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Beijing is one of the earliest pilot low-carbon cities in China. It was one of the first
cities in China to establish a pilot carbon market to achieve this goal. As an
emerging market, China’s carbon pricing mechanism is not yet complete. In this
context, it is crucial formarketmanagers and companies to predict carbon prices.
This study uses a Prophet-EEMD-LSTM model to predict the carbon price in the
Beijing carbon market, which significantly improves prediction performance. The
advantage of this hybrid model is that it considers the particularities of carbon
prices including trends, cyclical changes, and volatility. Considering that the
carbon market has multiple complex characteristics, the carbon price is
decomposed into multiple simple sequences using the Prophet and EEMD
models. These simple sequences were predicted using an LSTM model. The
hybrid model outperformed both econometric and single-machine learning
models in terms of carbon price prediction. Based on the findings of this
study, market managers and companies can take appropriate measures to
prevent carbon price risks. These findings are conducive to the smooth
operation of the carbon market, thereby providing sustainable support and
guidance for the development of low-carbon cities.

KEYWORDS

low-carbon city, carbon price, Prophet-EEMD-LSTM model, prediction
performance, Beijing

1 Introduction

China is becoming the world’s largest energy consumer owing to its rapid urbanisation.
Cities require a substantial amount of energy to keep the economy running smoothly
because they are hubs of economic activity. According to [1], cities consumemost of China’s
energy. Accordingly, the Chinese government implemented programmes to reduce
emissions and conserve energy. Among them, the most typical one is the “Low Carbon
City Pilot” strategy. The first batch of pilot projects covered eight cities and was
subsequently expanded in 2012 and 2017. To date, this strategy has covered 80 cities
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and one region. Beijing was one of the earliest pilot low-carbon cities
in China. Beijing was one of the first cities in China to establish a
pilot carbon market to achieve the goal of becoming a low-
carbon city.

As a policy tool for direct control of corporate carbon emissions,
although the carbon market has increased the policy constraints on
carbon emissions and carbon reduction costs for the included
companies, it provides more flexible strategies through the
trading mechanism to help companies reduce emissions. In
addition, a mature and efficient carbon market provides
opportunities for companies to cope with global competition.
However, if the carbon asset management business is not done
well, it may not only cause the loss of carbon assets and increase
operating costs but also harm businesses’ ability to compete in their
industry and interfere with their ability to grow sustainably.
Therefore, companies are increasingly concerned about the
proper management of carbon assets [2].

Formation of accurate expectations of carbon price trends is a
prerequisite for carbon asset management. By imposing a certain
price on carbon emissions, the carbon market introduced flexible
performance methods for enterprises in the short term. When the
price of carbon is low, businesses with substantial emission-
reduction costs can achieve compliance through market
transactions. When carbon prices are high, businesses with
low emission-reduction costs can increase their income
through the carbon market and hasten the implementation of
emission-reduction initiatives. In the long term, expectations of
carbon prices directly affect a company’s decision-making
regarding emission reduction investment. If a company can
accurately judge the future tendency of carbon prices, it will
adjust its carbon asset management strategy accordingly.
According to a case study of China Shenhua, [3] found that
when China Shenhua obtained excess emission allowances
through multiple market transactions, its net income was
higher than that from investments in emission reduction
technology. Achieving this goal requires a prerequisite:
enterprises must be able to predict the tendency of the carbon
price and conduct transactions at the corresponding price points
to obtain excess returns.

Theoretically, the marginal cost to the market to reduce
emissions is reflected in carbon prices. However, carbon prices
are erratic because the carbon market is still developing. The cost
of emission reduction is not yet fully reflected in the price, and the
price trend is too hazy. The regional carbon market in China is still
in its early stages of growth, and the national carbonmarket in China
has only been established since 2021. Thus, China’s carbon market
lacks a well-developed price structure. The cost of reducing carbon
emissions, issuing carbon allowances, and the supply and demand
dynamics of carbon allowances will result in significant oscillations
in carbon prices in China [4,5]. Accurate carbon price forecasting
can help policymakers prevent systemic market risks [6].
Additionally, it can reduce the exposure of market participants to
carbon market risks and boost their asset value [7]. However, carbon
pricing exhibits unstable and non-linear characteristics under the
influence of internal market mechanisms, external environmental
heterogeneity, and related regulations, making it challenging for
businesses involved in the carbon market to estimate
carbon prices [8,9].

The two primary methods for estimating carbon prices are
machine-learning and econometric models. Based on the
assumption that carbon prices are linear and normally
distributed, several researchers have employed the Autoregressive
Moving Average (ARMA) and Generalised Autoregressive
Conditional Heteroskedasticity (GARCH) models to forecast
carbon prices [10,11]. However, as [12] noted, classic
econometric models are typically unable to manage this situation
because carbon price time series have non-stationary and non-linear
properties. To solve this problem and achieve better prediction
results, some scholars have begun to use intelligent algorithms to
predict time series, such asMarkov models, support vector machines
(SVM), and backpropagation neural networks. They can accurately
detect hidden non-linear features in a time series and are not
required to meet econometric assumptions. This robust self-
learning capability compensates for the limitations of
conventional econometric models and significantly increases
forecasting accuracy.

