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In the process of color reproduction, the accurate prediction of color halftone
images’ characteristics and the development of a spectral reflectance prediction
model are pivotal for print image device characterization and quality control.
Traditional models such as Murray-Davis, Clapper-Yule, Yule-Nielsen, and
their modifications have been preferred for their high accuracy in color and
spectral predictions. However, they overlook the role of black ink in CMYK
printing, limiting their effectiveness in predicting the spectral properties of
four-color inks and demonstrating notable in-accuracies in light color tones.
A hybrid model combining a prior model based on physics with a deep
neural network has been proposed. On the input side, the Neugebauer
equation and the superposition of 4-color inks are considered, and the 4-
color CMYK input is expanded to 16 Neugebauer primary colors. On the
output side, the PCA dimensionality reduction algorithm extracts 7 principal
components with a contribution of 99.99%. Finally, the Improved Whale
Optimization Algorithm (IWOA) is employed to optimize the parameters of the
deep neural network (DNN) model. The experimental results show that our
model significantly outperforms traditional methods in reducing CIEDE2000
color differences, enabling the early prediction of spectral colors in printed
images and improving print image quality. What is more, the proposed model
does not need to take into account the effect of dot gain in the printing
process.

KEYWORDS
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1 Introduction

The advancement of digital imaging and printing technologies has notably broadened
the scope of color management challenges associated with color image reproduction. The
array of media types, ranging from different substrates like paper and plastic to a variety
of ink formulations and printing techniques, presents a multifaceted interplay of elements
affecting the final color outcome. Crucially, halftoning method, such as mutually rotated
clustered dots and error diffusion, significantly impacts color representation. To maintain
color accuracy across diverse printing systems, it is imperative to develop a sophisticated
spectral prediction model that is rigorously calibrated using a select group of test samples.

Frontiers in Physics 01 frontiersin.org

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org/journals/physics#editorial-board
https://doi.org/10.3389/fphy.2024.1429621
https://crossmark.crossref.org/dialog/?doi=10.3389/fphy.2024.1429621&domain=pdf&date_stamp=2024-12-16
mailto:dwtian@sppc.edu.cn
mailto:dwtian@sppc.edu.cn
https://doi.org/10.3389/fphy.2024.1429621
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fphy.2024.1429621/full
https://www.frontiersin.org/articles/10.3389/fphy.2024.1429621/full
https://www.frontiersin.org/articles/10.3389/fphy.2024.1429621/full
https://www.frontiersin.org/articles/10.3389/fphy.2024.1429621/full
https://www.frontiersin.org/journals/physics
https://www.frontiersin.org


Tian et al. 10.3389/fphy.2024.1429621

Spectrum-based color management models offer a solution
by using spectral data (400–700 nm) to provide a more detailed
color description, including hue, saturation, and brightness, and
to account for variations in lighting conditions. These models
enable high-fidelity color reproduction, overcoming limitations of
traditional methods and improving the accuracy of printed color
under different lighting conditions. The goal of spectral reflectance
prediction in printing is to optimize ink coverage for desired
color, using models to predict final image color from control
values like dot area coverage. Advancements in digital control
technology have led to reduced color deviations and expanded
research into spectrum reproduction for better color control in
printing.

