vector, followed by a fully connected layer with a rectified linear unit
(ReLU) for non-linear transformation. The loss L per example is
calculated using a softmax layer with cross entropy for classification
in Eqs 14–17.

~c � maxpooling c1, . . . , cM[ ]( ) (14)
p � ∅ W~c( ), p ∈ RC (15)

sc � epc

∑C
k�1epk

(16)

L � −∑C
c�1
zc log sc (17)

where W is a trainable weight matrix, ∅ is a point-wise ReLU
transformation, pc is the c th element in p, and zc � 1 if the ground-
truth label is c, otherwise zc � 0.

4 Experiments

In this section, the dataset used for experiments is introduced
firstly in Section 4.1, followed by data processing in Section 4.2. In
Section 4.3, we briefly describe the evaluation metrics. Finally, the
details of the experimental setup are provided in Section 4.4.

4.1 The DAIC-WOZ dataset

The provided Distress Analysis Interview Corpus-Wizard of Oz
(DAIC-WOZ) dataset is part of the large corpus DAIC [38], and
includes transcripts, audio recordings, audio, and nonverbal features.
It also contains depression scores of each participant based on the
Eight-item Patient Health Questionnaire depression scale (PHQ-8),
which was established as a valid diagnostic and severity measure for
depressive disorders in large clinical studies [39]. The total score
ranges from 0 to 24 points. According to the guidance of the
Depression Classification Sub-Challenge (DCC), participants with a
PHQ-8 score of 10 points and above are labeled as depressed.

The verbal cues are used for depression study in this paper,
including the interview audio files and the transcripts of the
interview. The audio files include the entire dialog between the
avatar Ellie and each participant. In addition to recording the
dialogue between Ellie and the participants, the transcripts also
include the actions of the participants during the interview, such as
sighing and laughing. The DAIC-WOC dataset includes a total of
189 sample data, which are divided into 107 training sets,
35 validation sets, and 47 test sets according to the official

criteria [40]. Since the official labeling information of depression
is not disclosed in the test sets, only 142 sample data from the
training and validation sets were adopted in this study to ensure the
accuracy and validity of the experimental results.

4.2 Data processing

4.2.1 Audio data processing
First, the adopted 142 audio samples were clipped. In the first step,

the silent parts at the beginning and the end are removed. In the second
step, since the original audio contains both the voice of the virtual
interviewer and the voice of the subject, it is necessary to remove the
voice of the interviewer and only keep the voice of the subject. Finally,
each audio clip was cut into 50s segments and saved according to the
length setting of 50s. The final experimental data includes
1,311 segments in the training set and 490 segments in the test set.

Secondly, the features of Spectrogram and Mel-Spectrogram for
each audio clip are extracted, and the specific process is shown in
Figure 5. In the first step, each audio clip is windowed and framed
with 50% overlap. In the second step, the signal of each frame is
transformed from the time domain to the frequency domain by the
Fast Fourier Transform (FFT). The spectral energy is then calculated
for each frame after FFT to get the corresponding power spectrum,
namely spectrogram. The Mel-Spectrogram can be obtained by
passing the spectrogram through the Mel filter bank.

4.2.2 Text data processing
The transcripts in the DAIC-WOZ dataset contain the text data

of patients with depression. Each transcript file contains
timestamped words spoken by the participant and the
interviewer Ellie. For example, asking “What do you do to
relax?,” participants may have more than one response (e.g., “I
like reading books” and “um exercising is great”). In this study, only
the text of the participants’ responses was used to detect depression.

In the data cleaning, words spoken by each participant are first
concatenated into a text document, and then all the documents
matching their corresponding class labels are assembled into a
frame. The separated text data is preprocessed in token units
using BertTokenizer provided by Python’s Transformer library,
and the preprocessed data is used to fine-tune the pretrained
BERT model. Finally, the fine-tuned BERT model is integrated
with the CNN model to extract the context vector.

