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The prevalent approach to motif analysis seeks to describe the local connectivity
structure of networks by identifying subgraph patterns that appear significantly
more often in a network then expected under a null model that conserves certain
features of the original network. In this article we advocate for an alternative
approach based on statistical inference of generative models where nodes are
connected not only by edges but also copies of higher order subgraphs. These
models naturally lead to the consideration of latent states that correspond to
decompositions of networks into higher order interactions in the form of
subgraphs that can have the topology of any simply connected motif. Being
based on principles of parsimony the method can infer concise sets of motifs
from within thousands of candidates allowing for consistent detection of larger
motifs. The inferential approach yields not only a set of statistically significant
higher order motifs but also an explicit decomposition of the network into these
motifs, which opens new possibilities for the systematic study of the topological
and dynamical implications of higher order connectivity structures in networks.
After briefly reviewing core concepts and methods, we provide example
applications to empirical data sets and discuss how the inferential approach
addresses current problems in motif analysis and explore how concepts and
methods common to motif analysis translate to the inferential framework.
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1 Introduction

The analysis of networks representing interactions and relations between sub-units has
become one of the primary tools for analyzing complex systems. One of the main objectives
in network analysis is to identify and characterize structural patterns in networks [1] and to
relate these to the functional and dynamical features of the system. Over the years many
widely observed features of complex networks such as heterogeneous degree distributions,
degree correlations and community structure have been successfully incorporated into
methods and models of complex networks.

The identification of basic building blocks in the form recurring microscopic patterns is
crucial in the formulation of accurate models and descriptions of complex systems.
Although the presence of repeated microscopic patterns, aka network motifs, is widely
recognized to be a characteristic of many complex networks with important functional and
dynamic implications, methods for characterizing and modelling local connectivity
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structures remain under developed when compared to other
network features such as communities.

1.1 Quantifying local network structure

Many empirical networks contain certain small connectivity
patterns also known as network motifs [2] in much higher numbers
than one would expect on the basis of random graph models that
assume (conditional) independence of edges. One prominent
example is the prevalence of triangles in social networks that
reflects the fact that an individual’s friends have an increased
likelihood to be friends themselves [3]. Network motifs are also
extensively studied in systems biology where they are believed to
contribute to the function of networked systems by performing
modular tasks [4]. The fact that biological networks of quite different
species seem to contain the same and/or similar motifs has
motivated the idea that network motifs are indicative of common
network design principles in biological circuits to which these
networks have converged to through the evolutionary process [5,
6]. While small scale network features are widely believed to play an
important role in the structural and functional organization of
networks, current methods for quantifying small scale network
structures rely on hypothesis testing based on exhaustive
enumeration of subgraphs which leads to complications when
detecting larger motifs.

The quantification of local network structures poses particular
challenges, not the least due to the large number of potential
subgraphs that can be formed on even relatively small
neighbourhoods. For instance, there are 11,117 non-isomorphic
connected motifs on 8 vertices in the undirected case. The
number of motifs grows even faster for directed graphs resulting
in 9,364 connected motifs on just 5 vertices. As a result counting
subgraphs quickly becomes an ineffective way of capturing local
network features as the size of the subgraphs under consideration is
increased. Moreover, subgraphs are coupled through a complex web
of dependencies which further complicates the problem of providing
a concise yet informative description of the local structure of
networks. Furthermore, finding larger motifs in even moderately
sized networks poses computational challenges due to the
complexity of subgraph enumeration [7].

1.2 Current approaches to network motifs

The prevalent approach in motif analysis introduced by Milo
et al. [2] relies on comparing induced subgraph counts in the
original network to counts expected under a null model in the
form of a graph ensemble that conserves some salient features of the
original network. Usually, the feature to be conserved is picked to be
the degree distribution resulting in configuration model type null
models. The statistical significance of individual motifs is then
determined by comparing the subgraph counts in the original
network to the distribution of counts in a sample of the null
model. Although the approach of Milo et al. has lead to
significant insights into structure and function of complex
networks is has some intrinsic limitations especially when
considering larger motifs.

A major difficulty in motif analysis is that subgraph counts in
networks are correlated in various ways [8–10]. One of the primary
sources of correlations between subgraph counts are shared
substructures. For instance, as already noted by Milo et al. [2],
the presence of a large number of triangles in a network implies the
presence of many 4-node subgraphs that contain triangles. In order
to counter such effects Milo et al. proposed to conserve the counts of
subgraphs of size k-1 in the null model while detecting motifs of size
k. Although some progress has been made in the direction of
sampling networks ensembles with fixed subgraph counts [11],
this can be computationally demanding and is mostly omitted in
practice and the configuration model is used as a null model
regardless of the size of motifs under consideration [7], which as
expected results in an excessive number of motifs being classified as
statistically significant. Note that the same argument also applies in
the opposite direction, as the presence of a large number copies of a
motif m of size k also implies the presence of many copies of the
induced subgraphs ofm, which in turn influence subgraph counts of
other motifs of size k with which m has common subgraphs. As a
result it becomes increasingly difficult to distinguish between
structurally significant motifs and subgraphs that occur only
because they have some common substructure with these. It
might be argued that these issues can potentially be addressed by
employing null models that account for these dependencies,
however one could reasonably expect that such models would
involve controlling various subgraph counts. However, at present
the problems of how such models are to be defined and sampled
from remain open.

The interdependence of subgraph counts also leads to issues in
the formulation and selection of null models that preserve certain
features of the network since many widely used network measures,
such as clustering, assortativity and degree distributions can be
expressed in in terms of subgraph counts [12]. Consequently,
expectation values of subgraph counts can vary significantly
depending on the set of features that is selected as the basis of
the null model.

