
Sensitivity analysis of
non-uniform rational
B-splines–based finite element/
boundary element coupling in
structural-acoustic design

Yanming Xu1* and Sen Yang1,2

1Henan International Joint Laboratory of Structural Mechanics and Computational Simulation, College of
Architectural and Civil Engineering, Huanghuai University, Zhumadian, China, 2College of Architecture
and Civil Engineering, Xinyang Normal University, Xinyang, China

For the purpose of modeling the acoustic fluid-structure interaction using direct
differentiation method and conducting a structural-acoustic sensitivity analysis, a
coupling approach based on the finite element method and the fast multipole
boundary element method is suggested. Non-uniform rational B-splines
isogeometric analysis bypasses the difficult volume parameterization
procedure in the isogeometric finite element method and the time-
consuming meshing process in classical finite element/boundary element
method, allowing numerical analysis on computer-aided design models to be
completed directly. The finite element/fast multipole boundary element method
based on non-uniform rational B-splines isogeometric analysis enables the
numerical prediction of the effects of arbitrarily formed vibrating structures on
the sound field. Several numerical examples are shown to demonstrate the
usefulness and efficiency of the proposed method.
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1 Introduction

The investigation of acoustic radiation or scattering from elastic objects in fluid is a
common topic. Acoustic fluid-structure interaction problems Junger and Feit [1] can only
be analytically solved when the structure has simple geometry and boundary conditions.
More complex geometries in real life make analytical solutions unfeasible; thus, effective
numerical techniques need to be developed.

The finite element method (FEM) has been widely used to study the dynamic behavior
of issues including acoustics, fracture mechanics, electromagnetics, and fluid-structure
interactions. However, when modeling infinite domains, there are several issues with the
FEM. As is well known, because BEMprovides excellent accuracy and simple mesh creation,
it has been employed successfully to solve acoustic problems. The Sommerfeld radiation
condition at infinity is quickly met, especially for external acoustic issues SOMMERFELD
[2]. Using the Galerkin technique for BEM implementation, the boundary integral problem
has been quantitatively addressed Engleder [3]; Chen et al. [4]. Nonetheless, the collocation
approach has always been preferred by the technical community. As a result, the coupling
FEM/BEM technique is appropriate for examining fluid-structure interaction issues
Everstine and Henderson [5]; Fritze et al. [6]; Chen et al. [7].
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However, coupling analysis of underwater structural-acoustic
problems remains the bottleneck of high computational cost because
CBEM generates a dense and non-symmetric coefficient matrix that
requires O(N3) arithmetic operations to directly resolve the equation
system, for example, when employing the Gauss elimination
approach. Many techniques have been used to speed up the
resolution of the integral problem, including the fast multipole
method (FMM), the fast direct solver, and the adaptive cross
approximation approach. Martinsson and Rokhlin [8,9] created
the fast direct solver. It works well for issues requiring somewhat
ill-conditioned matrices and rapidly produces a simplified
factorization of the matrix’s inverse. The adaptive cross
approximation technique developed by Bebendorf and Rjasanow
[10] generates blockwise low-rank approximants from the BEM
matrices for situations requiring a large number of repetitions.

Since FMM was developed, it is now possible to solve the CBEM
system of equations more rapidly Greengard and Rokhlin [11];
Coifman et al. [12]; Rokhlin [13]. Therefore, large-scale fluid-
structure interaction issues may be handled by employing a
coupling technique based on FEM/fast multipole boundary
element method (FEM/FMBEM) Schneider [14]. The coupling
method FEM/FMBEM is also suggested by this work to address
the difficult fluid-structure interaction challenges.