In 1953, Clapper and Yule proposed a method for color
prediction of printed images by simulating the interaction between
light and halftone images by means of physical optics [1]. It
is worth noting that this model, in combination with the later
method proposed by Hersch et al. that takes into account the
dot gain of the ink, also provides good predictions, especially
when halftone screening frequency is high [2–6]. It is important
to note that these models require the printing of specific dot-
area rates and the measurement of the corresponding spectral
reflectance to calibrate the model. Since light refraction and
refraction at the print-air interface are explicitly taken into account,
the illumination and observation geometry chosen at the time
of measurement are used as model parameters in the equations.
Many scholars related to printing color have studied and improved
the prediction accuracy and results of these models in various
evaluations, which should be expected to yield the desired results.
To address challenges in spectral color prediction, researchers
have developed various models, initially grounded in optical
principles such as the [7–9], Neugebauer [5, 6, 10], Clapper-Yule
models [11–13], Kubelka-Munk theory [14–16], and the Yule-
Nielsen modified spectral Neugebauer (YNSN) model [8, 17],
along with their variations [18–22]. These models often incorporate
an empirical factor to account for optical interactions, yet their
practical application is hindered by the complexity of the printing
process. To mitigate these limitations, subsequent approaches have
integrated statistical methods, including regression analysis and
artificial neural networks (ANN) [23], to adapt to various printing
conditions.

Recent advancements in color prediction have been marked
by several noteworthy contributions. Moon et al. proposed a deep
neural network (DNN) model specifically designed for spot color
prediction [24], which utilizes collected and preprocessed printing
data. By training the model with the CIEDE2000 color difference
formula as the loss function, they effectively enhanced the accuracy
of color prediction in packaging printing. In another significant
development, Chen and Urban constructed a multi-printer deep
learning framework that harnesses data from various printers
to refine optical printer models [25]. This approach successfully
reduces the number of required training samples and improves
output consistency across different printers, which is particularly
important for high-precision applications in 3D printing. Akanuma
et al. focused on enhancing color matching for coatings by
integrating the Kubelka-Munk (K-M) model with machine learning
techniques [26]. Their comparative experiments revealed that the
Extreme Gradient Boosting (XGBoost) model outperformed others

in correcting spectral reflectance predictions. Zhu et al. utilized
a Pix2Pix Generative Adversarial Network (GAN) framework,
training a model with data collected via the DigiEye system [27].
This model successfully enabled effective color prediction for
digital printing on silk, providing a novel approach for managing
color in silk printing applications. In particular, existing models
exhibit limitations in accurately predicting the use of black ink in
printers.

This study introduces a hybrid approach that combines
Neugebauer primary colors with an optimized Whale Optimization
Algorithm-Deep Neural Network (WOA-DNN) machine learning
model to predict printed image reflection. By measuring spectral
reflectance values with spectrophotometry and relating them to
CMYK values through a deep neural network (DNN) model,
this research represents a significant advancement in the field
of color reflectance prediction. It addresses the limitations
identified in recent studies and provides a foundation for
more accurate and reliable color reproduction in printing
technologies. The structure of the paper is as follows: The paper
is organized as follows: Section 2 introduces the data standards
and printing methods used for testing, printing conditions,
and measurement conditions, describes the PCA dimensionality
reduction algorithm, the improved whale optimization algorithm
developed in this study, and the proposed DNN model. Section 3
covers model evaluation metrics, predictive result analysis,
and discussion of result analysis. Section 4 summarizes the
main findings of this study and suggests future directions for
application.

2 Materials and methods

2.1 Data acquisition

In the experiment, an IT8.7/5 (TC1617x) printer test chart was
utilized. The IT8.7/5 (TC1617x) Printer Test Chart is a recently
developed target utilized to characterize CMYK printers. The
IT8.7/5 (TC1617x) Printer Test Chart contains 1,617 patches, the
same number as IT8.7/4. However, 29 duplicate patches have been
removed and replaced by 29 patches from columns 4 and 5, which
were not present in IT8.7/4. As a result, the IT8.7/5 (TC1617x)
Printer Test Chart offers 1,617 different colors.

The IT8.7/5 test chart was printed on the XL75 four-color offset
press, manufactured by Heidelberg, Germany. The machine was
purchased in 2008. Heidelberg Supermaster, Germany, was used as
the printing plate maker. 200 LPI AM screening was used, with a dot
pattern for the square and roundmesh.The screening resolutionwas
2,540 dpi. The test charts were printed on 157 g/m2 double-coated
art paper from Asia Pulp & Paper Co., Ltd. (APP). The printing
environment was maintained at a temperature of 23–25°C, with a
humidity of 55% ± 5, a pH value of 4.8–5.3, an alcohol concentration
of 10% by volume, and a dampening solution temperature set at
10–12°C.