4.3 Evaluation metric

In order to evaluate the performance of depression detection, the
proposed method is evaluated in terms of precision, recall and
F1 score. They are defined by the following formulas, respectively in
Eqs 18–20:

Accuracy � TP + TN

TP + TN + FP + FN
(18)

Precision � TP

TP + FP
(19)

Recall � TP

TP + FN
(20)
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F1 � 2 · Precision · Recall
Precision + Recall

(21)

where TP, FP, TN, FN represent the number of true positive, false
positive, true negative, and false negative samples, respectively, as
shown in Table 1.

In this study, the ability to detect depression correctly is the
focus of our attention. Therefore, the samples from patients with
depression are set as positive, and the healthy control group is set as
negative. The Accuracy indicates the number of correct samples in
the total sample and measures the overall performance of the model.
The precision represents the number of samples predicted to be
depressed as a percentage of all true values. It measures the ability of
the model to correctly detect depressed samples. Recall, also known
as sensitivity, indicates how many depressed samples were correctly
predicted, and it is a crucial metric in the depression detection task.
The F1 score represents the harmonic mean of the precision and
recall rates. It is also an indicator to measure the overall performance
of the model.

4.4 Experimental setup

In order to verify the effectiveness of our method, comparisons
are made with the single-modal and dual-modal approaches in
previous studies, respectively. Moreover, to verify the
effectiveness of the proposed modules, ablation experiments are
performed for validation.

Our experiments are conducted on a sample of 1801 groups,
1,311 of which are used for training and 490 for testing. We use
Adam optimization with the learning rate of 0.001 for training. The

batch size is set to 20, and the training epoch is 100. For the
Transformer Encoder block, we set the head number of Multi-
head attention to 8, the hidden dimension of the Feed-Forward layer
to 2048, the dropout to 0.1, select Rectified Linear Unit (ReLU) as the
activation and the number of the encoder layer to be 6. The proposed
method is implemented on an Ubuntu server equipped with three
GPUs (NVIDIA Titan XP) and the PyTorch is used to build the
proposed network with CUDA10.2. The parameters of the network
are initialized by default method in PyTorch.

5 Results and discussion

In this section, the results of our experiments are presented and
discussed. Firstly, a set of comparison experiments are performed to
determine the input of the audio side. A set of ablation experiments
are then performed to verify the effectiveness of each component.
Then, the performance differences between the proposed audio-
based AMST model and text-based BERT-CNN model are
compared with other SOTA models in a single modal. The dual-
modal fusion model with other fusion models are compared
in the end.

5.1 Comparative study on spectrogram and
Mel-spectrogram

In order to verify the effect of Spectrogram and Mel-
Spectrogram on the model performance, the two audio feature
spectra are compared. The results are shown in Table 2. From
the results, Mel-Spectrogram achieves better performance in the
three metrics of F1 score, recall and accuracy. In terms of precision,
Spectrogram is slightly higher than Mel-Spectrogram by 0.05. In

FIGURE 5
The structure of the LSTAFN.

TABLE 1 The confusion matrix for classification results.

Confusion Matrix Predicted value

Positive Negative

True value Positive TP FN

Negative FP TN

TABLE 2 Results for Spectrogram and Mel-Spectrogram.

Data Feature F1 Recall Pre Acc

Audio Spectrogram 0.78 0.71 0.85 0.64

Mel-Spectrogram 0.86 0.92 0.80 0.79
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terms of recall performance, Mel-Spectrogram shows the most
significant improvement, from 0.71 to 0.92. It indicates that Mel-
Spectrogram feature map is sensitive to depressed patients, which is
good for the screening application scenario of patients with
depression. The possible reason for the advantage of Mel-
Spectrogram is that it maintains the high level of detail in the
sound. This is due to its computation by short-time Fourier
transform (STFT) magnitude coefficients with the corresponding
Mel filters, thus it can be regarded as a non-linear transformation of
the spectrogram, preserving the high level details in the sound [5]. In
subsequent experiments, Mel-Spectrogram is selected as the input of
the network.