Increasingly, architects and designers are considering noise
control through structural geometry modifications. This
structural-acoustic optimization offers a significant deal of
potential to reduce radiated noise Kim and Dong [15]; Chen
et al. [16]; Qu et al. [17]. Acoustic design sensitivity analysis is a
crucial step in the processes of acoustic design and optimization
since it can show how a geometry change affects the structure’s
acoustic performance. A summary of the development of structural-
acoustic optimization for noise removal is provided by Marburg
[18]. Due to its ease of use, the finite difference method (FDM) has
been widely applied in structural-acoustic optimization Lamancusa
[19]; Hambric [20]; Marburg and Hardtke [21]. However, this
method performs poorly, particularly when several design
parameters are taken into account simultaneously. Use the direct
differentiation method (DDM) Zheng et al. [22]; Liu et al. [23] or the
adjoint variable method (AVM) Choi et al. [24]; Wang [25] to solve
this issue. It is well knowledge that the most time-consuming part of
the gradient-based optimization process is the sensitivity analysis for
the fluid-structure interaction issue. This study subjects the coupling
technique FEM/FMBEM to the structural-acoustic sensitivity
analysis based on DDM to expedite the analysis.

FEM and BEM may be used in computer-aided engineering
(CAE), with the aid of appropriate software. However, as part of the
preprocessing stage, modern CAE demands that the models created
by CAD software be transformed into simulation-ready models.
Geometry mistakes are caused by the CAE’s transmission of
geometric model data. The combination of BEM with geometric
modeling and numerical simulation using isogeometric analysis
(IGA) Hughes et al. [26]; Chen et al. [27]; Shen et al. [28] is one
suggested solution to this issue Simpson et al. [29,30]. Thanks to
IGABEM, geometric mistakes and time-consuming preprocessing
procedures may be avoided, and numerical simulation may be
carried out straight from the precise models. Since its inception,
IGABEM has been used to address a wide range of issues, including
elastic mechanics Scott et al. [31], potential problems Takahashi and

Matsumoto [32]; Chen et al. [7]; Zhang et al. [33], heat transfer
problems Cao et al. [34], wave propagation Ginnis et al. [35]; Chen
et al. [36]; Zhang et al. [37–40], fracture mechanics Shen et al. [41],
electromagnetics Simpson et al. [42]; Xu et al. [43]; Chen et al. [44];
Li et al. [45]; Qu et al. [46–48], and structural optimization Chen
et al. [49]; Xu et al. [50]; Li et al. [51]; Chen et al. [52]; Lian et al. [53];
Chen et al. [54]; Lu et al. [55]; Chen et al. [56]. In this work, the non-
uniform rational B-splines (NURBS) IGABEM is employed.

In this study, NURBS IGA is utilized in model constructing to
eliminate geometric mistakes and increase calculation accuracy.
FEM and BEM are combined to form structural-acoustic
coupling sensitivity analysis. FMM is applied to speed up the
calculation procedure. For problems requiring fluid-structure
interaction and structural acoustic sensitivity evaluations,
coupling FEM/FMBEM is advised. Numerical examples illustrate
the accuracy and efficiency of this approach.

2 Derivation of the non-uniform
rational B-splines (NURBS)

This section gives the basic NURBS concepts that form the
foundation of the isogeometric analysis. For further details, the
readers are referred to Hughes et al. [26]. A fundamental concept in
NURBS is the knot vector, which is composed of a set of non-
decreasing real integers expressed as in Eq. 1.

Ξ � ξ1, ξ2, . . . , ξn+p+1[ ], ξa ∈ R, (1)

where ξi is the real integer, a is the knot index, p is the polynomial
order, and n is the total number of basis functions. A knot vector

FIGURE 1
The one-dimensional parametric space for a knot vector.

FIGURE 2
Diagram of the spherical shell model with incoming wave.
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FIGURE 3
Sound pressure at location (3, 0, 0) for spherical shell model, numerical result vs. analytical result. The radius r = 0.9 m, shell thichness t = 0.009 m.

FIGURE 4
Sensitivity of sound pressure to shell thickness at location (3, 0, 0) for spherical shell model, numerical result vs. analytical result. The radius r=0.9 m,
shell thichness t = 0.009 m.
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may be conceptualized as a one-dimensional parametric space, as
Figure 1 illustrates.