Putting the problems of choosing an appropriate null model and
the interdependence of subgraph counts aside, calculating the
statistical significance of larger motifs is also computationally
challenging because of the increased complexity that comes with
enumerating larger subgraphs and the need to consider larger
samples, due to the larger number of hypotheses being tested
simultaneously, to achieve a certain level of statistical
significance. In practice these compounding effects, limit the size
of motifs that can be reliably detected via subgraph count based
hypothesis testing [13–15] in even moderately sized networks.

In the light of these computational difficulties several alternative
approaches for calculating the statistical significance of motifs have
been explored in the literature which fall into two main categories:
sampling methods and analytical approaches. While sampling
methods can reduce the cost of subgraph enumeration by several
orders of magnitude [16, 17] this inevitably comes at a cost of
reduced accuracy. On the other hand analytical approaches [17–19]
seek to obtain analytical approximations of the subgraph
distributions under the null model with the aim of dispensing of
the need to enumerate subgraphs in samples of the null model.
However, analytical expressions for subgraph distributions are
notoriously difficult to calculate for even the simplest of null
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models, such as the Erdös Rényi model. Consequently, analytical
approaches rely on estimates of lower order moments of subgraph
distributions which in turn require additional assumptions on the
functional form of subgraph distributions in order to compute the
statistical significance of motifs. One such example is the widely used
the z-score [6] which implicitly assumes subgraph distributions to be
Gaussian. However, subgraph distributions in random graphs are
often far from being Gaussian making p-values derived from
z-scores difficult to interpret [10, 18]. Although alternative
distributions have been explored in the literature [18], in general
subgraph distributions can vary significantly depending on the
characteristics of the original network, the null model and the
motif under consideration [10] which makes obtaining reliable
p-values from lower order moments of subgraph distributions
challenging.

1.3 Motifs and random graph models

The prevalence of network motifs in real world networks has
also proven to be challenging for random graph models as most
widely used random graph models assume that edges are
conditionally independent, which for sparse models results in
networks that are locally tree like. The lack of analytically
solvable models that replicate local connectivity structures
observed in empirical networks has also been an obstacle in the
development of quantitative approaches for analysing local
structures in networks and their topological and dynamical
implications.

Classically, efforts for constructing models with nontrivial
subgraph structures have focused on exponential random graph
models (ERGM) which are maximum entropy models that result
from constraining expected subgraph counts to their observed
values. However, the inclusion of higher order subgraphs in
ERGMs results in models with nonlinear interactions that are
notoriously difficult to threat analytically and hence do not lend
themselves easily to calculations and inference [20]. As a result, in
practice one has to rely to Monte Carlo methods which themselves
suffer from issues of inconsistency and degeneracy [21, 22] and finite
sample effects [23]. Although there exist alternative formulations
that seek to address some of these problems [20] in general ERGMs
have mostly studied in cases where only a handful of pre-determined
motifs, swuch as triangles, are included in the model. However, for
ERGMs to be used as generative models in motif analysis one would
need to consider ERGMs based on subgraph counts of arbitrary sets
of motifs which at present seems unpractical.

Consequently, generative models that aim to replicate the
prevalence of network motifs by connecting vertices not only by
edges abut also copies of higher order subgraphs have emerged as an
analytically tractable alternative to ERGMs [24–28]. These
generative models share similarities with so called bipartite
models for networks with group interactions such as
collaboration networks [29] where one first generates a set of
higher order interactions which are then projected onto edges to
obtain a graph. Formulating models in terms of higher order
subgraphs used to construct the network further enables the
formulation of degree corrected models where not only the
counts and types of atomic substructures but also the number of

subgraphs attached to each vertex can be controlled. Such models in
general more accurately reflect the structure of real world networks
which often have highly heterogeneous degree distributions.

In the formulation of our method we rely on maximum entropy
formulations of such models [28] that result from constraining the
counts and distributions of higher order subgraphs used in the
construction of the network. Assuming generative models of this
type, one is naturally faced with the problem of determining the
types of subgraphs and their distributions that are mostly likely to
have resulted in the observed network, which is one of the main
problems that the inferential approach addresses.

1.4 Higher order networks

Higher order networks are motivated by the observation that
many systems can not faithfully represented by pairwise interactions
only. Indeed, many complex systems include so called higher order
interactions that involve more than two actors. For instance,
proteins combine to form larger complexes, scientists collaborate
in groups, groups of genes coordinate into modules to perform
specific cellular functions, and economic and social agents can form
complex coordinated groups with nontrivial internal structures with
wide ranging structural and dynamical consequences [30–32].

Although many real networks are given as pairwise interactions
in principle such networks should still reflect the presence of higher
order interactions and hence it should be possible to extract
information on higher order interactions present in the system
from pairwise interaction data. Consequently, the inference of
higher order representations from dyadic interactions is an active
field of research [33, 34]. Most higher order network research
focuses of higher order networks in the form of simplicial
complexes or hypergraphs, where group interactions are
modelled using cliques resulting in models where nodes
participating in a higher order interaction interact with each
other uniformly. Although focusing on cliques has the advantage
of simplicity, we shall consider more general higher order networks
where higher order interactions can take the form of arbitrary
simply connected subgraphs which will allow us analyse directed
networks as well as networks that do not contain large numbers
of cliques.

1.5 Overview of the inference
based approach

The inferential approach differs from the approach of Milo et al.
in two key aspects. First, it is based on modelling motifs as explicit
higher order interactions that occur in an optimal decomposition of
the network into recurring subgraphs rather than counting
subgraphs. Second, it is based on statistical inference of
generative models rather than hypothesis testing with respect to a
null model. For a discussion of inferential and null model based
approaches in the context of community detection see [35].