5.2 Ablation study

To gain a good understanding of the interactions and
importance of each proposed component in IntervoxNet, we
conducted an ablation study. The results are shown in Table 3.
The bidirectional long short-term memory network with attention
fusion mechanism (Bi-LSTM + Att) is an advanced variant of the
traditional Bi-LSTMmodel. It incorporates an attention mechanism
to dynamically weigh the importance of different input features
during the model’s processing of sequential data. To investigate
whether the proposed Bi-LSTM with attention fusion mechanism
(Bi-LSTM + Att) is effective, the decision-level fusion method is
used for comparison.

Based on the experimental results in Table 3, in the comparison of
single modality models, it can be observed that AMST outperforms
BERT in all metrics, while BERT-CNN, as an improved version of
BERT, exhibits superiority over BERT in three aspects, albeit with a
significant decrease in recall. However, recall, representing the ability to
avoid missing depression patients, is the metric of particular interest.
AMST demonstrates significant superiority in this metric. Thus, text
and audio models each demonstrate distinct advantages in depression
detection performance. Integrating the strengths of both models should
lead to performance enhancement. Based on the aforementioned
experimental results, a fusion model is further compared.

Based on the performance comparison of last three rows of
Table 3, namely AMST + BERT under decision-level fusion,
AMST + BERT-CNN under decision-level fusion and AMST +
BERT-CNN + LSTAFN, the last one, AMST + BERT-CNN,
obtains the best performance in the three metrics except for
the precision indicator. While, AMST + BERT-CNN (decision-
level) achieves the best performance of 0.93 for the precision

indicator, and the performance of the other three indicators is not
significantly improved compared to the performance in the single
modality. The possible reason is that under the decision-level
fusion, the features of the audio and text sides cannot complement
effectively, and there may be redundant information, which leads
to the degradation of performance. With the LSTAFN, the
F1 score achieves the highest score of 0.90, which means the
overall performance is the best. This algorithm also performs very
well in other metrics, especially the recall with a score of 0.92, and
the accuracy achieves a score of 0.86, which far exceeds the
performance of the other algorithms. From all the experimental
results in Table 3, the dual-modal fusion results with the LSTAFN
perform the best. This is in line with our initial expectation that
the dual-modal algorithm outperforms the single modality
algorithm because of the comprehensive information it
acquires. However, simple fusion does not necessarily bring
such advantages. Only when dual-modal information is
effectively and complementary fused can it be possible to
obtain advantageous results. For automatic detection of
depression, by combining the variability of audio and text data
features of depression patients, enhancing the model’s ability to
learn different data information can be enhanced, thereby
improving the accuracy of depression detection.

5.3 Performance of single-modal

In this experiment, the performance of the proposed AMST
module is compared with other methods based on the DAIC-WOZ
dataset. From the comparison results shown in Table 4, it can be
seen that the proposed AMST network achieves the highest F1 score,
precision and accuracy among all the models, which are 0.86, 0.80,
and 0.79, respectively. In terms of recall, the proposed AMST
method achieves a high score of 0.92, second only to the model
proposed by Ma et al. [24].

The above results show that the proposed AMST method can
effectively capture the representation of depression patients from
audio signals, thus improving the detection accuracy and
examination efficiency of depression identification.

In the following experiments, the proposed BERT-CNN model
is compared with other text only models, including some SOTA
models and RNNs structure. In order to verify the effectiveness of
the CNN module added at the backend of BERT for improving the
performance of the text models, three groups of structures including
RNN, LSTM, and GRU, were added to the backend of BERT for
comparative experiments.

TABLE 3 Results for the ablation study.

Model F1 Recall Pre Acc

AMST 0.86 0.91 0.80 0.79

BERT 0.77 0.87 0.69 0.70

BERT-CNN 0.82 0.75 0.91 0.71

AMST + BERT(decision-level) 0.76 0.70 0.82 0.77

AMST + BERT-CNN (decision-level) 0.81 0.72 0.93 0.69

AMST + BERT-CNN + LSTAFN 0.90 0.92 0.88 0.86

TABLE 4 Results for the single audio-based model on DAIC-WOZ dataset.