The B-spline basis functions for a particular knot vector are
expressed using the Cox-de Boor recursion formula. For p � 0, we
have Eq. 2. And we have Eq. 3 for p≥ 1.

Na,0 ξ( ) � 1 if ξa ≤ ξ < ξa+1,
0 otherwise,

{ (2)

Na,p ξ( ) � ξ − ξa
ξa+p − ξa

Na,p−1 ξ( ) + ξa+p+1 − ξ

ξa+p+1 − ξa+1
Na+1,p−1 ξ( ). (3)

B-spline basis functions are well-suited for numerical analysis
due to their many beneficial properties, such as linear independence.
The B-spline curve may be produced by linearly mixing B-spline
basis functions and control points, as shown in Eq. 4.

x ξ( ) � ∑n
i�1

Na,p ξ( )Pa,p, (4)

where x is the B-spline curve, and the coefficient Pa,p denotes the
coordinates of the control point. This means that the basis function

of a B-spline curve is the translation of a parametric one-dimensional
space into real space. The following two-dimensional parametric spaces
have a knot vector in each dimension, as shown in Eqs 5, 6.

ξ1, ξ2, . . . , ξn+p+1[ ], ξa ∈ R, (5)
η1, η2, . . . , ηm+l+1[ ], ξb ∈ R. (6)

The B-spline surface may be constructed using the tensor product
property, as shown in Eq. 7.

x ξ, η( ) � ∑n
a�1

∑m
b�1

Na,p ξ( )Nb,l η( )Pa,b, (7)

where the matching number of the basis function in each dimension
is denoted by n and m. It should be noted that the lack of the
Kronecker delta characteristic means that B-spline control points
are typically not on the surface.

NURBS is used to expand B-splines by associating a weight
coefficient with each control point. With NURBS, designers may
accurately represent a variety of curves with conic segments, such as
circles and ellipses, and increase control over the curves without
increasing the number or degree of control points. Eqs 8, 9 represent
the B-spline basis functions in two dimensions, from which the
NURBS basis functions are generated.

Ra,b ξ, η( ) � Nb,p ξ( )Nb,l η( )wa,b

W ξ, η( ) , (8)

W ξ, η( ) � ∑n
a�1

∑m
b�1

Na,p ξ( )Nb,l η( )wa,b. (9)

in which w is the weight coefficient.
NURBS surfaces are defined using NURBS basis functions

and control points, as shown in Eq. 10, in a manner akin to that of
B-spline surfaces. We may recast Eq. 10 as Eq. 11 by utilizing the
global index A to iterate between basis functions or
control points.

x ξ, η( ) � ∑n
a�1

∑m
b�1

Ra,p ξ( )Rb,l η( )Pa,b. (10)

x ξ, η( ) � ∑NA

A�1
RA ξ, η( )PA. (11)

FIGURE 5
(A) Sound pressure on the spherical shell surface at frequency of 300 Hz. (B) Sound pressure on the spherical shell surface at frequency of 500 Hz.
(C) Sound pressure on the spherical shell surface at frequency of 700 Hz. Sound pressure at frequencies of 300 Hz, 500 Hz, and 700 Hz on the spherical
shell surface. The radius r = 0.9 m, shell thichness t = 0.009 m.

FIGURE 6
Diagram of the diesel engine box model.
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The knot insertion operator can be used to add
more control points without changing the structural
shape. This feature contributes to improving the

accuracy of predicting physical fields while
preserving geometric correctness by using the h-
refinement approach.

FIGURE 7
Sound pressure at location (1, 0, 0), (5, 0, 0) and (10, 0, 0) for diesel engine box model. The shell thichness t = 0.01 m.