Although machine learning models have good prediction
performance, the process is uncontrollable and ignores the actual
operating mechanism of the time series. Considering that there is a
compliance cycle in the carbon market and that the price has
obvious periodicity, this study employs both machine learning
and econometric methods to accurately forecast carbon pricing,
namely, the EEMD-PROPHET-LSTM hybrid model. This study
contributes to both theoretical research and practice. In terms of
theoretical research, the constructed hybrid model combines the
strengths of econometric and machine-learning models, which can
split and simplify the intricate characteristics of carbon prices, and
reduces the difficulty of machine learning. Compared to
econometric or machine learning models, the prediction
performance of the hybrid model is better, pointing to a new
direction for improving carbon price prediction performance. In
terms of practical contributions, this study provides market
managers with risk warnings. Market managers can implement
preventive and control measures in advance when carbon prices
change significantly. Simultaneously, it can provide a reference for
enterprises to invest in emission reduction or carbon trading.
Overall, this research provides inspiration for risk prevention for
the smooth operation of the carbon market, thereby promoting the
low-carbon development of cities.

The remainder of this paper is organised as follows. In Section 2,
the related literature is succinctly evaluated. The hybrid model used
in this study is described in Section 3 and the findings are discussed
in Section 4. Finally, Section 5 presents the empirical results and
policy implications.

2 Literature review

Investors have begun to pay attention to the climate industry as
environmental issues have become more serious in recent years.
Consequently, carbon prices have gradually received increasing
attention. The carbon price can reflect the extra cost that
enterprises pay for carbon emissions in the process of production
and operation, which will directly affect the future cash flow of
enterprises; therefore, investors will use this indicator as an
investment reference.
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The emphasis on carbon price projections in the literature has
expanded significantly over the past 10 years because of the growing
significance of carbon prices. Most early studies used linear models
based on historical price data to predict carbon prices, including the
Vector Auto Regression (VAR) and Autoregressive Moving Average
models. Additionally, several studies have simulated and forecasted
variations in carbon pricing using the Autoregressive Conditional
Heteroskedasticity (ARCH) or Generalised Autoregressive
Conditional Heteroskedasticity (GARCH) model. The carbon
market is a developing policy market that is not entirely efficient
and is easily affected by factors such as carbon market policies,
economic policy uncertainties, weather, and energy prices [13,14].
Consequently, several researchers have included these indications in
the carbon price prediction model, which has improved the model’s
ability to make predictions. In summary, all of these models were
constructed based on the assumption that carbon prices are linear
and normally distributed.

[15] introduced an empirical mode decomposition (EMD)
model to transform the initial carbon price series into more
regular subsequences and then carried out an in-depth analysis
of the subsequences individually. [16] also revealed that data
preprocessing decomposition models can improve the prediction
accuracy of carbon pricing considering the high inherent complexity
and non-linearity of the time series. Initially, the EMD model was
proposed by [17] of NASA for the first time on the basis of
instantaneous frequency to propose a new signal processing
method and was improved the following year. The fundamental
idea behind this model is to stabilise the signal and sequentially
separate the time series of various scales in the signal. This strategy is
frequently used when dealing with non-stationary and non-linear
time series data. After decades of development, the EMD method
has gradually formed a complete and independent theoretical
system. The EMD model has been widely used in various fields
and mainly focuses on time-series analysis and forecasting.

In natural science research, EMD has been applied to physical
geographic detection, biological signal processing, meteorological
analysis, and prediction [18–20]. In mechanical engineering, many
scholars have applied this method to mechanical fault diagnosis. To
adjust the numerical control codes to account for the systematic
errors of surface parts, [21] employed the EMD approach to separate
machining defects into systematic and random errors. In economics,
the EMD approach has recently been employed for output and price
forecasting. [22] analysed food and agricultural prices using the
EMD model. Based on this model, some scholars have predicted
crude oil prices [23] and electricity prices [15]. Furthermore, using
the EMD model, [24] forecasted the energy usage in a paint
workshop. This approach has also been used to predict carbon
prices [25,26].

Since then, EMD has been used more frequently in data
preprocessing and has performed well. However, improvements
should be sought because the EMD algorithm is susceptible to
mode mixing. Wu and Huang [27] proposed an Ensemble
Empirical Mode Decomposition (EEMD) model to solve this
issue. They introduced white noise to the data, allowing them to
be automatically assigned to the appropriate reference scale and
preventing pattern mixing. In addition to developing the model
itself, some scholars have found that combining the EMD model
with other methods can improve its fit and predictive capabilities.

According to Liu et al. [28], the predictive effects of mixed models
using several approaches are typically superior to those of a single
model. Subsequently, a few hybrid models based on EMD have been
proposed, including EMD-ARIMA, EMD-VAR [29], and EMD-
PSO [30] respectively. All of their studies showed that when
compared to a single model, the prediction accuracy of the
proposed combination model greatly improved.