The printing sequence used was black, cyan, magenta, and
yellow. The printed target follows the ISO 15339-2-2015 CRPC6
standard, as shown in Table 1.

The primaries color target and CIEDE00 color difference
between printed samples and ISO 15339-2:2015 CRPC6 standards.
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TABLE 1 The primaries color target and CIEDE00 color difference between printed samples and the ISO 15339-2 2015 CRPC6 standards.

Patch Solid density Printed sample ISO target CIE dE00

L∗ a∗ b∗ L∗ a∗ b∗

S 0.11 92.53 0.78 −3.56 95.00 1.00 −4.00 1.57

C 1.38 55.75 −35.35 −49.37 56.00 −37.00 −50.00 0.62

M 1.46 47.92 74.69 −1.65 48.00 75.00 −4.00 0.93

Y 1.05 87.19 −6.29 92.06 89.00 −4.00 93.00 1.70

K 1.66 17.15 0.00 0.46 16.00 0.00 0.00 0.90

R — 48.44 68.14 49.49 47.00 68.00 48.00 1.55

G — 50.19 −66.15 27.99 50.00 −66.00 26.00 0.80

B — 24.97 20.21 −46.20 25.00 20.00 −46.00 0.08

The symbol  ∗  represents the values in the CIELAB color space.

FIGURE 1
Spectral reflectance of all color patches.

In the table, S represents the paper substrate, and C,M,Y,K,R,G,B
represent the solid colors cyan, magenta, yellow, black, red, green,
blue, respectively.

The printed paper was naturally dried for 1 hour prior
to measurement to ensure that the colors were sufficiently
dry. Each sheet was printed using the same target to ensure
consistent results from print to print. The spectral reflectance
measurements were carried out using an iSisXL2 spectrophotometer
from xrite, United States, purchased in January 2023. The
photometer of the measurement device has a 45/0 ring
geometry and measures at 10 nm intervals in the range of
400–700 nm. Chromaticity values are generated according to D50
illumination and the CIE 1931 2° standard observer. Figure 1
displays the spectral reflectance of IT8.7/5 color patches from
400 nm to 700 nm.

2.2 Dimensionality reduction: PCA

The PCA method is a data dimensionality reduction algorithm,
used as a preprocessingmethod for the predictionmodel. It explains
most of the interpretation of the original sample through a few
common key factors to reduce the computational complexity of the
model. In the predictionmodel for printing image spectra, assuming
that the original spectral data contain n-dimensional features, the
PCA method maps the n-dimensional features described in the
original data to the d-dimensional principal components. The d-
dimensional principal components use fewer data indicators to
describe most of the information contained in the original data,
achieving the purpose of reducing the dimensionality of the data.
Assuming that the number of samples is N, with n-dimensional
features, the original data matrix X is described as in Equation 1.

X =
[[[[

[

x11 ⋯ x1n

⋮ ⋮

xN1 ⋯ xNn

]]]]

]

= (X1,X2,⋯,Xn) (1)

where xij denotes the j-th dimensional feature of the i-th sample (i ≤
N, j ≤ n), and Xn denotes the characteristic of the n-th dimension of
the original data.

Using the PCA method, the characteristics of dimensions n can
be mapped in dimension d to obtain d new variables, where d ≤ n;
the new variables obtained are called the dth principal component
Yd of the original data, and the extracted are used as the output of
the LSSVM model, which is expressed as in Equation 2.