FIGURE 8
Sensitivity of sound pressure to shell thickness at location (1, 0, 0), (5, 0, 0) and (10, 0, 0) for diesel engine box model. The shell thichness t = 0.01 m.
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3 Derivation of structural-acoustic
interaction analysis

3.1 Derivation of boundary element method

The time-harmonic wave field of sound in the Helmholtz
equation is described by Eq. 12.

2p x( ) + k2p x( ) � 0, (12)
in which the wave number is k and the sound pressure is p.

A boundary integral equation unique to the structural boundary
Γ may be constructed from Eq. 12 to Eq. 13.

c x( )p x( ) + ∫
Γ
F x, y( )p y( ) dΓ y( )

� ∫
Γ
G x, y( )q y( ) dΓ y( ), x, y ∈ Γ, (13)

where the source point is x, the field point is y, the Green’s function
is G (x, y), the intensity of the incoming wave is p, the normal
derivative of p is q, q(y) = iρωv(y), the structure material’s density is
ρ, the frequency of incoming wave is ω, the normal velocity is v, and
the normal derivative of G is F. If the boundary Γ is smooth near the
source point x, then c(x) = 1/2.

In three-dimensional situations, the Green’s function G (x, y)
may be expressed using Eq. 14 for acoustic concerns.

G x, y( ) � eikr

4πr
, (14)

in which r � |y − x| is the distance between x and y.
The derivative of the integral representation in Eq. 13 with

respect to the outer normal at point x may be represented as Eq. 15
in situations when the source point x has a smooth border Γ.

1
2
q x( ) + ∫

Γ

∂F x, y( )
∂n x( ) p y( ) dΓ y( ) � ∫

Γ

∂G x, y( )
∂n x( ) q y( ) dΓ y( ). (15)

It is generally known that applying a single Helmholtz boundary
integral equation to issues needing external boundary values is
challenging due to nonuniqueness. The nonuniqueness problem

is effectively handled in this work by utilizing the Burton-Miller
technique Burton and Miller [57], which combines the linear Eqs
13, 15. The singular boundary integrals caused by Eqs 13, 15 may
also be directly and effectively computed using the Cauchy
principal value and the Hadamard finite part integral
technique Zheng et al. [22].

One can get the system of linear algebraic equations
represented in Eq. 16, if the border Γ is split up into elements
by combining all of the center-of-element collocation point
equations and displaying them using matrix representations
Ciskowski and Brebbia [58].

Hp � Gq + pi, (16)
in which the coefficient matrices are H and G, the nodal pressure
caused by the incoming wave is pi.

3.2 Derivation of finite element method

This section contains expressions related to the structural-
acoustic analysis as described in detail by researchers Fritze et al.
[6]; Chen et al. [59]. The steady-state reaction of the structure may
be deduced from the frequency-response analysis if it is subjected to
a harmonic load. Eq. 17 derives the linear system of the structural-
acoustic equation.

K + iωC − ω2M( )u ω( ) � Au � f ,
A � K + iωC − ω2M,

(17)

where the stiffness matrix is K, the damping matrix is C, the mass
matrix isM, the nodal displacement vector is u, the imaginary unit is
i � ���−1√

, the excitation frequency is ω, and the complete
excitation is f.

It should be noted that damping may result in a noticeable
phase angle in the steady-state response, even though it keeps the
same frequency with the applied load. If the load is not harmonic,
Eq. 17 can still be applied by decomposing the time-dependent
impulses into the frequency domain. In order to take into account
the effects of the acoustic pressure applied to structural surfaces

FIGURE 9
(A) Sound pressure on the diesel engine’s surface at frequency of 100 Hz (B) Sound pressure on the diesel engine’s surface at frequency of 200 Hz.
(C) Sound pressure on the diesel engine’s surface at frequency of 300 Hz. Sound pressure at frequencies of 100 Hz, 200 Hz, and 300 Hz on the diesel
engine’s surface. The thichness t = 0.01 m.