The assumption that networks are made of recurring atomic
subgraphs naturally leads us to consider objects that correspond to
decompositions of networks into smaller subgraphs which we call
subgraph configurations. In the context of the generative models we
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consider, subgraph configurations correspond to the latent states
that describe the higher order subgraphs that were added to the
graph during the generating process. In order to infer an optimal
subgraph configuration for a given network we follow a Bayesian
methodology based on a nonparametric prior for models
parameters. This nonparametric prior allows us to infer
decompositions of network into atomic building blocks without
requiring any prior assumption on the types, frequencies or
distributions of atomic subgraphs. As a result the method not
only produces a set of statistically significant atomic subgraphs
but also an explicit decomposition of the network into such basic
building blocks.

Methodologically our method is related to inference based
methods for community detection that use Stochastic Block
Models (SBMs) as generative models. The use of the SBM [3]
and its degree corrected variant [36] in conjunction with
statistical inference techniques have resulted in principled
methods for community detection [36–39] and have also been
successfully applied to time dependent networks [40], generalized
communities [39] and, multilayer networks [40].

In SBM based community detection the vertices of the graph are
assumed to be partitioned into B blocks with the probability of two
vertices being connected by an edge depending on which blocks they
belong. Consequently, the problem of detection such blocks can be
reformulated as a statistical inference problem where the goal is to
infer the block assignments of vertices that are most likely to have
resulted in the observed graph under the assumptions encapsulated
in the prior. For our method the basic assumption is that networks
are constructed using not only edges but also larger building blocks
in the form of higher order subgraphs. Under this assumption the
goal of the inference becomes to identify the set of higher order
subgraphs which are most likely to have resulted the observed
network under the assumptions given by the prior.

The rest of the paper is structured as follows in Section 2 we
briefly review the core concepts and ideas underlying the inferential
approach [41] and discuss how concepts commonly used in motif
analysis trasnlate to the inferential approach. Then in Section 3 we
discuss empirical results for several real world networks and also
analyse larger collections of similar networks. We conclude in
Section 4 with a discussion of open problems and potential
topics for future research.

2 Network motifs and subgraph
decompositions

Following the original premise of Milo et al. of identifying basic
building blocks of networks we seek identify such building blocks on
the basis of how well a given network can be decomposed into them.
Formalizing such an approach first requires a definition of what is
meant by a decomposition into subgraphs and then the formulation
of an objective function that can be used to discriminate between
alternative decompositions of the same network.

In the following we briefly overview the inference based
approach presented in [41] and then proceed to discuss how this
approach addresses some of the problems in motif analysis. We also
discuss how commonly used concepts in motif analysis translate to
the inference based approach. We start with a high level overview of

core concepts required to formulate the method and refer the reader
to the respective references for further technical details.

2.1 Motifs, automorphisms and orbits

We start with a brief overview of basic graph theoretical
concepts. Throughout this paper we use standard graph theoretic
notation. For example, for a graphGwe denote its vertex set asV(G)
and its edge set as E(G). Two graphs G and H are said to be
isomorphic if there exists a bijection ϕ: V(G) → V(H) such that
(v, v′) ∈ E(G) 5 (ϕ(v),ϕ(v′)) ∈ E(H). Being isomorphic is an
equivalence relation of which the equivalence classes are
unlabelled graphs i.e., motifs. We denote motifs using lower-case
letters and write G ≃ g. An isomorphism that maps G to itself is
called an automorphism. The automorphisms of G form a group
under composition which we denote as Aut(G). Similarly, orbits are
classes of vertices that are remain invariant under the action of the
automorphism group. The orbits of a graph or motif correspond to
sets of structurally equivalent vertices and we denote the ith orbit of
m as om,i. A subgraph of G is a graphH such thatV(H) ⊆ V(G) and
E(H) ⊆ E(G). Similarly, a m-subgraph of G is a subgraph of G that
is isomorphic tom. Note that in general we do not require subgraphs
to be induced.

The above definitions can be generalized to directed graphs in a
straightforward manner, the only modification needed being that for
directed graphs isomorphisms are also required to preserve edge
directions. With this additional condition all definitions and
expressions are valid both for directed and undirected networks.

2.2 Subgraph configurations

Definition 2.1: (Subgraph configuration) Let V be a set of vertices,
a subgraph configuration C on V is a set of (sub)graphs such that
V(s) ⊆ V for all s ∈ C.

Given a subgraph configuration C we denote the set of motifs that
appear in C withM(C), which we call atoms. Similarly, we use nm(C)
to denote the number ofm-subgraphs in C. An example of a subgraph
configuration is given in Figure 1. Subgraph configurations are
essentially generalized hypergraphs where hyperedges are not
restricted to cliques but can take the form of any simply connected
motif. Allowing more general forms of higher order interactions is
especially relevant in the case of directed networks as well as undirected
networks that do not contain large numbers of cliques.

Any subgraph configuration C on V can be projected onto a
graph G(C) on the same set of vertices uniquely such by setting
E(G(C)) � ⋃s∈CE(s). Conversely, a subgraph configuration C is
said to cover G if every edge of G appears in at least one of the
subgraphs in C i.e., ⋃s∈CE(s) � E(G). As a graph G can be fully
recovered from any subgraph configuration that covers G, such
configurations correspond to different ways of representing G in
term of its subgraphs.

Indeed many widely used graph representations are special cases
of subgraph configurations. A trivial example is the edge list which is
equivalent to the configuration that consists of all single edge
subgraphs of G. Similarly, the adjacency list of a graph is
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equivalent to the configuration that consists of all the star graphs
where each node is connected to all its neighbours. Other examples
are bipartite and power graph [42] representations, that correspond
to covers consisting of cliques and bipartite cliques. Subgraph
configurations are a very general class of graph representation
that include all possible decompositions of G into subgraphs and
hence also include more unusual cases such as the set off all edges
and cycles in G or the set of all connected subgraph up to size k.
However, arbitrarily picking a subgraph configurations for G can
result in inefficient or redundant representations of G, giving rise to
the question whether one could find a subgraph configuration that,
in a certain sense, is an optimal representation of G. In the following
sections we will approach this question from the point of view of
parsimony where our goal will be to find a subgraph configuration
that requires the least number of bits to represent G.