{{{{{{{
{{{{{{{
{

Y1 = a11X1 + a12X2 +⋯+ a1nXn

Y2 = a21X1 + a22X2 +⋯+ a2nXn

⋮

Yd = ad1X1 + ad2X2 +⋯+ adnXn

(2)

where aij are the principal component coefficients
and satisfy a2

i1 + a
2
i2 +⋯+ a

2
in = 1, i = 1,2,⋯,d, each
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principal component is uncorrelated with each other,
and the variance of the principal components satisfies
Var(Y1) > Var(Y2) > ⋯ > Var(Yd).

2.3 Deep neural network (DNN)

Machine learning is a technique for making decisions by
learning previous results and relying on patterns. Machine learning
applications fall into classification or regression categories. DNN
is a standard technique for developing regression models and is
widely used for both discrete and continuous pattern recognition.
DNN parameters analyze various patterns to ensure optimal
performance. DNNs commonly comprise a fully connected
feedforward architecture, which incorporates an input layer, a
hidden layer, and an output layer [24–26]. The input layer receives
instances from the data set. Instances from the input layer are
transmitted through multiple neurons, and the information is
processed through a series of weighted connections and biases.
Several activation functions, including Sigmoid and Relu, are
used to carry out activation in the hidden layer. The number
of target classes determines the size of the output layer. The
output layer in regression DNN is designed to predict the spectral
reflectance or other continuous quantities of a printed image. The
prediction process in regression DNN focuses on minimizing the
difference between the network’s predicted values and the actual
measurements.

2.4 Improved whale optimization
algorithm (IWOA)

The Whale Optimization Algorithm (WOA) was introduced
in 2016, drawing inspiration from the distinctive “bubble-
net” feeding strategy observed in humpback whales in their
natural habitat [28, 29]. In the framework of WOA, each
whale’s position represents a viable solution within the problem
space. During the collective feeding process, individual whales
exhibit three key behaviors: pinpointing the location of prey
and encircling it, herding the prey using a bubble net, and
participating in random exploration for prey. Assuming the
position X of each whale in an n-dimensional solution space is
X = (x1,x2,⋯,xn).

Each whale randomly selects between encircling and herding
the prey, with an equal probability for both behaviors (p =
50% for each). When encircling the prey (p < 0.5), the whale
swims towards the individual with the optimal position to
approachthe prey and its position update formula is shown in
Equation 3.

Xt+1
i = X

t
best −A|C ·X

t
best −X

t
i| (3)

where, Xt+1
i is the position of an individual whale at time t+1, Xt

best
is the position of the best individual in the population at time t, Xt

i
is the position of an individual whale at time t, and A and C are
coefficients.

When driving prey (p ≥ 0.5), in order to form a
bubble net, the whale swims toward the prey in a spiral

motion and its positional update equation is shown in
Equation 4.

Xt+1
i = |X

t
best −X

t
i| · e

bl · cos (2πl) +Xt
best (4)

where b is a constant used to define the shape of the helix; L is a
random number distributed in [-1,1].

In addition, the whale randomly looks around for
prey, randomly selecting an individual in the group
and approaching it, with its position updated by the
equation:

Xt+1
i = X

t
rand −A|C ·X

t
rand −X

t
i| (5)

where Xt
rand represents the position of a random individual at time t.

The discrepancy between Equations 3, 5 lies in the differing
range of values for parameter A. Specifically, the decision of
whether whales opt to encircle the prey or engage in random
search depends on this magnitude. When a whale opts to encircle
the prey, the whale collective contracts its search radius to
target the prey, facilitating a localized search approach, albeit
with slower convergence. Conversely, when whales embark on
a random search for prey, the whale population expands its
search radius to encompass a broader scope, allowing a global
search approach, resulting in faster convergence. However, with
a linear decrease in the control parameter a, the algorithm’s
convergence process is not linear. This discrepancy underscores
that a linearly decreasing control parameter a does not accurately
depict the optimization process. Hence, this paper proposes a
novel control parameter based on the variation of the cosine law.
The modified expression for this control parameter is as follows
Equation 6.

a = a final + (ainitial − a final)
1+ cos((t− 1)π/(tmax − 1))

2
(6)

where, ainitial and a final are the initial and final values of the
control parameter a. In this paper, we obtain ainitial = 2, a final =
0, t is the current iteration number, and tmax is the maximum
iteration number.