Frontiers in Physics frontiersin.org06

Xu and Yang 10.3389/fphy.2024.1428875

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2024.1428875


on various aspects, a coupling matrix is included to move the
structural nodal load from the fluid effect to fluid nodal pressure.
Eq. 18 might thus be used to define the whole excitation, which
combines the structural load and the acoustic load.

Au � Csfp + fs � f ,

Csf �∫
Γint
NT

s nNfdΓ,
(18)

whereNs is the interpolation function in structure, n is the structural
surface’s outward normal direction, Nf is the interpolation function
in fluid, Γ is the interaction surface, Csf is the coupling matrix, p is
the fluid nodal pressure, and fs is the structural load.

The structural nodal load is directed from the fluid effect to the
fluid nodal pressure via the coupling matrix Csf. The nodal
displacement may then be determined using Eq. 19.

u � A−1f . (19)

3.3 Derivation of FEM/BEM
interaction analysis

The exact formulae for FEM/BEM modeling were published by
Fritze et al. [6], and this section contains related equations. The
continuity constraint over the interaction surface connects the
governing equations from the previous section, as shown in Eq.
20. Next, it makes sense to express the normal velocity v as a
function of the displacement u, in line with Eq. 21.

q � −iωρv, (20)
v � iωS−1Cfsu,

S � ∫Γint
NT

f NfdΓ,
Cfs � CT

sf .

(21)

We can get Eq. 22 by combining Eqs 16, 20, 21. Eqs 17, 22 may be
combined to form an equation system, as demonstrated in Eq. 23.

Hp � ω2ρGS−1Cfsu + pi. (22)
A −Csf

−ω2ρGS−1Cfs H
[ ] u

p
{ } � fs

pi
{ }. (23)

Since the direct iterations on Eq. 23 converge slowly, solving
the system equation directly would need a lot more computing
power and storage. Moreover, obtaining extremely accurate
numerical findings is challenging. We present the following
technique for solving the aforementioned non-symmetric
linear system without the need for an iterative solution. It is
possible to get the coupled boundary element equation Fritze
et al. [6] by replacing Eq. 19 in Eq. 22, as shown in Eq. 24. The
solution of the linear equations in Eq. 24 may be performed using
a sparse direct solver. To speed up the solution, FMM and the
Generalized Minimum Residual (GMRES) iterative solver
are used.

Hp − GWCsfp � GWfs + pi,

W � ω2ρS−1CfsA
−1.

(24)

4 Derivation of sensitivity analysis in
shape design

The goal of shape optimization is to identify, within
predetermined bounds, the ideal design parameters that
characterize the intended form of the given structure. Gradients
of given cost functions can be found by applying shape design
sensitivity analysis. The obtained gradients may then be used to
select which way to search for the optimal ranges of the design
variables. Therefore, the acoustic shape sensitivity research Zheng
et al. [22]; Chen et al. [60] is frequently the first and most important
phase in the process of creating and optimizing acoustic shapes. The
chain rule of differentiation is used in the direct approach to
compute the sensitivity of the function after determining the
sensitivity of the variables. Because this method is so intimately
associated with the analytical process, it is quite successful.

Eq. 25 can be generated by differentiating Eq. 17 with respect to the
design variable in the shape design sensitivity computation using FEM.

_K + iω _C − ω2 _M( )u + K + iωC − ω2M( ) _u � _Au + A _u. (25)

To get Eqs. 13, 15, 26, 27, are differentiated with respect to the
design variable in the case when the source point x is surrounded by
a smooth border Γ.

1
2
_p x( ) � ∫Γ

_G x, y( )q y( ) − _F x, y( )p y( )[ ]dΓ y( )
+∫Γ G x, y( ) _q y( ) − F x, y( ) _p y( )[ ]dΓ y( )
+∫Γ G x, y( )q y( ) − F x, y( )p y( )[ ]d _Γ y( ).