Data Model F1 Recall Pre Acc

Audio CNN-Augm [23] 0.67 0.58 0.78 -

Ma et al. [24] 0.52 1.00 0.35 -

Alhanai et al. [22] 0.63 0.56 0.71 -

1D CNN [5] 0.81 0.92 0.73 -

AMST (proposed) 0.86 0.92 0.80 0.79
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For the results shown in Table 5, we first focus on the performance
of the F1 score and Acc score as they represent the overall performance
of the model. The BERT-CNN network model proposed in this study
achieves the highest F1 score of 0.82. It also outperforms several other
models in terms of precision. The above results represent excellent
overall performance. For the precision results, BERT-CNN achieves the
highest score of 0.91. According to the description of the confusion
matrix in Table 1 in Section 4.3, in this experiment, depression patients
are set as Positive, and a higher precision result indicates that the model
has a higher proportion of correct predictions for patients with
depression. In terms of accuracy, it can be observed that the accuracy
of BERT-CNN at 0.71 is superior to the vast majority of models, only
slightly lower than Bi-LSTM. Finally, in terms of the recall, BERT-CNN
achieves 0.75. Compared with most other methods, the performance of
recall rate is not prominent. The reason may be that the features
extracted in the feature extraction stage may not sufficiently capture
the characteristics of depression, leading to the model’s inability to
accurately distinguish depression patients from non-depression patients.

After comparing the performance of single modality, the dual-
modal fusion model of IntervoxNet is compared with other multi-
model approach. From Table 5, it can be seen that the proposed
IntervoxNet model achieves an F1 score of 0.90, which achieves the
best performance compared with other models. In terms of recall,
the performance of IntervoxNet proposed in Table 5 is not
satisfactory. However, by combining the high recall of AMST
(0.92), the recall of the fusion model also reaches 0.92. This
further illustrates the complementary nature of the two
modalities. At the same time, the proposed method achieves
comprehensive advantages among all fusion model algorithms,
only slightly lower than the results in [23] in terms of Precision.

5.4 Performance of dual-modal

After comparing the performance of single modality, the dual-
modal fusion model of IntervoxNet is compared with other multi-
model approach. From Table 6, it can be seen that the proposed
IntervoxNet model achieves an F1 score of 0.90, which achieves the

best performance compared with other models. In terms of recall,
the performance of IntervoxNet proposed in Table 6 is not
satisfactory. However, by combining the high recall of AMST
(0.92), the recall of the fusion model also reaches 0.92. This
further illustrates the complementary nature of the two
modalities. At the same time, the proposed method achieves
comprehensive advantages among all fusion model algorithms,
only slightly lower than the results in [23] in terms of Precision.

6 Conclusion

In this study, a Transformer based dual-modal depression
detection network, IntervoxNet, is proposed. The audio and text
features of the depressed are extracted by two modules, audio-based
AMST and text-based BERT-CNN, respectively. Then, the audio
and text features are aligned and fused by the LSTAFN. Finally, we
have accomplished a binary classification task between depression
patients and healthy controls. The proposed algorithm achieves an
F1 score of 0.90 and a recall of 0.92 on the DAIC-WOZ dataset,
which outperforms other similar studies. This indicates that our
proposed IntervoxNet can fully leverage the complementary nature
of these two modalities for this task, while also providing automated
and objective diagnosis that complements the subjective assessments
made by psychiatrists. It assists clinicians in making diagnoses and
helps facilitate more convenient and timely detection and treatment
for patients.

In future work, we will continue to explore other modal
information of depressed patients, including facial keypoints and
visual data that can be. Meanwhile, cooperation with hospitals can
be considered to establish a Chinese depression analysis corpus to
provide abundant samples for automatic depression detection,
thereby improving the robustness of the model.

Data availability statement

Publicly available datasets were analyzed in this study. This data
can be found here: https://dcapswoz.ict.usc.edu/daic-woz-
database-download/.

Author contributions

HD: Conceptualization, Data curation, Formal Analysis,
Funding acquisition, Investigation, Methodology, Project

TABLE 5 Results for the single text-based model on DAIC-WOZ dataset.