The control parameter a exhibits a slow decrease during the
initial iterations, thus prolonging its retention at a relatively high
value for an extended duration. Consequently, this maintains
a high value for parameter A over a longer period, thereby
enhancing search efficiency. In contrast, in the later iterations,
a decreases rapidly, facilitating its persistence at a relatively
low value for an extended period. Consequently, this maintains
A at a low value for a prolonged duration, thus improving
the search accuracy. Thus, this method effectively balances the
algorithm’s global and local search capabilities, ensuring search
stability.

2.5 Proposed model

The spectral model of the printing press is characterized by
inputting the four characteristic quantities of cyan (C), magenta
(M), yellow (Y), and black (K) into the color reflectance prediction
model (xi = [C,M,Y,K]i), and the corresponding measured spectral
reflectance as the output of the model (yi = [Y1,Y2,⋯Ym]i).

Frontiers in Physics 04 frontiersin.org

https://doi.org/10.3389/fphy.2024.1429621
https://www.frontiersin.org/journals/physics
https://www.frontiersin.org


Tian et al. 10.3389/fphy.2024.1429621

FIGURE 2
Architecture of the color prediction model.

FIGURE 3
Flowchart of the proposed prediction model.

Therefore, the dataset containing N sets of samples used for
the characterization of the printing press spectral model is
{(xi,yi), i = 1,2,⋯,N}.

The proposed DNN model comprises an input layer, three
to five hidden layers, and an output layer (Figure 2). The input
layer includes neurons representing the sixteen input features, and
the output layer includes seven neurons representing the seven

principal components of the 31 spectral reflectance we want to
predict.

The framework of the proposed model for color reflectance is
shown in Figure 3. The framework consists mainly of three parts.
The first part is the preprocessing of the input data. This includes
expanding the input data considering the ink overlay situation into
16 Neugebauer primary colors as new inputs based on the Demichel
equation [30, 31]. The spectral dimension of the output data is
then reduced by extracting principal components through PCA
technology. The second part mainly involves training and testing
the DNN model optimized by IWOA. The third part includes data
denormalization, data analysis, and model evaluation.

The proposed model contains the following steps:

Step 1: Pre-processing of data. Before establishing the
model, normalize all experimental data to [0, 1]
using the Equation 7.

x′i = (xi − xmin)/(xmax − xmin) (7)

where xi is the original data, x′i is the normalized data, xmin is the
minimum value, and xmax is the maximum value.

Step 2: Input data preparation. The process begins with the use
of the IT8.7/5 (TC1617x) printer test chart, specifically
designed to characterize CMYK printers. This chart
facilitates the generation of a diverse range of printed colors
by combining four basic inks in various proportions. The
traditional CMYK inputs are expanded to encompass 16
Neugebauer primary colors. This expansion is based on the
Neugebauer equation, which models the superposition of
halftone inks with the objective of capturing more precise
color interactions and improving prediction fidelity. For
the four input data: cyan (C), magenta (M), yellow (Y) and
black (K), 16 new input values are obtained according to the
Neugebauer model and the Demichel Equation 8, which are
calculated as follows:
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TABLE 2 Descending eigenvalues and contribution rates.