2.3 Generative models

The formulation of our method is based on microcanonical
ensembles which given a set of constraints on the types, counts and
distributions of the subgraphs in a configuration assign all
configurations that satisfy these constrains equal probability [28].
These models are closely related to other random graph models [24,
25, 27, 43] that rely on adding explicit copies of triangles and other
higher order subgraphs to the graph during the generation process.
One advantage of using microcanonical ensembles as generative
models is that the parameters of the model are discrete and correspond
to mutually exclusive constraints which when combined with discrete
priors allow marginal probabilities to be calculated efficiently without
requiring the computation of costly integrals.

Although the models we consider are similar to exponential
random graphs in that they are maximum entropy ensembles the
crucial difference is that subgraph configuration models constrain
the subgraphs (i.e., building blocks) used to construct the network
rather than subgraph counts in the network. This results in
analytically tractable models that are generalizations of the

Erdös-Rényi (ER) [44] and configuration models to higher order
interactions. Though these models can be solved analytically for
many of their properties in the context statistical inference we shall
focus on the log-likelihood or entropy which can be calculated in
closed form [28].

2.3.1 Homogeneous models
The simplest generative model that can be formulated for

subgraph configurations on a set of vertices V (|V| � N) are
uniform ensembles [45] where each subgraph configurations with
a given set of atoms M and respective counts nm is assigned equal
probability:

P C|nm,M( ) � ∏
m∈M

HN m( )
nm

( )⎛⎝ ⎞⎠−1

,

whereHN(m) is the number of distinctm-subgraphs onN vertices.
Following the definition of the automorphism group we get:

HN m( ) � N

|m|( ) |m|!
|Aut m( )|,

where |Aut(m)| is the cardinality of Aut(m). Note that uniform
ensembles are essentially generalizations of the classical Erdös-Rényi
[44] random graphs with fixed number of edges and vertices to sets
of arbitrary higher order motifs.

The distribution over subgraph configurations given by
homogeneous models can be transformed into a distribution over
graphs by considering the distribution that arises from projecting
subgraph configurations onto graphs by taking the union over all the
edges contained in the subgraphs in C, that is setting
E(G) � ⋃s∈CE(s). Note that although the distribution over
configurations is uniform the distribution over graphs is not,
since the probability of a given graph G is proportional to the
number of configurations which project onto G. For instance, when
M consists of the single edge and triangle motifs the model with e
edges and t triangles induces a probability distribution over all
graphs that can be constructed using e edges and t triangles where
the probability of a given graph G is proportional to the number of
different ways G can be constructed using e edges and t triangles:

Pe,t G( ) � ne,t G( )
N
2( )
e

( ) N
3( )
t

( )[ ]−1
,

whereN � |V(G)| and ne,t(G) is the number of configurations with
e edges and t triangles that project onto G.

2.3.2 Degree corrected models
Homogeneous subgraph configuration models result in graphs

with narrow– Poisson type degree distributions [25] in contrast to
the heavy tailed degree distributions observed for many real world
networks. Hence, we consider degree-corrected subgraph
configuration models (DC-SGCM) which constrain not only the
counts of atoms but also their distributions over vertices which can
be done by specifying the number of atomic subgraphs attached to
each vertex. Degree-corrected models are in general a better fit for
most real world networks and therefore also improve the quality of
the inferred configurations, similar to the effects observed in
community detection based on the degree corrected SBM [36, 38].

FIGURE 1
A subgraph configuration consisting of three edges, a triangle, a
4-cyles and two 4-diamonds.

Frontiers in Physics frontiersin.org05

Wegner 10.3389/fphy.2024.1429731

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2024.1429731


Definition 2.2: (Orbit degree) Given a subgraph configuration C
with atomsM(C), the orbit degree of a vertex v is with respect toC is
defined as dm,i(v)(C) ≔|{s ∈ C: s ≃ m ∧ v ∈ om,i}|.

In other words dm,i(v)(C) is the number m-subgraphs in C for
which v is in orbit om,i.

As in the case of homogeneous models the microcanonical
ensemble of subgraph configurations for a given orbit degree
sequence dm,o is defined as the ensemble where all subgraph
configurations with orbit degree sequence dm,o have equal
probability. As a result the likelihood under this model can be
calculated simply by counting the number subgraph configurations
that have dm,o as their orbit degree sequence [28]. Here we omit
calculation of the likelihood for the sake of brevity and refer the
reader to [28] for a detailed derivation.

Specifying the degree distribution at the level of orbits can result
in high dimensional degree distributions resulting in models with
high parametric complexity. In order to reduce the number of
parameters, the atomic degree distribution can be coarse grained
at various level. One way of relaxing the DC-SGCM is to only specify
the number of different atoms attached to each vertex without
specifying their orbits i.e., dm � ∑idm,i. This results in a model
where each component of the degree sequence corresponds to a
specific atom in M. The model can relaxed even further by only
specifying the total number of subgraphs attached to each vertex
resulting in a model that has a single degree sequence in the form
dt � ∑m,idm,i. Although these variants of the DC-SGCM require
fewer parameters aggregating orbits in this fashion can cause
problems for directed graphs. For example, in the case of the
directed edge configuration model this would corresponds to
conserving the total degree of nodes and resulting in a model
where edge directions are effectively random. Therefore, for
directed models we consider a model where the orbit degrees are
grouped in to three groups according to their degrees, namely, orbits
with only incoming edges (din(v) � ∑m,i|dout(om,i) � 0dm,i), only
outgoing edges (dout(v) � ∑m,i|din(om,i) � 0dm,i) and orbits with both
in- and outgoing edges (dio(v) � ∑m,i|din(om,i)≠ 0∧dout(om,i)≠ 0dm,i). Note
that this model is a generalization of the configuration model where
the mutual edge degree is conserved in addition to the in- and out-
degrees, which is widely used as a null model for directed networks
in motif analysis [2].