Modality Model F1 Recall Pre Acc

Text Trf-Augm [23] 0.78 0.75 0.82 -

Alhanai et al. [22] 0.67 0.80 0.57 -

Sun et al. [27] 0.55 0.89 0.40 -

RNN 0.73 0.82 0.65 0.62

GRU 0.77 1.00 0.63 0.70

LSTM 0.79 0.83 0.75 0.69

Bi-LSTM 0.78 0.79 0.76 0.74

BERT-RNN 0.73 0.69 0.77 0.62

BERT-LSTM 0.77 0.72 0.83 0.66

BERT-GRU 0.76 0.86 0.68 0.70

BERT-CNN (proposed) 0.82 0.75 0.91 0.71

TABLE 6 Results for the dual-modal fusion on DAIC-WOZ dataset.

Modality Model F1 Recall Pre Acc

Audio & Text AudiBERT [33] 0.86 - - -

Alhanai et al. [22] 0.77 0.83 0.71 -

Trf + CNN-Augm [23] 0.87 0.83 0.91 -

1D CNN + Bi-LSTM [5] 0.85 0.92 0.79 -

IntervoxNet (proposed) 0.90 0.92 0.88 0.86

Frontiers in Physics frontiersin.org10

Ding et al. 10.3389/fphy.2024.1430035

https://dcapswoz.ict.usc.edu/daic-woz-database-download/
https://dcapswoz.ict.usc.edu/daic-woz-database-download/
https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2024.1430035


administration, Software, Writing–original draft, Writing–review
and editing. ZD: Conceptualization, Data curation, Formal
Analysis, Funding acquisition, Investigation, Methodology,
Project administration, Software, Writing–original draft,
Writing–review and editing. ZWa: Methodology, Project
administration, Resources, Validation, Visualization,
Writing–review and editing. JX: Methodology, Project
administration, Resources, Validation, Visualization,
Writing–review and editing. ZWe: Project administration,
Resources, Validation, Visualization, Writing–review and editing.
KY: Project administration, Resources, Validation, Visualization,
Writing–review and editing. SJ: Project administration, Resources,
Validation, Visualization, Writing–review and editing. ZZ: Formal
Analysis, Funding acquisition, Methodology, Project
administration, Resources, Supervision, Validation, Visualization,
Writing–review and editing. JW: Formal Analysis, Funding
acquisition, Methodology, Project administration, Resources,
Supervision, Validation, Visualization, Writing–review and editing.

Funding

The author(s) declare that financial support was received for the
research, authorship, and/or publication of this article. This research
was funded by the Shenzhen Soft Science Research Program Project
(Grant No. RKX20220705152815035), the Shenzhen Science and

Technology Research and Development Fund for Sustainable
Development Project (No. KCXFZ20201221173613036), the
Shenzhen Fund for Guangdong Provincial High-level Clinical
Key Specialties (No. SZGSP013), the Medical Scientific Research
Foundation of Guangdong Province of China (Grant No.
B2023078), the Shenzhen University ENT Discipline
Development Project sponsored by Shenzhen Huaqiang Holdings
Co., Ltd. The funder was not involved in the study design, collection,
analysis, interpretation of data, the writing of this article, or the
decision to submit it for publication.

Conflict of interest

The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated organizations,
or those of the publisher, the editors and the reviewers. Any product
that may be evaluated in this article, or claim that may be made by its
manufacturer, is not guaranteed or endorsed by the publisher.

References

1. Yang Y, Fairbairn C, Cohn JF. Detecting depression severity from vocal prosody.
IEEE Trans Affective Comput (2013) 4(2):142–50. doi:10.1109/t-affc.2012.38

2. Organization WH. Depression and other common mental disorders: global health
estimates. Geneva, Switzerland: World Health Organization (2017).