Main ingredient Variance
explained/%

Cumulative
contribution

rate/%

1 74.6994 74.7002

2 19.1866 93.8869

3 5.4334 99.3204

4 0.6087 99.9291

5 0.0405 99.9696

6 0.0165 99.9861

7 0.0101 99.9962

8 0.0026 99.9988

9 0.0011 99.9999

X1 = (1−C)(1−M)(1−Y)(1−K)

X2 = C(1−M)(1−Y)(1−K)

X3 =M(1−C)(1−Y)(1−K)

X4 = Y(1−C)(1−M)(1−K)

X5 = CM(1−Y)(1−K)

X6 = CY(1−M)(1−K)

X7 =MY(1−C)(1−K)

X8 = K(1−C)(1−M)(1−Y)

X9 = CK(1−M)(1−Y)

X10 =MK(1−C)(1−Y)

X11 = YK(1−C)(1−M)

X12 = CMK(1−Y)

X13 = CYK(1−M)

X14 =MYK(1−C)

X15 = CMY(1−K)

X16 = CMYK

(8)

Step 3: Data output processing. Given the high dimensionality of
spectral data (31 dimensions), PCA is employed to reduce
the dataset to 7 principal components. This reduction
maintains 99.99% of the original information, effectively
minimizing computational load while preserving essential
spectral characteristics.

Step 4: DNNparameter optimization.The fundamental component
of the prediction model is a deep neural network (DNN)
that has been configured to learn the intricate relationships
between the expanded Neugebauer primary colors and
the corresponding spectral reflectance values. To further

enhance the DNN’s performance, the Improved Whale
Optimization Algorithm (IWOA) has been integrated
to fine-tune the network’s hyperparameters. The IWOA
optimizes the parameters of the hidden layers, thereby
ensuring that the DNN achieves optimal predictive
accuracy. Training sample data are taken from 80%
of the data in the data set and the corresponding
spectral data is taken as the model output. The IWOA
optimization algorithm is applied to determine if the
specified termination conditions are met, in order to obtain
the optimal parameters that satisfy the conditions.

Step 5: Build the DNN regression model. The IWOA iteratively
adjusts the DNN’s parameters based on a fitness function
designed to minimize prediction errors (e.g., CIEDE2000
color differences). This optimization process ensures the
model is precisely calibrated to the training data. The
optimal parameters obtained in step [4] are used to establish
the prediction model. The prediction model is then used to
predict the samples of the test set.

Step 6: Model evaluation. Apply the hybrid PCA-IWOA-DNN
model for prediction and perform inverse principal
component processing and reverse normalization
processing on the output results to obtain the RMSE
and color difference for the test set and training set,
respectively, to evaluate the model. The performance
evaluation indicators for the prediction model are RMSE
and CIE DE2000 [32].

3 Results and analysis

3.1 Chromaticity evaluation method for
color difference

The CIELAB average color differences (ΔEab) is a colorimetric
assessment metric that is appropriate to evaluate color under
commonly used CIE illuminations, such as A, D50, and D65.
This metric is derived from the CIELAB color difference and is
critical to evaluating colorimetric precision [33]. The smaller the
difference, the greater the precision. Color scientists have developed
four commonly used color difference formulas, CIELAB, CMC (l:c),
CIE94, and CIEDE2000, for evaluating color differences in the color
field. Among them, CIEDE2000 is currently the color difference
formula that best approximates the uniformity of human vision.
In this paper, CIEDE2000 is employed as it represents the optimal
approach for color control and evaluation of printed materials in the
present era. The CIEDE2000 formula is shown in Equation 9.

ΔE2000 = [(
ΔL′

kLSL
)

2
+( ΔC

′

kCSC
)

2
+( ΔH

′

kHSH
)

2
+RT(
ΔC′

kCSC
)( ΔH

′

kHSH
)]

1
2

(9)

where KL, KC, and KH are weighting coefficients for lightness,
chroma, and hue, respectively. SL, SC, and SH areweighting functions
for lightness, chroma, and hue, respectively. RT is the interaction
term. KL = KC = KH = 1, as these specific values are recommended
for printed images.

The color difference between the spectral predictions of the deep
neural network (DNN) model and the measured spectral values
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FIGURE 4
Histogram of the principal component contribution rate.

was calculated using the CIEDE2000 formula. To train the model,
the loss function employs the CIEDE2000 color difference formula,
and the optimal weight coefficients are derived through the use
of the improved WOA optimization algorithm, which is based on
minimization of the color difference between the prediction and
measurement sets.