Although there is certainly opportunity for development, the
aforementioned innovative algorithms are all static networks,
making it challenging to accurately portray a dynamic financial
market. Because deep learning imitates the functioning of the
human brain, it is thought to be closer to artificial intelligence
and produces more accurate predictions. According to [31], long
short-term memory (LSTM) is a powerful recursive iterative neural
network for deep learning. It is built using a recurrent neural
network (RNN) that has memory and is capable of feeding back
the input from a previous step to the present phase to fulfil the needs
of a dynamic system. Consequently, LSTM has recently been used in
financial markets in place of language systems, image recognition,
and machine translation, such as stock price prediction, exchange
rate prediction for the euro versus the US dollar [32], and
commodity price prediction [28]. These academic studies have
demonstrated that LSTM is both practical and efficient in the
field of financial market forecasting and that it has superior
predictive power compared to currently used models. To assess
the complicated price data, the LSTM approach and the EEMD
model were used together. The historical electricity consumption
data were divided using the EEMD approach of [33], who then used
LSTM to predict high--and low-frequency data.

It is demonstrated that EEMD-LSTM performs better in
prediction than either of the two models alone. The hybrid
model was applied to forecast stock prices [34], gold prices [35],
precious metal prices [36], and more. However, as both EMD and
EEMD model are prone to frequent mode mixing during
decomposition, which negatively affects their decomposition
results, some scholars combined the complete ensemble empirical
mode decomposition (CEEMDAN) model which is improved from
the EEMD model and LSTM model to predict the carbon price, and
found this hybrid model has a more accurate prediction [37,38].
Subsequently, to further decompose the carbon price data, [39]
proposed a five-step hybrid approach based on CEEMDAN model
for carbon price, including feature selection technique, Grey Wolf
Optimizer, variational mode decomposition, and LightGBM. [40]
adopted another method to improve the accuracy of carbon price
decomposition, namely the improved complete ensemble empirical
mode decomposition (iCEEMDAN) model, and then applied the
LSTM model in the prediction process. What these studies have in
common is that they are committed to breaking down carbon price
data more thoroughly.

Unfortunately, no matter how thoroughly the data is broken
down, these model’s inability to identify the periodicity of the data
itself prevents it from being a reliable predictor of carbon pricing.
Carbon prices are highly cyclical since the carbon market is a policy-
based carbon market where allowances are allocated and cancelled
once a year. During regular time, the carbon price fluctuates less.
During the period of carbon allowance allocation and cancellation,
the market becomes more active, and the carbon price fluctuates
stronger [41]. Since carbon prices have obvious periodicity, it is
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necessary to extract the different periodic characteristics of the data
before decomposing the carbon price data, so as to increase the
effectiveness and interpretability of the data decomposition. In this
background, the Prophet model is suitable for identifying this
feature of the data [42,43]. Energy economics employs the
Prophet model because energy consumption exhibits a clear
seasonal rhythm. In a study by [44], a Prophet model was
proposed for heat load forecasting, and it was proven that this
model is superior for this purpose. In addition, the Prophet model
was employed by [24] to forecast a company’s energy usage, and the
findings demonstrated its strong predictive power.

3 Methods and data

3.1 Methods

3.1.1 Prophet model
Prophet was originally proposed for business forecasting and is

an open-source time-series forecasting model published by
Facebook [45]. It focuses on a thorough examination of the traits
and temporal dynamics of time series data to forecast future
development trends. The Prophet model can model and fit the
original time-series data and is highly sophisticated. It can
automatically fill in the gaps in the original data throughout the
modelling process. Both the sensitivity and adjustment capacity to
adjust are outstanding. The fundamental idea is based on trend term
modelling, which combines periodicity and particular mutation
sites. The Prophet model first evaluates the overall trend of the
initial data, node-divides the array into segments, and performs
segment fitting. Owing to the apparent periodicity that typically
characterises business actions, the Prophet model builds a Fourier
series to identify a periodic function that suits the present array.

In summary, the Prophet model employs an accumulation mode
that superimposes numerous model components, the most crucial of
which is the gt trend term function. This intricate function, which is
employed to examine traits other than cyclical changes in the
complete model, determines the changing trend of the model.
Regular change trends such as annual, quarterly, monthly, daily,
and other cycles are represented by function st. A particular node
with missing data is predicted by the function ht. The official
Prophet website reflects the missing data caused by outages due
to holidays and celebrations in the United States, such as birthdays
and holidays. In this study, we analysed the data and found that
carbon prices did not have obvious holiday characteristics; therefore,
we moved ht out of the model. The Prophet model is shown in Eq. 1,
εt represents the fluctuation caused by random errors, with the aim
of generating the forecast results.

yt � gt + st + εt (1)