3. Allen NB, Hetrick SE, Simmons JG, Hickie IB. Early intervention for depressive
disorders in young people: the opportunity and the (lack of) evidence.Med J Aust (2007)
187(S7):S15–7. doi:10.5694/j.1326-5377.2007.tb01329.x

4. Schumann I, Schneider A, Kantert C, Lowe B, Linde K. Physicians’ attitudes,
diagnostic process and barriers regarding depression diagnosis in primary care: a
systematic review of qualitative studies. Fam Pract (2011) 29(3):255–63. doi:10.1093/
fampra/cmr092

5. Lin L, Chen X, Shen Y, Zhang L. Towards automatic depression detection: a
BiLSTM/1D CNN-based model. Appl Sci (2020) 10(23):8701. doi:10.3390/
app10238701

6. Oquab M, Bottou L, Laptev I, Sivic J. Learning and transferring mid-level image
representations using convolutional neural networks In: Proceedings of the IEEE
conference on computer vision and pattern recognition; June 23–28, 2014;
Columbus, OH. IEEE (2014). p. 1717–24.

7. Zhang Y, Chan W, Jaitly N. Very deep convolutional networks for end-to-end
speech recognition. 2017 IEEE international conference on acoustics, speech and signal
processing (ICASSP). IEEE (2017). p. 4845–9.

8. He L, Cao C. Automated depression analysis using convolutional neural networks
from speech. J Biomed Inform (2018) 83:103–11. doi:10.1016/j.jbi.2018.05.007

9. Yin S, Liang C, Ding H, Wang S. A multi-modal hierarchical recurrent neural
network for depression detection. In: Proceedings of the 9th International on Audio/
Visual Emotion Challenge and Workshop (2019). p. 65–71.

10. Amanat A, Rizwan M, Javed AR, Abdelhaq M, Alsaqour R, Pandya S, et al. Deep
learning for depression detection from textual data. Electronics (2022) 11(5):676. doi:10.
3390/electronics11050676

11. Rejaibi E, Komaty A, Meriaudeau F, Agrebi S, Othmani A. MFCC-based recurrent
neural network for automatic clinical depression recognition and assessment from
speech. Biomed Signal Process Control (2022) 71:103107. doi:10.1016/j.bspc.2021.
103107

12. Qureshi SA, Saha S, Hasanuzzaman M, Dias G. Multitask representation learning
for multimodal estimation of depression level. IEEE Intell Syst (2019) 34(5):45–52.
doi:10.1109/mis.2019.2925204

13. Brousmiche M, Rouat J, Dupont S. Multimodal attentive fusion network for
audio-visual event recognition. Inf Fusion (2022) 85:52–9. doi:10.1016/j.inffus.2022.
03.001

14. LuongM-T, PhamH,Manning CD. Effective approaches to attention-based neural
machine translation. arXiv preprint arXiv:150804025 (2015).

15. Vaswani A, Shazeer N, Parmar N, Uszkoreit J, Jones L, Gomez AN, et al. Attention
is all you need. Adv Neural Inf Process Syst (2017) 30. doi:10.48550/ARXIV.1706.03762

16. Park J, Moon N. Design and implementation of attention depression detection
model based on multimodal analysis. Sustainability (2022) 14(6):3569. doi:10.3390/
su14063569

17. Liu G, Guo J. Bidirectional LSTM with attention mechanism and convolutional
layer for text classification. Neurocomputing (2019) 337:325–38. doi:10.1016/j.neucom.
2019.01.078

18. Sun H, Liu J, Chai S, Qiu Z, Lin L, Huang X, et al. Multi-modal adaptive fusion
transformer network for the estimation of depression level. Sensors (2021) 21(14):4764.
doi:10.3390/s21144764

19. Cummins N, Scherer S, Krajewski J, Schnieder S, Epps J, Quatieri TF. A review of
depression and suicide risk assessment using speech analysis. Speech Commun (2015)
71:10–49. doi:10.1016/j.specom.2015.03.004

20. Esposito A, Raimo G, Maldonato M, Vogel C, Conson M, Cordasco G. Behavioral
sentiment analysis of depressive states. In: 2020 11th IEEE International Conference on
Cognitive Infocommunications (CogInfoCom); September 23–25, 2020; Mariehamn,
Finland. IEEE (2020). 000209–214.