3.2 Principal component analysis of data
output processing

To reduce the 31 dimensions of the spectral data, PCA was
performed to extract the principal components of the spectral
dimensions while preserving most of the information from the
original variables. It also reduces redundant data resulting from their
cross-correlation. Table 2 presents the eigenvalues of the covariance
matrix for the seven indicator variables, and Figure 4 illustrates
the histogram that displays the principal components’ contribution.
According to the analysis of Table 2; Figure 4, selecting 7 principal
components results in a cumulative variance contribution rate
of 99.99%. This indicates that these seven principal components
capture the characteristic information of the 31 original variables.
The use of PCA successfully reduces the dimensionality of the
variable feature space compared to the 31 original output features
of the sample data. The reduced- dimensional data retains most of
the information from the original variables while reducing the data
redundancy caused by their cross-correlation.

3.3 Model analysis

On the basis of the CMYK and spectral reflectance values
acquired from the color target measured by the spectrophotometer,

TABLE 3 CIEDE2000 color differences for training and testing data sets
under D50/2°.

Experiment number All datasets

95th percentile Mean Max

1 1.7371 0.6408 2.6022

2 1.3684 0.4934 2.3215

3 1.6249 0.5864 2.3721

4 1.8726 0.4757 2.6031

5 1.5796 0.5330 2.4681

a hybrid PCA-IWOA-DNN model is established. The IT8.7/5
(TC1617x) test chart, consisting of 1,617 data samples, was used
as training and validation sets. The color differences between the
predicted and measured values of the sets were evaluated using
two parameters: RootMean Squared Error (RMSE) and CIEDE2000
(32). Colorimetric values were calculated for the illuminant A, D50,
D65 and the CIE 1931 2° standard observer. With hidden layers set
to [20 50 30], the prediction results are as shown in Table 3.

Table 3 shows that in five experiments under D50/2° illuminant,
the minimum color difference is 0.0146, the optimal average color
difference is 0.4757, and the optimal 95th percentile is 1.3684.
The experimental results indicate that the overall color difference
deviation is lower than the values reported in the literature.
These color difference values are much lower than the common
color difference requirements for the color reproduction of OK
printed products in the printing industry. Figure 5 shows the
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FIGURE 5
Histogram of CIEDE2000 color differences for training and testing data sets.

FIGURE 6
Chromaticity coordinates of the test set (A); Chromaticity coordinates predicted by the proposed model (B).

distribution of the total CIEDE2000 color differences between
the training and validation sets under a D50/2° light source in
experiment 4. From Figure 5, it can be seen that the maximum color
difference at the 95th percentile is 1.8726.

Figure 6 shows the comparison between the chromaticity
coordinates of the test set and the chromaticity coordinates
predicted by the proposed model. Through their coordinate
distributions in the CIE1931xy chromaticity diagram, we can
see that the predicted chromaticity coordinates and the actual
chromaticity coordinates of the test set have a high degree of
overlap, and better prediction results are obtained. The general
overview of the mean and minimum color differences is shown in
Table 3.

3.4 Comparison between the proposed
model and other models

Compared to traditional Clapper-Yule and Williams-Clapper
model [1, 11–13, 34], Yule-Nielson [9, 31, 35–38], ANN-BP neural
networks [39], the hybrid PCA-IWOA-DNN model significantly
improves the accuracy of fitting and the overall distribution of color
differences while requiring fewer training samples. In Experiment 5,
the prediction results of these models are shown in Table 4.

The method proposed in this study indicates the lowest color
difference values under three common light sources, suggesting
a potential improvement in color accuracy. Table 4 shows that
the hybrid PCA-IWOA-DNN model effectively captures the
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TABLE 4 CIEDE2000 Color differences of existing legacy methods under A, D50 and D65.