Although the coarse grained versions of the DC-SGCM capture
the propensity of vertices to attract subgraphs, it should be noted
that the coarse grained versions do not conserve the edge degree
distribution exactly since orbits in general have different degrees. At
this stage one might wonder if it is possible to consider a subgraph
configuration models where one conserves the degree sequence of
the resulting graph instead of atomic degree sequence. Although in
theory it is straightforward to formulate such models in terms of
uniform ensembles of configurations of which have a given
projected degree sequence, calculations of the likelihood of such
models depends on non-negative solutions of systems of linear
Diophantine equations for which no general solution is known.

Degree corrected subgraph configuration models can be
sampled using a generalization of the well known half-edge
matching algorithm for generating graphs with a prescribed
degree sequence [24]. The only difference being that in the case
of higher order subgraphs, in addition to half edges one needs to
consider partial subgraphs or corners that need to be matched in

appropriate combinations. Similarly, given a subgraph configuration
with a certain atomic degree sequence it is possible to randomize/
shuffle the configuration while preserving the degree sequence
following a generalization of the edge swapping algorithm. Again,
here the main difference is that the algorithm involves swapping
pairs of corners corresponding to compatible orbits instead of only
the endpoints of edges. Functions for generating and randomizing
subgraph configurations provided as are part of our implementation
of the method.

Being a generalization of the edge only configuration models,
many techniques such as generating functions generalize to the
higher order configurationmodels in a straightforward manner [24],
allowing degree corrected models to be solved analytically for many
of their properties ranging from spectral properties to percolation
and component sizes [24, 25, 27, 46–48]. Despite having many
desirable properties the use of such higher order configuration
models has been constrained by the lack of techniques for fitting
networks to these types of models which requires the determination
of an appropriate set of higher order subgraphsM to be included in
the model. The inferential approach directly addresses this problem
and the aforementioned techniques can be used to study the
implications of the inferred higher order structures.

2.4 Statistical inference

Upon first inspection, it may not be immediately apparent
whether a particular network can be decomposed into recurring
subgraphs and, if such representations can be found how one can
discriminate between them. In this section we provide a brief
overview of how these questions can be addressed from the
perspective of Bayesian inference. The Bayesian formulation can
also be shown to be equivalent to the Minimum Description Length
(MDL) approach and hence is equivalent to finding a subgraph
configuration that represents the network most parsimoniously,
i.e., with the least number of bits.

2.4.1 Nonparametric Bayesian inference
From the Bayesian perspective our goal is to infer a subgraph

configuration that is most likely given the network G i.e., that
maximizes P(C|G) which following Bayes’ theorem is given by:

P C|G( ) � P G|C( )P C( )
P G( ) ,

where P(G|C) � 1 when E(G) � ⋃s∈CE(s) and 0 otherwise, and
P(C) is the prior probability of C.

To formulate our prior we first consider the case of degree-
corrected subgraph configuration models. For a given atomic degree
sequence dm,o with a corresponding set of atoms M and counts nm

we assume a nonparametric prior with the following
dependence hierarchy:

P C( ) � P C|dm,o( )P dm,o|nm, V( )P nm|M,E( )P M( ),
where E and V are the number of edges and vertices in G,
respectively. Note that the general form of the prior is such that
one first generates a set of atoms followed by the counts of atoms and
then the atomic degree sequence, where each factor in the prior
corresponds to a uninformative prior given the parameters of the
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lower level. The above general form applies to all variants of the
degree corrected SGCMs, the only difference being the number of
components in the degree sequence. Similarly, in the case of the
homogeneous models the prior can be obtained simply by omitting
the factor corresponding to the atomic degree sequence resulting in
the following form for the prior:

P C( ) � P C|nm, V( )P nm|M,E( )P M( ).
For the sake of brevity we omit the exact forms of the priors and refer
the reader to Ref. [41] for closed form expressions.

Having formulated the prior our goal becomes to find a
subgraph configuration that has Maximum Posterior Probability
(MAP) P(C|G) for a given G. We will call such a configuration a
MAP-configuration. The nonparametric prior covers arbitrary sets
of motifs and hence can be used to infer decompositions of network
into higher order subgraphs, including the types of interactions
themselves, without requiring any restrictive prior assumption on
the types, frequencies or distributions of atomic subgraphs.

2.4.2 Description length and statistical significance
The Bayesian formulation outlined above is equivalent to the

Minimum Description Length (MDL) approach. Although the
equivalence of the two approaches holds more broadly, in our
case the equivalence is more directly evident due to the discrete
nature of the parameters and the fact that for microcanonical models
each configuration is compatible with a unique set of parameters.
The Description Length (DL) is given by:

Σ C( ) � −log2P C( )
� S C( ) + ϵ C( ),

where Σ(C) is the description length of the configuration, S(C) is the
negative log likelihood/entropy of C given by −log2(P(C|dm,o,M))
which corresponds to the information required to specify the
location of the subgraphs in C given the degree distribution and
ϵ(C) � −log2(P(dm,o, nm,M)) is the information required to
specify the model parameters i.e., the model complexity.