(26)

1
2
_q x( ) � ∫Γ

_∂G x,y( )
∂n x( ) q y( ) − _∂F x,y( )

∂n x( ) p y( )[ ]dΓ y( )
+∫Γ

∂G x, y( )
∂n x( ) _q y( ) − ∂F x, y( )

∂n x( ) _p y( )[ ]dΓ y( )
+∫Γ

∂G x, y( )
∂n x( ) q y( ) − ∂F x, y( )

∂n x( ) p y( )[ ]d _Γ y( ).
(27)

For three-dimensional problems, we have Eq. 28

_G x,y( )�− eikr

4πr2
1− ikr( ) ∂r

∂yi
_yi − _xi( ),

_F x,y( )� eikr

4πr3
3−3ikr−k2r2( ) ∂r

∂n y( )
∂r

∂yj
− 1− ikr( )nj y( )[ ] _yj− _xj( )

− eikr

4πr2
1− ikr( ) ∂r

∂yi
_ni y( ),

_r� r,j _yj − _xj( ).
(28)

The singular boundary integrals introduced by Eqs 26, 27 may
be computed directly and efficiently using the Cauchy principal
value and the Hadamard finite part integral technique
Zheng et al. [22].

Applying Eq. 22 and differentiating Eq. 24 with respect to the
design variable will result in Eq. 29 for the sensitivity analysis for
shape design using coupling FEM/BEM. Since the matrices are full
and asymmetric, solving Eq. 29 directly with normal BEM requires a
significant amount of computational work. FMM and GMRES, on
the other hand, can be utilized to speed up computation. Eqs 24, 29
use FMM to accelerate the matrix-vector combinations. GMRES is
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used to solve the associated sensitivity equation and the formula for
the FEM/BEM coupling.

H _p − GWCsf _p � _GX + GY − _Hp,

X � W Csfp + fs( ),
Y � _W Csfp + f s( ) +W _Csfp + _fs( ),

_W � ω2ρ _S−1CfsA
−1 + S−1 _CfsA

−1 + S−1Cfs
_A−1( ).

(29)

5 Numerical examples

In this part, numerical examples for real-world engineering problems
illustrate the effectiveness of the proposedmethod. Themethod for doing
the numerical analysis is built using our in-house Fortran code.

5.1 Spherical shell model

This subsection makes use of Figure 2’s concept of a thin
underwater spherical shell exposed to plane wave incidence. With
an amplitude of 1, the plane wave is incident in the x-direction. The
sound pressure and sensitivity at point (3, 0, 0) are examined, and
the coordinate origin (0, 0, 0) is located in the center of the spherical
shell. The radius of the spherical shell is r = 0.9 m and the shell
thickness is t = 0.009 m. Water has a density of ρf = 1.0 × 103 kg/m3,
and sound waves travel at a speed of c = 1,482 m/s in this fluid.

For the model in Figure 2, the sound pressure values at the point
(3, 0, 0) are analyzed. Figure 3 gives the numerical and analytical
results of the sound pressure. The GMRES implementation uses the
FMM approach to accelerate the linear solution. The considerable
agreement between the analytical and numerical results in Figure 3
indicates that the FMM approach maintains the extraordinary
accuracy of the conventional BEM.

Sensitivity analysis plays a crucial role in shape optimization. In this
example, the objective function is the sound pressure at position (3,0,0),
the design variable is the spherical shell’s thickness t. Figure 4 displays the
sound pressure sensitivity. As can be seen from Figure 4, the numerical
solution agrees well with the analytical solution. In addition, Figures 3, 4
show how both sound pressure and sensitivity increase significantly at
peak resonance. Furthermore, in Figure 4, the location of the sharp
increase in sound pressure sensitivity does not always correspond to the
resonance peak in Figure 3. At computed frequencies where the sound
pressure curve is generally flat, there may also be a significant sensitivity
to sound pressure. This highlights how crucial it is to investigate sound
pressure and sensitivity within a frequency range.