The trend function serves as the central component of the model
because, as previously mentioned, the Prophet model is based on the
general trend of the array. The saturated growth and piecewise linear
models are the two primary models. Within the definition domain,
the trend of the saturated growth model does not expand
indefinitely. Instead, it increases to a certain point and then
levels out, becoming gentle rather than steep, although its value

still changes slightly. The price of carbon can fluctuate without a cap,
which is not consistent with the saturated growth model; therefore, a
piecewise linear model is applied to fit the trend of carbon prices.
There will likely be an abrupt change in carbon price data at some
points. Fortunately, Prophet allows customisation of the position of
the mutation point. Prophet offers two options: one is to choose the
mutation point manually, and the other is to choose the mutation
point automatically using an algorithm. In this study, the second
method was used to identify the locations of the mutation points.
The piecewise linear function model is expressed as Eq. 2:

gt � k + α t( )Tδ( )t + m + α t( )Tγ( ) (2)

where k and m are the initial growth rates, δ represents the change in
growth rate, γ is the location ofmutation points and is set equal to -sjδj,
sj is the current timestamp, and the definition of α(t) is shown in Eq. 3:

aj t( ) � 1, t≥ sj,
0, otherwise

{ (3)

Prophet will choose at least 25 change points when
automatically capturing change points and will only set the
change point area to the first 80% of the time-series data.
Additionally, it relies on the realism of the boundary constraints
for function changes. The model equally splits the time-series data
by dividing each interval and change point, given that the periodic
boundary criteria are satisfied.

All time-series forecasting models also consider cyclical
fluctuations, as does the Prophet model. Unlike conventional
prediction models, Prophet converts the trigonometric function
to a Fourier series and modifies the Fourier series to account for
the periodicity of the data in actual settings. A single periodicity is
expressed in the form of a Fourier series as shown in Eq. 4:

st � ∑N
n�1

an cos
2πnt
P

( ) + bn sin
2πnt
P

( )( ) (4)

where an and bn are parameters that can be determined as the model is
gradually fitted to carbon price data.N typically takes the value of 10 for
a series with an annual cycle and 3 for a series with a weekly cycle. P
stands for how long the timeframe. P had a value of 365.25 when the
year periodicity was set as true. Every 4 years, the leap year averages the
0. 25 after the decimal point. P has a value of 7 when the week
periodicity is set as true. In this study, the Fourier series was run twice,
once on a weekly cycle and once on an annual cycle.

The carbon market represents a new policy market. Every year,
market activity tends to increase with compliance. We presumed that
the carbon price has an annual cycle because it is typically higher at this
time of the year. Similar to the stock market, the carbon market only
conducts trading on days that are considered to be lawful working days.
Research on the stock market has discovered notable variations in
investor sentiment and stock returns on each day of the week (Mardy
and Angel, 2021), with stronger risk aversion on Mondays and higher
risk appetite on Fridays [46]. Therefore, we assumed that carbon trading
exhibits weekly cyclicality, as do carbon prices.

Building a Prophet model is a cyclic analytical process that can
be divided into four simple steps. Making a time series model is the
first step. Evaluating the model by making numerous parameter
efforts and assessing the ideal model through simulation effects is
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the second step. The third step is to directly present the problem and
manually adjust potential factors with large errors based on the
problem description. The last step is to visually present the
prediction results, reflect the problem to the operator, and then
let the operator think about how to make adjustments.

3.1.2 EEMD model
Frequency- and time-domain analyses as well as the bulk of

conventional signal processing methods rely on the Fourier
transform, which is based on the notion that the process that
generates signals is stationary and linear. In many cases, the signal
generation process is either non-stationary or non-linear. [17]
introduced the empirical mode decomposition (EMD) strategy, a
new time-frequency analysis technique, to address this issue. The
fundamental idea behind EMD is to smoothen the signal and
incrementally decompose the fluctuations of various scales in the
signal. Consequently, a series of subsequences with various
frequencies and amplitudes can be obtained along with a trend
term, in which each subsequence represents the wave mode of the
original sequence at different scales, corresponding to an intrinsic mode
function (IMF). However, there is also a problem with this algorithm: it
is prone to mode mixing. In this context, [27] proposed an EEMD
model to solve modal mixing and other problems that exist in EMD
through noise-assisted signal processing. The specific method is to add
white noise to the original signal to make the frequency distribution
more uniform and then use the EMD method to decompose it.

The following are the precise steps of EEMD decomposition:

Step 1: After adding the noise signal w(t) to the original signal
X(t), signal Xi(t) is obtained in Eq. 5.

Xi t( ) � X t( ) + ω t( ) (5)

Step 2: The upper envelopes Xmax(t) and lower envelopes
Xmin(t) are fitted using cubic spline interpolation after
identifying all of the local maxima and minima in X(t).
The current to-be-decomposed sequence is the carbon
price, which is represented by X(t), with t = 0, 1, . . ., T.
Then, the local instantaneous means of the upper and
lower envelopes at each moment are calculated through
Eq. 6 to obtain the average envelope:

mt � Xmax t( ) +Xmin t( )
2

(6)

Step 3: By eliminating the mean of the upper and lower envelope
series of the carbon price, the first IMF component is
obtained through Eq. 7:

h1 t( ) � Xi t( ) −mt (7)

Step 4: Use the Sd value shown in Eq. 8 to determine whether
h1(t) is an intrinsic module function:

Sd � ∑T
t�0 hk t( )-hk-1 t( )| |2∑T

t�0h
2
k t( ) (8)

where Sd is typically set to between 0.2 and 0.3. The screening
process is terminated if the value of Sd is less than the threshold.