The description length can also be used to asses the statistical
significance of the inferred MAP-configuration by comparing its
description length to the description length of the configuration that
contains no higher order subgraphs i.e., the configuration that
consists of all single edges which is corresponds to the edge only
configuration model:

δ CMAP( ) � Σ CE( ) − Σ CMAP( ) � log2
P CMAP|G( )
P CE|G( )( ).

Note that the above expression is well defined as the configuration
consisting of only single edges is included in the prior which also
ensures that the edge only configuration is selected if the network
does not contain any statistically significant higher order motifs.

2.4.3 Statistical significance of motifs
While the reduction in description length δ(CMAP) provides us

a measure of statistical significance at the level of the MAP-
configuration, it is also possible to measure the statistical
significance of individual motifs m ∈ M(CMAP) by looking at the
increase in description length that results from removing instances
m from the MAP-configuration. For this we consider the

configuration that results from replacing the instances of
m-subgraphs in CMAP with single edges:

δm CMAP( ) � Σ CMAP\m( ) − Σ CMAP( ) � log2
P CMAP|G( )

P CMAP\m|G( )( )
where CMAP\m � (C\Sm(CMAP))⋃s∈Sm(CMAP)E(s) and Sm(CMAP)
the set of m-subgraphs in CMAP. Similar to δ(CMAP), δm(CMAP)
provides us with a measure of the increase in the likelihood resulting
from the inclusion ofm-subgraphs in the MAP-configuration. Note,
that δm(CMAP) reduces to δ(CMAP)whenM(CMAP) only contains a
single m in addition to the single edge. As with the significance
profiles based on the z-score introduced in [6] the relative
significance of atoms can be summarized using compression
based normalized significance profiles:

~c m( ) � δm CMAP( )������������������∑m′∈M CMAP( )δ
2
m′ CMAP( )

√ .

Normalized significance profiles are especially useful when
comparing larger collections of networks containing networks
that differ from one another in terms of size and density, as for
instance in Section 3.3.

2.4.4 Model selection
Having one general form for the prior that is applicable to all

model variants also allows for consistent model selection within an
unified framework. For instance, let C1 and C2 be the MAP-
configurations inferred using models M1 and M2 respectively,
for which we get the following posterior odds ratio:

P C1,M1|G( )
P C2,M2|G( ) �

P1 C1( )
P2 C2( ) � 2Σ2 C2( )−Σ1 C1( ).

The posterior odds ratio can be used to discriminate between
different variants of the degree corrected SGCMs as well
homogeneous models [41], allowing us to select the optimal
model and corresponding MAP-configuration for a given network.

2.5 Inference algorithm

Finding a MAP-configuration is a set covering problem [49]
where the goal is to cover the set E(G) using subgraphs of G and
hence is NP-hard. As result we rely on a greedy heuristic that
constructs a MAP-configuration iteratively. Given a set of candidate
motifs M, at each step the algorithm identifies the motif m ∈ M
whose copies most effectively cover the edges of G as measured by
the number of bits per edge, which at step t of the algorithm is
given by:

σm,t � Σ Ct ∪ Cm( ) − Σ Ct( )
| E G( )\E Ct( )( ) ∩ E Cm( )|,

where Ct is the configuration at step t (C0 � ∅), Cm is a set of m
subgraphs and E(Cm/t) � ⋃s∈Cm/t

E(s). Finding a set ofm-subgraphs
that minimizes σm,t is in itself a non-trivial problem, which we
approximate by finding a maximum set of edge-independent
m-subgraphs Cm on the graph Gt with edges
E(Gt) � E(G)\E(Ct). Once such a Cm is found for every
m ∈ M, the Cm that minimizes σm,t is added to the configuration
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i.e., Ct+1 → Ct ⋃ Cm. This procedure is then iterated until all edges
of G are covered by Ct which usually occurs when the most efficient
motif is the single edge. A more detailed description of the algorithm
can be found in [41].

The computational complexity of finding a MAP configuration
is dominated by the step of finding a maximum set of edge-
independent m-subgraphs for all m ∈ M which has in the worst
case has the same complexity as finding all instances of m in Gt, but
can be done in parallel for eachm. Moreover, in practice finding a set
of edge-independent instances of m is usually significantly faster
than enumerating all instance of m since once an m-subgraph is
found the edges corresponding to the found instance can be
removed from the graph which gradually reduces the size of the
search space. Similarly, Gt gets sparser with each iteration which
reduces the runtime of subsequent iterations. Run-times of the
algorithm for different motif sizes are given in the results section.

The current implementation relies on the LAD algorithm [50]
for subgraph isomorphism search but in principle is compatible with
any subgraph isomorphism algorithm, including algorithms such as
TurboISO [51] and DAF [52] which are known to scale better to
larger graphs.

One advantage of the inference based approach is that inference
algorithms can be tested on simulated data with a known underlying
subgraph configuration. When tested on such data sets the
algorithm is able to recover the underlying latent states to a high
degree of accuracy [41].

3 Empirical results

In this section we provide examples of empirical results for two
empirical networks a directed human connectome from [53] and a
network of protein-protein interactions (PPI) in Drosophila
melanogaster [54]. Due to computational constraints we limit the
size of motifs to up to 8 nodes for undirected networks and up to 5 in
the directed case. This corresponds to 9,578 potential motifs in the
directed case and 12,112 in the undirected case. Despite the large
number of potential motifs the method is able to infer concise sets of
atoms for both of these networks. We then also analyse large sets of
directed and undirected connectomes of the human brain and,
protein interaction networks. Additional examples including
neural networks, collaboration networks and metabolic networks
can be found in [41].

3.1 Human connectome

The directed connectome of the human brain [53] we consider
has 1,015 vertices and 3,787 edges and the MAP-configuration,
inferred using the directed degree corrected SGCM, contains 22
non-trivial patterns which cover approximately 75% of all edges (see
Figure 2). The MAP-configuration has a description length of
28,811 bits, a reduction of 1,927 bits over the edge only
configuration model, from which means that the MAP-
configuration is 21927 ≃ 10580 times more likely than the edge
only configuration model to have generated the network.