The sound pressure on the boundary surface of the spherical shell at
300 Hz, 500 Hz, and 700 Hz frequencies is depicted in Figure 5. The x −
y and x − z planes exhibit symmetrical feature in these figures, while the
sound pressure exhibits a phase difference along the x-axis. These
results make sense as the plane wave happens along the x-axis.

5.2 Diesel engine box model

In this section, a simplified diesel engine box shell model (as
shown in Figure 6) is used for sound field analysis under the action

of incident waves. As in Section 5.1, the plane wave is incident along
the x-direction with an amplitude of 1. Water is the fluid. The model
is located within the coordinate range where x ∈ [−0.5, 0.48], y ∈
[−0.2, 0.2], and z ∈ [0, 0.69]. The thickness of the shell is 0.01 m.
Analysis is done on the sound pressure and sensitivity at positions
(1, 0, 0), (5, 0, 0), and (10, 0, 0).

Figure 7 shows the sound pressure at positions (1, 0, 0), (5, 0, 0),
and (10, 0, 0), while Figure 8 shows how sensitive the sound pressure
is to shell thickness at the same places.

The sound pressure trend at various calculation locations in relation
to the computation frequency is similar in Figure 7. The diesel engine
model’s eigenfrequency is where the peak is located. For various
calculation sites, the sensitivity of sound pressure to shell thickness
is shown in Figure 8 in a similar trend. The peaks on both sides emerge
at comparable computational frequency when comparing Figures 7, 8.
Take note that the sensitivity in Figure 8 peaks at 340 Hz, while Figure 7
does not show this peak. As was concluded in Section 5.1, at computed
frequencies where the sound pressure is rather flat, it is possible to have
substantial sound pressure sensitivity. This emphasizes once more how
crucial it is to examine sound pressure and sensitivity over a band of
frequencies. Furthermore, in Figures 7, 8, the sound pressure and its
sensitivity decrease as the distance between the model and the
computation point increases [computation point from (1, 0, 0) to
(10, 0, 0)]. This result is reasonable considering the attenuation
of energy.

The sound pressure on themodel’s boundary surface in Figure 6 is
displayed in Figure 9 at the frequency of 100 Hz, 200 Hz, and 300 Hz.
As seen by Figure 9, the sound pressure peaks on the diesel engine
model’s surface often emerge on both sides of the structure when
stimulated by a plane incident wave in the x-direction. Additionally,
when the computational frequency exceeds a certain threshold, (e.g.,
300 Hz), the acoustic pressure peak appears on the plane that meets the
incident wave. This phenomenamay be investigated in greater detail for
various material properties, geometrical factors, and incident wave
frequencies in further studies.

The fluid effect must be taken into account while studying the
vibro-acoustic coupling problem for thin-shell designs, as the
numerical simulations unequivocally demonstrate. Consequently,
the coupling analysis must be performed. Since the mesh quality
directly affects the computational accuracy of the coupling analysis,
defining high-quality meshes is essential. This indicates that both
engineering and academics stand to gain much from the use of IGA,
such as NURBS, to improve computational accuracy.

6 Conclusion

Utilizing a coupling approach based on BEM and FEM,
sensitivity analysis and the modeling of the acoustic-structure
coupling are completed. FEM is used to simulate the problem’s
structural components. The boundary of the structure under study,
which is also the boundary of the acoustic domain, is discretized
using BEM in order to obviate the need to mesh the acoustic space.
FMM is used to accelerate the matrix-vector output. By eliminating
the need for meshing and utilizing CAD models to directly examine
the sensitivity of the structural-acoustic interaction, NURBS
IGABEM eliminates geometric errors. Sound pressure sensitivity
equations are developed for connecting structural-acoustic systems.
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To illustrate the precision and usefulness of the suggested approach,
numerical examples are shown. The suggested technique might be
used to quantitatively estimate the effect of design features on the
sound field in real-world circumstances.
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