21. AlSagri H, Ykhlef M. Quantifying feature importance for detecting depression
using random forest. Int J Adv Comput Sci Appl (2020) 11(5). doi:10.14569/ijacsa.2020.
0110577

22. Ma X, Yang H, Chen Q, Huang D, Wang Y. Depaudionet: an efficient deep model
for audio based depression classification. In: Proceedings of the 6th international
workshop on audio/visual emotion challenge (2016). p. 35–42.

23. Lam G, Dongyan H, Lin W. Context-aware deep learning for multi-modal
depression detection. In: ICASSP 2019-2019 IEEE international conference on
acoustics, speech and signal processing (ICASSP); May 12–17, 2019; Brighton,
United Kingdom. IEEE (2019). p. 3946–50.

24. Vázquez-Romero A, Gallardo-Antolín A. Automatic detection of depression in
speech using ensemble convolutional neural networks. Entropy (2020) 22(6):688. doi:10.
3390/e22060688

Frontiers in Physics frontiersin.org11

Ding et al. 10.3389/fphy.2024.1430035

https://doi.org/10.1109/t-affc.2012.38
https://doi.org/10.5694/j.1326-5377.2007.tb01329.x
https://doi.org/10.1093/fampra/cmr092
https://doi.org/10.1093/fampra/cmr092
https://doi.org/10.3390/app10238701
https://doi.org/10.3390/app10238701
https://doi.org/10.1016/j.jbi.2018.05.007
https://doi.org/10.3390/electronics11050676
https://doi.org/10.3390/electronics11050676
https://doi.org/10.1016/j.bspc.2021.103107
https://doi.org/10.1016/j.bspc.2021.103107
https://doi.org/10.1109/mis.2019.2925204
https://doi.org/10.1016/j.inffus.2022.03.001
https://doi.org/10.1016/j.inffus.2022.03.001
https://doi.org/10.48550/ARXIV.1706.03762
https://doi.org/10.3390/su14063569
https://doi.org/10.3390/su14063569
https://doi.org/10.1016/j.neucom.2019.01.078
https://doi.org/10.1016/j.neucom.2019.01.078
https://doi.org/10.3390/s21144764
https://doi.org/10.1016/j.specom.2015.03.004
https://doi.org/10.14569/ijacsa.2020.0110577
https://doi.org/10.14569/ijacsa.2020.0110577
https://doi.org/10.3390/e22060688
https://doi.org/10.3390/e22060688
https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2024.1430035


25. Dinkel H, Wu M, Yu K. Text-based depression detection on sparse data. arXiv
preprint arXiv:190405154. (2019).

26. Zhang X, Shen J, Din Z, Liu J, Wang G, Hu B. Multimodal depression detection:
fusion of electroencephalography and paralinguistic behaviors using a novel strategy for
classifier ensemble. IEEE J Biomed Health Inform (2019) 23(6):2265–75. doi:10.1109/
jbhi.2019.2938247

27. Thati RP, Dhadwal AS, Kumar P, P S. A novel multi-modal depression detection
approach based on mobile crowd sensing and task-based mechanisms. Multimedia
Tools Appl (2023) 82(4):4787–820. doi:10.1007/s11042-022-12315-2

28. He L, Niu M, Tiwari P, Marttinen P, Su R, Jiang J, et al. Deep learning for
depression recognition with audiovisual cues: a review. Inf Fusion (2022) 80:56–86.
doi:10.1016/j.inffus.2021.10.012

29. Joshi J, Goecke R, Alghowinem S, Dhall A, Wagner M, Epps J, et al. Multimodal
assistive technologies for depression diagnosis and monitoring. J Multimodal User Inter
(2013) 7(3):217–28. doi:10.1007/s12193-013-0123-2

30. Yang L, Jiang D, Sahli H. Integrating deep and shallow models for multi-modal
depression analysis—hybrid architectures. IEEE Trans Affective Comput (2021) 12(1):
239–53. doi:10.1109/taffc.2018.2870398

31. Toto E, Tlachac ML, Rundensteiner EA. AudiBERT. In: Proceedings of the 30th
ACM International Conference on Information & Knowledge Management (2021).
p. 4145–54.