The MAP-configuration of the human connectome contains a
large number of feed-forward loops (FFL) (Atom 1 in Table 1) and

so called bi–fan motifs (Atoms 2 and 7 in Table 1) usually associated
with neuronal networks [55]. We also find a large numbers of 4 and
5 node bi-parallel motifs (Atoms 3 and 6 in Table 1) where an input
node is connected to an output node via indirect connections. In
addition to these basic types we also recover more complex atoms
that can be interpreted as various combinations of lower order
atoms. Such larger arrangements of motifs have recently been
analysed in [56] though our result show that in the human
connectome lower order motifs in general combine in denser and
more complex patterns than the pairwise combinations studied in
[56] (Atoms 8–22 in Table 1). In addition we observe that all atoms
contain at least one node with only incoming links and one node
with only outgoing links which could interpreted as output and
input nodes.

On the directed human connectome the greedy algorithms takes
≈32 min to complete for motifs up to size 5 and 196 s for motifs with
up to 4 nodes on an AMD Ryzen 9 7900X 12-Core Processor with
32 GB of RAM using 20 threads.

In comparison, applying the approach of Milo et al. with a
sample size of 1,000 and a threshold of 10 for the z-score to the same
networks yields 114 motifs of size 5, 9 motifs of size 4 and 1 motif of
size 3. Here, we opted for the use of the z-score, despite its known
shortcomings, as a direct count based analysis would require
enumerating subgraphs up to size 5 (≈10,000 motifs) in
approximately 2,00,000 samples of the null model to achieve
significance level of p � 0.05 after correcting for multiple
hypothesis testing.

FIGURE 2
Visualization of the higher order subgraphs in the MAP
configuration of the directed human connectome with edges
coloured according the types of atoms. Node positions reflect
physical locations of the brain regions in a 2D (horizontal)
projection.
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3.2 PPI network of Drosophila melanogaster

The PPI network of Drosophila melanogaster we consider has
2,939 vertices and 8,569 edges [54]. For this network the degree
corrected model that constrains the total number of subgraphs

attached to each vertex results in the shortest description length.
The MAP-configuration of the network obtained from motifs up to
size 8 contains 15 non-trivial patterns in addition to single edges
which cover approximately 45% of all edges. A plot of the MAP-
configuration is given in Figure 3. The MAP-configuration has a

TABLE 1 Atoms found in the MAP configuration of the directed human connectome together with their respective counts (nm) and relative significance as
measure by δm(CMAP) which is given in bits.

FIGURE 3
Visualization of the largest connected component of the PPI network of Drosophila melanogaster with edges coloured according to atomic
subgraph type.
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description length of 72,205 bits which corresponds to a reduction of
710 bits over the edge only configuration model. Hence, compared
to the edge only configuration, the MAP-configuration is
2710 ≃ 10213 times more likely to have generated the network.

The MAP-configuration of the PPI network contains a large
number bipartite cliques (Atoms 2, 4, 6, 9, and 12 in Table 2). These
bipartite and multi-partite atoms (Atoms 5 and 15 in Table 2) can
naturally be explained by the presence of shared interacting
subdomains in proteins [57] that result in groups of proteins that
interact with the same set of proteins but not among themselves. In
addition we also recover cubic atoms (Atoms 7, 8, 10, 11, and 14 in
Table 2) that are compatible with the formation of protein
complexes in 3 dimensional space. In principle these results
could be checked further by examining if the individual instances
of these motifs in the MAP-configuration indeed coincide with
known protein complexes or are results of shared subdomains.
However, this requires expert domain knowledge and shall be
explored in future research.

For reference on the PPI network the greedy algorithms takes
≈21 h to complete for motifs up to size 8, ≈3 h for motifs up to size 7,
≈45 min for motifs up to 6 and, ≈7 min for motifs up to size 5 on a
AMD Ryzen 9 7900X 12-Core Processor with 32 GB of RAM
using 20 threads.

Applying the method of Milo et al. with motifs of size 8 to this
network is computationally not feasible hence we omit the
comparison.

3.3 Network families

In this section we apply our method to large collections of
networks representing similar systems namely directed and
undirected connectomes of the human brain and, protein
interaction networks. We compare the inferred MAP
configurations obtained for the networks using normalized
significance profiles introduced in Section 2.4.3. Our results show
that the method produces consistent results across the networks in
these datasets providing further support that the method is able to
identify patterns that are characteristic to these networks. For, the

directed networks we use the directed degree corrected SGCM and
for the undirected networks we use the model variant that
constrains the total number of subgraphs attached to each
vertex, which are the model variants favoured by model
selection on these datasets.

3.3.1 Directed human connectomes
The dataset of directed connectomes [53] consists of

423 networks corresponding to different experimental subjects.
While all networks in this data set have 1,015 nodes
corresponding to specific brain regions the number of edges
ranges from 3,305 to 4,835. To compute the significance profiles
we use the MAP configurations obtained using bi-connected motifs
up to size 4 (138 potential motifs). The significance profiles for the
directed human connectomes are given in Figure 4 and the
corresponding atoms are given in Table 3. Despite variations in
density of the networks we observe that the significance profiles of
the 423 directed connectomes are in remarkable agreement the main

TABLE 2 Atoms found in theMAP-configuration of the PPI network ofDrosophilamelanogaster and their respective counts (nm) and relative significance as
measure by δm(CMAP) which are given in bits.

FIGURE 4
Normalised significance profiles of 423 directed human
connectomes. The corresponding motifs can be found in Table 3.
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difference being in the significance of atoms that correspond to
pairwise combinations of FFLs (atoms 7, 8, and 10 in Table 3).