Otherwise, h1(t) is viewed as a new sequence, Xi(t), to be
deconstructed, and the aforementioned iterative procedure
is repeated.

Step 5: The separation process should be repeated h1(t) k times
until Sd meets the prerequisites for the Eq. 9:

hk t( ) � h1 t( ) −mt (9)

Step 6: If hk(t) satisfies the stopping condition of the above
screening process, then hk(t) is an IMF, and hk(t) will
be separated from P(t) to obtain the remainder r(t) =
Xi(t) − hk(t).

Step 7: The entire decomposition process ends if the remaining
term r(t) is changed to a monotonic function or constant
or if the amplitude is below the predetermined threshold
value, making it impossible to further extract the IMF;
otherwise, r(t) is regarded as a new sequence, Xi(t), to be
decomposed, and Step 1 is completed before repeating the
above iterative process.

3.1.3 LSTM model
An improvement to the RNN is the LSTM model. In an RNN,

the structure of the hidden layer is relatively simple, with only one
tanh function. The key distinction between the two is that the LSTM
contains four processing neural units, which makes it better at
handling complex information. The hidden layer neural unit
module structure of the LSTM was modified and significantly
altered compared with the standard neural network layout.
Figure 1 shows the precise structure of an LSTM memory
module. For easier observation, we separated the internal
structure into three distinct yet linked parts: the input gate,
output gate, and forget gate. They regulate the reading, writing,
and resetting of the data in the hidden layer. The LSTM neural unit
has a three-layer structure, as shown in the figure, all of which are
linked and transmit information to each other. The yellow part in
the figure represents the various activation functions in the memory
module, whereas the blue part represents the basic operations as well
as the operations of the data stream, such as the addition or
subtraction of different data streams. The red storage component
is responsible for the computation and data transmission. This
capability enables the cell unit to accept both the current data
status and the data stream passed the previous instant. This is an
essential component of the system.

Different “gates” are used by LSTM to regulate the quantity of
data that is added to or removed from the storage media. There are
three gate units in the memory module: the output gate, input gate,
and forget gate. These three “gates” work together to process data in
order to fulfil the neural network’s control function. When
information enters the memory module, it undergoes two
operations: a product operation when it enters the forgetting
gate, which symbolises the deletion of old information, and an
addition operation when it enters the input gate, which symbolises
the updating of old states. There are switches for these three doors.
These doors are similar to switches, and the opening and closing of
the switch affects the transmission of the current. Therefore, the
amount of information involved in the computation of the current
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neural network and that involved in the computation of the next
neural unit can be determined.

The forget gate determines whether to discard the information
transferred from the previous cell state or to retain part of it to enter
a new loop structure. The processed information is recorded as ft.
The simplified structure of the LSTM hidden layer forget gate is
shown in Figure 2. The forget gate input value consists of two parts.
xt is the original data input value at this moment, and ht−1 is the
output value of the hidden layer of the cell from the previous instant.
The combined input values are then passed through the δ activation
function to simplify them for easier analysis and processing.

The value adjusted by the δ activation function will be combined
with the next cell state Ct−1. Thus, we determined whether the input
information at time t should be discarded. When the output value
approaches 1 infinitely, the information will be retained and enter
the next step of processing, whereas when the output value
approaches zero infinitely, the information will be cleared and
will not enter the next step of processing. ft is calculated as Eq. 10:

ft � δ Wf · ht−1, Xt[ ] + bf( ) (10)

Figure 3 depicts the internal structure of the input gate, which
consists primarily of two elements. The first part has the same principle
as that of the forgetting gate. It also activates the newly input ht−1 and xt

through the δ function. It then becomes a value greater than zero andnot
more than one, recorded as it, and whether the data stream flows into
and enters the current cell state is determined. The other layer assigns a
new variable c̃t using the tanh function. Subsequently, c̃t is recorded and
flows into the current cell ct. ct is calculated through Eqs 11–13.

it � δ Wi · ht−1, Xt[ ] + bi( ) (11)
c̃t � tanh wc · ht−1, Xt[ ] + bc( ) (12)

ct � ft ⊗ ct−1 + it ⊗ c̃t (13)

Figure 4 depicts the internal layout of the output gate. The first
section of the principle for this layer, which is primarily composed of
two parts, is essentially the same as the principles of the preceding
levels. The output value ot is created by combining the input value at
this time with the output value from the previous cycle. The final
output ht is then determined through Eqs 14, 15 by multiplying the
ot by the cell state processed by the tanh function.

FIGURE 1
The structure of the LSTM model.