32. Gong Y, Chung Y-A, Glass J. Ast: audio spectrogram transformer. arXiv preprint
arXiv:210401778. (2021).

33. Devlin J, Chang M-W, Lee K, Toutanova K. Bert: pre-training of deep bidirectional
transformers for language understanding. arXiv preprint arXiv:181004805. (2018).

34. Zhao Y, Zhang J, Zong C. Transformer: a general framework from machine
translation to others. Machine Intelligence Res (2023) 20(4):514–38. doi:10.1007/
s11633-022-1393-5

35. Zhang H, Song H, Li S, Zhou M, Song D. A survey of controllable text generation
using transformer-based pre-trained language models. ACM Comput Surv (2023) 56(3):
1–37. doi:10.1145/3617680

36. Souza FD, Filho JBOS. Embedding generation for text classification of Brazilian
Portuguese user reviews: from bag-of-words to transformers. Neural Comput Appl
(2023) 35(13):9393–406. doi:10.1007/s00521-022-08068-6

37. Kalyan K, Rajasekharan A, Sangeetha S. A survey of transformer-based pretrained
models in Natural Language Processing. Available from: https://doi.org/1048550/arXiv.
2021;2108.

38. Kroenke K, Strine TW, Spitzer RL, Williams JBW, Berry JT, Mokdad AH. The
PHQ-8 as a measure of current depression in the general population. J Affective Disord
(2009) 114(1-3):163–73. doi:10.1016/j.jad.2008.06.026

39. Ringeval F, Schuller B, Valstar M, Cowie R, Kaya H, Schmitt M, et al. AVEC
2018 workshop and challenge. In: Proceedings of the 2018 on Audio/Visual Emotion
Challenge and Workshop (2018). p. 3–13.

40. Gratch J, Artstein R, Lucas GM, Stratou G, Scherer S, Nazarian A, et al. The
distress analysis interview corpus of human and computer interviews. In: LREC.
Reykjavik, Iceland: European Language Resources Association (2014). p. 3123–8.

Frontiers in Physics frontiersin.org12

Ding et al. 10.3389/fphy.2024.1430035

https://doi.org/10.1109/jbhi.2019.2938247
https://doi.org/10.1109/jbhi.2019.2938247
https://doi.org/10.1007/s11042-022-12315-2
https://doi.org/10.1016/j.inffus.2021.10.012
https://doi.org/10.1007/s12193-013-0123-2
https://doi.org/10.1109/taffc.2018.2870398
https://doi.org/10.1007/s11633-022-1393-5
https://doi.org/10.1007/s11633-022-1393-5
https://doi.org/10.1145/3617680
https://doi.org/10.1007/s00521-022-08068-6
https://doi.org/1048550/arXiv.2021;2108
https://doi.org/1048550/arXiv.2021;2108
https://doi.org/10.1016/j.jad.2008.06.026
https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2024.1430035

	IntervoxNet: a novel dual-modal audio-text fusion network for automatic and efficient depression detection from interviews
	1 Introduction
	2 Related work
	2.1 Single-modal depression detection
	2.2 Dual-modal depression detection
	2.3 Transformer

	3 Proposed methods
	3.1 The AMST module
	3.2 The BERT-CNN module
	3.3 The LSTAFN module

	4 Experiments
	4.1 The DAIC-WOZ dataset
	4.2 Data processing
	4.2.1 Audio data processing
	4.2.2 Text data processing

	4.3 Evaluation metric
	4.4 Experimental setup

	5 Results and discussion
	5.1 Comparative study on spectrogram and Mel-spectrogram
	5.2 Ablation study
	5.3 Performance of single-modal
	5.4 Performance of dual-modal

	6 Conclusion
	Data availability statement
	Author contributions
	Funding
	Conflict of interest
	Publisher’s note
	References