Methods A/2° D50/2° D65/2°

95thc Mean 95thc Mean 95thc Mean

Clapper-Yule 6.140 3.699 6.425 3.691 6.522 3.674

Yule-Nielsona 5.278 2.516 5.103 2.442 5.029 2.413

ANN-BPb 2.702 0.826 2.744 0.836 2.739 0.084

Proposed 1.728 0.530 1.580 0.533 1.605 0.531

aThe corresponding n value is n = 1.7.
bThe ANN-BP network has a single hidden layer with 20 layers.
cThe 95th represents the 95th percentile.

FIGURE 7
Spectral reflectance of predicted (A) and measured (B) on testing datasets.

complex relationships in the data, leading to improved accuracy
in color difference prediction. The model uses an improved
whale optimization algorithm for optimization and DNN for
prediction. As shown in Figure 7, it compares the predicted
spectral reflectance of the test set with the measured spectral
reflectance.

Based on the results presented in Figure 7, our proposed
models appear to outperform conventional models in predicting
color reflectance and provide a better match between spectral
predictions and actual measurements. The model performs
exceptionally well in primary colors, light tones, and dark tones.
The figure compares the predicted and actual reflectance values
for various colors, including cyan, magenta, yellow, red, green,
blue, black, and the corresponding halftone colors. The left side
represents the model-predicted spectral reflectance, while the right
side represents the actual spectral reflectance measured by the

spectrophotometer. By comparing the color differences between
the actual measurements and predicted values, the effectiveness
of the prediction model can be validated, confirming its ability to
predict the spectral reflectance characteristics of different shades of
colors. As shown in the figure, the predicted reflectance values in
the test set align well with the actual measured spectral reflectance
values.

4 Conclusion

This study addresses the persistent challenges in colour
prediction within the printing industry by developing an innovative
hybrid spectral reflectance prediction model. The proposed model
represents a significant advancement in the accuracy and reliability
of colour reproduction in printed images through the synergistic
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combination of a physics-based prior model with an optimised
Deep Neural Network (DNN) enhanced by the Improved Whale
Optimization Algorithm (IWOA).

By conducting meticulously designed experiments with the
IT8.7/5 (TC1617x) printer test chart, comprehensive datasets
encompassing CMYK values and their corresponding spectral
reflectance measurements were acquired. By employing principal
component analysis (PCA) for dimensionality reduction, the
31-dimensional spectral data were effectively condensed into
seven principal components, thereby retaining 99.99% of the
original information. This reduction not only minimised data
redundancy but also enhanced computational efficiency, thereby
facilitating faster model training and prediction processes. The
model exhibited remarkable performance when evaluated under
the standardised D50/2° illuminant conditions. The minimum
colour difference (CIEDE2000) observed was as low as 0.0146,
with an optimal average ∆E00 of 0.4757 and a 95th percentile
value of 1.3684. These results demonstrate that the proposed
model exhibits superior accuracy compared to traditional
models, including Clapper-Yule, Yule-Nielsen, and ANN-BP.
The model’s capacity to predict spectral reflectance without
accounting for dot gain further simplifies the printing process,
making it both cost-effective and efficient, particularly in the
context of CMYK printing, where black ink introduces significant
complexity.

The objective of our future research is to expand the applicability
of the model to a broader range of printing materials and
techniques. This includes an evaluation of the model’s performance
on specialized substrates, such as coated papers, plastic films, and
various fabric types, as well as an integration of the model into high-
resolution and hybrid printing systems. Furthermore, the model’s
adaptability to evolving printing technologies will be enhanced by
improving its computational efficiency, thereby enabling real-time
color prediction and quality control. However, several challenges
must be addressed, including the unique optical properties of
different materials and the complex interactions of multiple printing
parameters, such as ink viscosity, pressure, and speed. It is
essential to ensure that the model remains robust against overfitting
while maintaining high prediction accuracy across diverse data
distributions.
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