FIGURE 2
The structure of the forget gate of the LSTM model.
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ot � δ Wo · ht−1, Xt[ ] + bo( ) (14)
ht � δ ⊗ tanh ct( ) (15)

where δ represents the activation function in the system.
Simultaneously, the dual-curve positive cut function TANH was
used as an activation function. Among the three parts of the hidden
layer, Wf,Wi,Wc, andWo represent the link weights of the
information transmitted between different door layers.
Additionally, bf, bi, bc, and bo stand for the bias. As the “three
components” in the same system, the basic principles of these
three door layers are similar. Each step uses the current input
value and new output value following the prior step. To prevent
it from growing “out of control,” the activation function is used to
control the data stream. However, each door layer controls the
dynamic values of the data using different reduction methods. In

short, the input door controls the flow of input data at this
moment, the forget door controls the flow of output data before
this moment, and the sum of the two flows is the final value of the
output door.

3.1.4 Prophet-EEMD-LSTM model
This study fit and forecasted the price of carbon using a hybrid

Prophet-EEMD-LSTM model. The advantages of the three models
are combined in this model, which can also further dissect the
volatilities of carbon prices and determine their trend, periodicity,
and volatility. Based on the features of these sequences, more
accurate carbon price predictions can be made. The detailed
steps of the model are as follows:

Step 1: Obtain the carbon price of the Beijing carbon market.

FIGURE 3
The structure of the input gate of the LSTM model.

FIGURE 4
The structure of the output gate of the LSTM model.

Frontiers in Physics frontiersin.org07

Yu et al. 10.3389/fphy.2024.1427794

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2024.1427794


Step 2: The Prophet is applied to identify trends, weekly
periodicity, annual periodicity, and residual series.

Step 3: The residual series is further decomposed into multiple
volatility sequences using the EEMD model.

Step 4: The trend, weekly periodicity, annual periodicity, and
multiple volatility sequences were fitted using the
LSTM model.

Step 5: After the Prophet-EEMD-LSTM model was trained to
achieve the best performance, the future carbon price
was predicted.

Several indicators were chosen to measure the difference
between the model’s projected and actual values to assess the
prediction accuracy of the model (Eqs 16–19). The indicators
included R-squared (R2), mean absolute error (MAE), mean
absolute percentage error (MAPE), and root mean square
error (RMSE).

RMSE �














1
N

∑N
i�1

yi − ŷi( )2√√
(16)

MAE � 1
N

∑N
i�1

yi − ŷi

∣∣∣∣ ∣∣∣∣ (17)

MAPE � 1
N

∑N
i�1

yi − ŷi

yi

∣∣∣∣∣∣∣∣ ∣∣∣∣∣∣∣∣ (18)

R2 � 1 − ∑N
i�1 yi − ŷi( )2∑N
i�1 yi − �yi( )2 (19)

whereN is the number of predictions, yi is the actual carbon price, �y
is the mean value of yi, and ŷi is the predicted carbon price.

3.2 Data source

Beijing’s carbon market was established at the end of 2013
(Figure 5). In the early phase, the market trading volume was

very small, and transactions occurred only on a small number of
trading days. As the market operates steadily, the trading volume
gradually increases. To improve prediction performance, we selected
data from 2016 to 2022 for analysis. Data from January 2016 to
November 2022 were selected for model training. The carbon price
in December 2022 was predicted based on the results of this training.
Daily carbon price data were sourced from WIND and the China
Emissions Trading Network (www.tanpaifang.com). Most of the
time, the carbon pricing data on this page match the data in the
WIND database. Occasionally, the two data points disagree with one
another. By comparing the carbon price on that day with that on the
prior and subsequent trading days, we can determine which of the
two sets of data is more closely related in this case.

4 Results and discussion

4.1 Data decomposition

The Prophet model divides Beijing’s carbon price into four
components. The carbon price trend is the first component (Figure
6A). From 2016 to 2022, the price of carbon generally increased, with
a temporary decline in 2020. This is because 2020 was the epidemic’s
deadliest year, and businesses were unable to produce and run
normally as a result of economic development that had stagnated
or even reversed. Consequently, carbon emissions were lower, fewer
carbon allowances were required, and the price of carbon decreased.
As the economy recovered beginning in 2021, carbon prices returned
to an upward trajectory.

The second part of the Prophet model is the weekly periodicity
feature, and the carbon price’s weekly cycle features are depicted in
Figure 6B, with a cycle length of 5 days Figure 7A presents a partial
depiction of the weekly cycle characteristics to provide a clearer view
of the weekly cycle variations. According to the results, on Mondays,
Tuesdays, and Thursdays, carbon prices increase with gradually
larger increases. This situation is similar to that of the stock
market as stock market returns gradually improve over time [47].

FIGURE 5
The carbon price in the Beijing carbon market.
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Stock market returns are closely related to investor sentiment.
Typically, investors are in a poor mood on the first day after a
holiday. As time goes by and the weekend grows closer, investor
sentiment gets higher and higher, and investments are becoming
increasingly active [46,48]. The findings reveal some distinctions
between the carbon and stock markets. Stock market investors

invest more aggressively on Fridays, and stock market returns are
generally higher than at other times [46]. However, Friday is the
worst day in terms of carbon prices. The carbon market is a policy
market; on Friday, traders are more inclined to await the policies
over this weekend and make trading decisions the
following week.