3.3.2 Undirected human connectomes
Next we consider a collection of human connectomes from [58]

containing 127 human connectomes with 445 nodes each and edge
counts ranging from 3,527 to 5,722. In order to obtain the
significance profiles we compute the MAP-configurations based
on motifs up to size 5 (30 potential motifs). As in the directed

case the normalised significance profiles (Figure 5) are remarkably
similar across all networks with the main differences being in the
significance of atoms 7, 8, and 9 (see Table 4).

3.3.3 Protein-protein interaction networks
Finally, we consider a data set of PPI networks from [59]

consisting of 335 networks corresponding to different species.
The number of nodes ranges from 1,004 to 1,994 and the
number of edges varies from 2,280 to 54,247. The normalised
significance profiles of the MAP-configurations obtained with bi-
connected motifs up top 5-nodes (15 potential motifs) are given in
Figure 6. Again we find that the significance profiles are very similar
with the exception of a few outliers that correspond to species that
have only limited coverage.

4 Discussion

4.1 Summary

In this article, we presented an alternative perspective on
network motifs, grounded in the modeling motifs through
higher-order interactions and nonparametric inference techniques
for obtaining an optimal set of higher order interactions. The
inferential approach offers several advantages over traditional
count-based methods. Firstly, our method produces an explicit
decomposition of networks into higher-order building blocks.
This not only offers an alternative interpretation of network
motifs as fundamental building blocks of networks but also
allows for the examination of individual motif instances within

TABLE 3 Directed atoms found in the MAP-configurations of 423 directed human connectomes. The IDs correspond to the x-axis of Figure 4.

FIGURE 5
Normalised significance profiles of 127 undirected human
connectomes. The corresponding motifs can be found in Table 4.

TABLE 4 Atoms found in the MAP-configurations of 127 undirected human connectomes- the IDs correspond to the x-axis of Figure 5.
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the context of the whole network. Additionally, these higher-order
representations can be used to formulate dynamical models to study
the dynamical implications of higher-order structures in real world
networks [30] even if these networks are initially given in terms of
pairwise interactions.

Moreover, from an algorithmic standpoint our approach does
not require exhaustive subgraph enumeration and is trivially
parallelizable enabling the detection of larger motifs while still
producing concise and highly interpretable sets of motifs.
Importantly, the method shows that many real-world networks
can be represented more parsimoniously by including higher-
order interactions into their representations, even if the data
initially contains only pairwise interactions opening new avenues
for the application of higher order network analysis methods to
dyadic networks.

Being grounded in statistical inference, the method provides an
effective approach for identifying larger motifs by considering all
motifs simultaneously within a single generative model generative
model, regardless of their size or other characteristics. The
nonparametric Bayesian approach allows for the formulation of
general and expressive priors and naturally safeguards against
over-fitting producing interpretable and robust results. This
allows the method to infer concise sets of motifs that have high

statistical significance, even when the numbers of potential motifs
is very large.

Finally, our method also provides a fit of the network to
analytically tractable generative models that reflect the inferred
higher-order structures. These models can be used to generate
samples of networks that share the higher order organization of
the original network and further allow distribution and prevalence
of motifs in the model to be varied in a controlled manner. This
opens new avenues for systematically studying the topological and
dynamical implications of higher order structures in networks [30,
32], and could provide valuable insights into network behaviour.

In summary, our approach offers a powerful framework not only
for detecting meaningful higher-order structures in networks but
also for studying their topological and dynamical implications.

4.2 Open problems and future directions

Temporal and multilayer networks pose additional challenges in
motif analysis as the number of potential motifs in temporal [60–62]
and multilayer networks [63] increases even faster with size than in
static/single layer networks. In the context of such networks
inference based approaches similar to the one presented here
could prove useful due to their inherent ability to effectively
balance goodness of fit and model complexity. While the
generalization of higher order interactions to multilayer networks
can be achieved by simply considering multilayer patterns, the
generalization to temporal networks is likely to require further
developments that additionally take both the duration and
temporal order of interactions into account.

Another problem when detecting motifs is that network
structures at different scales influence each other in various ways.
For instance, the presence of modular structures influences
subgraph counts, similarly the presence of triangles and other
motifs can interfere with community detection algorithms that
rely on the assumption that networks are tree-like at the local
level. Hence, more realistic generative models that combine
structures at various scales could provide the basis for improved
methods and could provide a more complete picture of network
structures across various scales.

The current implementation of the method relies on a greedy
heuristic for finding MAP-configurations. The greedy heuristic
involves iterating over all motifs up to a certain size which is a
limiting factor for the size of the motifs that can be considered in the

FIGURE 6
Normalised significance profiles of 335 PPI networks across
diverse domains of the tree of life. The corresponding motifs are given
in Table 5.

TABLE 5 Atoms found in the MAP-configurations of 335 PPI networks. The IDs correspond to the x-axis of Figure 6.
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analysis due to the explosion in the number of candidate motifs. For
instance, there are ≈272 k motifs up to size 9 in the undirected case
and over one and a half million motifs up to size 6 in the directed
case, which together with the increased cost of subgraph
isomorphism can pose computational challenges even for
moderately sized networks. Therefore the development of
alternative inference algorithms could not only lead to more
optimal solutions but also allow for the discovery of larger motifs
and the analysis of bigger networks. Ideally, such algorithms would
overcome restrictions associated with iterating over large numbers
of motifs by combining optimization with subgraph discovery for
instance by constructing motifs by combining lower order motifs in
specific combinations. In this context MCMC algorithms could also
allow for the sampling of the posterior distribution and hence
provide a more nuanced picture of higher order structures in
complex networks.
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