FIGURE 6
Decomposition results of the Prophet model: trend (A); weekly cycle features (B); annual cycle features (C); residuals (D).

FIGURE 7
Zoom in periodicity feature: weekly cycle characteristics (A); annual cycle characteristics (B).
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The third part of the Prophet model is the annual periodicity
feature, and the carbon price’s annual cycle features are depicted in
Figure 6C, with a cycle length of 365 days Figure 7B presents a
partial depiction of the annual cycle characteristics to provide a
clearer view of annual cycle variations. The carbon market
compliance cycle is 1 year, and the Environment Bureau issues
a carbon allowance to compliant companies before March every
year and completes the previous year’s allowance surrender before
October every year. Therefore, carbon price has a cycle that
matches the compliance cycle. Normally, during the allocation
period, companies do not have allowance gaps; therefore, they have

no trading incentives, which results in a downward trend in the
price of carbon. The busiest trading period in a year occurs during
the allowance surrender stage, which drives carbon prices up as
companies begin to transact to meet their compliance
requirements. Consequently, the carbon price reaches its
highest in October each year and its lowest in March of the
following year.

The fourth part of the Prophet model comprised the residuals
(Figure 6D), which were further decomposed using the EEMD
model. Figure 8 displays the results of the decomposition. The
residuals of the carbon price were separated into 11 IMFs.

FIGURE 8
EEMD results.
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4.2 Data fitting and prediction

Following Prophet and EEMD model decomposition of the
carbon price, 14 sequences were formed, including trend, annual
periodicity, weekly periodicity, and 11 IMFs. The sequences were
then fitted and predicted using the LSTM model. In this study, a
sliding window was used to create a data matrix as the input for the
LSTMmodel. The steps in the calculation of the input are Eqs 20, 21.

Y �
y1

y2

..

.

ym

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ (20)
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/ xn
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.

/ xn
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⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ (21)

where Y is the actual carbon price, X represents the input values
calculated from Y,m is the amount of raw data, and n is the number
of characteristics in the actual data. In this study, the value of n was
14, which included the features of the trend, annual periodicity,
weekly periodicity, and 11 IMFs.

This study used a sliding window with a 30-day prediction
horizon to forecast carbon prices. The output of the prediction are
Eqs 22, 23.

yt+1, yt+2, . . . , y2t( ) � f
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1 x2
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. . . xn
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1 ..
.

/ xn
t
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where xn
t is the nth feature of the carbon price on day t that was

decomposed by the Prophet and EEMD models, t is the sliding
window, and (yt+1, yt+2, . . . , y2t) and (yt+2, yt+3, . . . , y2t+1) are the
predicted carbon prices.

We trained the LSTM model and continuously changed the
pertinent parameters to obtain the best prediction outcomes. The
final parameter settings are listed in Table 1.

4.3 Model performance comparison

Five different models–ARIMA, SVR, RNN, LSTM, and Prophet-
LSTM–were chosen for comparison and investigation in this study
to support the effectiveness and superior performance of the

proposed Prophet-EEMD-LSTM hybrid model. The parameters
of these five models are listed in Table 2. LSTM and Prophet-
LSTM have the same parameters as the hybrid Prophet-EEMD-
LSTM model.

The carbon price in December 2022 is predicted based on these
models, and the results are shown in Figure 9 in the prediction
results, where the red and blue lines represent the predicted and
actual values, respectively. The effect of the model prediction was
improved owing to the excellent repeatability of the two lines.
Although the size of the sliding window for the prediction was
30 days, the number of predictions was 27, as there was no trading in
the Beijing carbon market during the last 4 days of December 2022.

From Figure 9, it is clear that the prediction effect of the ARIMA
model is the poorest and that the anticipated values are spread in a
straight line. The inability of the model to recognise trends in the
carbon price series is the cause of its poor predictive performance.
Although the SVR model can identify the data trend, its forecasting
performance is poor. The forecasting performance improves in the
second half of the period, whereas the predicted trend of carbon
prices is opposite to the actual trend at the beginning of the month.
This is because the SVR model is not good at identifying volatilities
in the data; therefore, the direction of the carbon price volatilities at
the beginning of the month is predicated mistakenly. The prediction
efects of the RNN and LSTM models were significantly better than
those of the first two models, and the predicted trends were
consistent with the actual trend; however, there were some gaps
in the values. As shown in Figure 9, the two models performed
better. From a principal perspective, both models have
shortcomings. The RNN model focuses more on recent data
during the training process and ignores the operating rules of
historical data. In contrast, LSTM pays too much attention to
historical data, which can lead to overfitting of the model.
Consequently, when carbon prices exhibit a new trend at the end
of the month, the LSTM model cannot predict them accurately.

The LSTM overfits and cannot identify new features of the data
because the characteristics of the data changes are too complex.
Therefore, the input time series can be simplified to improve the
performance of the LSTMmodel. In this context, the Prophet model
was used to decompose the carbon price into several series with
simple characteristics, including the trend, annual periodicity,
weekly periodicity, and residuals. These series of simple
characteristics were then predicted using the LSTM model.
Finally, the predicted series are recombined to obtain the final
predicted value. The Prophet-LSTM model has been shown to
perform more effectively than the previous models. To verify
whether the logic of optimising the LSTM was correct, the
residuals from the Prophet model were further decomposed into
several simpler series using the EEMD model. Similarly, all
sequences decomposed by the Prophet and EEMD models were
input into the LLST model for prediction. According to Figure 9, the
Prophet-EEMD-LSTM model performed better.

To accurately measure and compare the performance of each
model, the indicators of MAE, MAPE, RMSE, and R2 were
calculated and are shown in Table 3. The prediction effect of the
model was better, with smaller MAE, MAPE, and RMSE values.
However, the model-fitting effect improved as the R2 value of R2

increased. The results in Table 3 are in agreement with the findings
in the previous figure in the order of the prediction effect, that is,

TABLE 1 Parameters of the Prophet-EEMD-LSTM model.

Algorithms Parameters

LSTM Neurons = 32, Epoch = 140, Loss function = MSE, Learning
rate = 0.1, Batch size = 10, Sequence length = 30, Layer
number = 2, Time step = 30, Optimizer = Adam

Frontiers in Physics frontiersin.org11

Yu et al. 10.3389/fphy.2024.1427794

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2024.1427794


ARIMA, SVR, RNN, LSTM, Prophet-LSTM, and Prophet-EEMD-
LSTM, from worst to best.

The distribution of the prediction outcomes of each model is
shown in Figure 10, where the abscissa represents the actual value
and the ordinate represents the anticipated value. The dot is on the
diagonal if the predicted and actual values of the carbon price are

equal. According to the figure, the value distribution area predicted
by the ARIMA model was very narrow, showing a horizontal line.
Some of the predicted values in the SVR and RNN models are far
from the diagonal, which indicates that the prediction performance
is poor. The values predicted by the LSTM model gradually moved
closer to the diagonal, and the predicted values of the Prophet-
EEMD-LSTM model were distributed on the diagonal, showing the
best prediction effect.

5 Conclusion and policy implications

The carbon market is similar to the stock market in terms of
trading mechanism, but it is essentially a policy market. Carbon
prices are not entirely driven by the market but are also significantly
affected by energy prices, the economic environment, market

TABLE 2 Parameters of the other models.

Algorithms Parameters

ARIMA p = 15, d = 0, q = 3

SVR Kernel = “rbf,” c = 10, Gamma = 0.1

RNN Neurons = 32, Epoch = 130, Loss function = MSE, Learning
rate = 0.1, Batch size = 8, Sequence length = 30, Layer
number = 2, Time step = 30, Optimizer = Adam

FIGURE 9
Prediction results of each model.
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policies, and other related factors. Therefore, scholars have been
working on improving the carbon prediction capabilities in recent
years. This study applies a Prophet-EEMD-LSTM hybrid model to
predict carbon prices in the Beijing carbon market, which
significantly improves prediction performance. Compared to the
traditional econometric model and single machine learning model,
this hybrid model considers the particularities of the carbon market,
including trends, cyclical changes, and volatilities of carbon prices.
Considering that the carbon market has multiple complex
characteristics, the carbon price was decomposed into multiple
simple sequences. Subsequently, based on historical data, the
prediction model was fully trained, and these simple sequences
were predicted in turn. By comparing the prediction effect of the

Prophet-EEMD-LSTM hybrid model with those of other models,
such as the ARIMA, SVR, RNN, LSTM, and Prophet-LSTMmodels,
the results confirmed that the prediction performance of this model
was better.

Smooth operation of the carbon market is effective support for
cities to achieve low-carbon development. This study can help
market managers and participants prevent carbon market risks
by providing a carbon price prediction model. As an emerging
market, the carbon market’s mechanism is not yet complete, and
carbon prices fluctuate significantly. When the carbon price is
too high or low, it is not conducive to the effective operation of
the market and affects the emission reduction efficiency of the
entire market. In this context, market prices require appropriate
intervention by market managers who must have an accurate
expectation of carbon prices to take corresponding measures in
advance to prevent carbon price risks. In addition, enterprises
lack experience in carbon trading and cannot accurately judge
trends in carbon prices. This results in enterprises being unable
to trade at better prices, reducing their income from emissions
reduction or increasing the cost of enterprise compliance.
Therefore, it is crucial for both market managers and
participants to obtain relatively accurate predictions of
carbon prices. When all have relatively rational expectations
of carbon prices, the stability of the carbon market can be
guaranteed, which can support low-carbon development
in the city.

TABLE 3 Evaluation of each model.

Models MAE MAPE RMSE R2

ARIMA 19.28359 0.18365 23.25065 0.09788

SVR 21.94789 0.17248 26.84392 0.20250

RNN 16.08857 0.15802 20.56001 0.29459

LSTM 14.82061 0.13605 17.91316 0.46453

Prophet-LSTM 9.55294 0.08212 10.72840 0.80793

Prophet-EEMD-LSTM 1.99821 0.01888 2.99539 0.98502

FIGURE 10
Distribution of the prediction results of each model.
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