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The paper presents a topology optimization methodology for 2D elastodynamic
problems using the boundary element method (BEM). The topological derivative
is derived based on the variation method and the adjoint variable method. The
level set method is employed for the representation of the material domain and
voids within a specified design domain. Thus, the boundaries can easily be
generated, following the zero isocontour of the level set function. Numerical
implementation is carried out to demonstrate the effectiveness of the proposed
topology optimization methodology in wave isolation and waveguide problems.

KEYWORDS

boundary element method, topology optimization, level set method, elastodynamic
problems, vibration control

1 Introduction

The problem of vibration control with artificial structures has been an important issue
in aerospace [1,2], vehicle design [3], civil engineering [4], and vibration pollution [5]. The
suppression, absorption, or waveguide of elastic waves are considered effective tools for the
vibration problems which affect the safety, reliability, and stability of equipment. Passive
vibration control approaches are widely applied in engineering problems due to their simple
design and low cost. Various passive vibration control structures are designed and
artificially manufactured to meet the requirements of vibration-related engineering
problems. Phononic crystals and metamaterials are adopted for mechanical filters and
vibration isolators due to their band gaps, which can strictly forbid the propagation of
acoustic or elastic waves in a certain range of frequency [6]. An open trench and wave-
impeding block-combined vibration isolation barrier is an effective way of protecting
equipment or buildings from environmental vibration sources [7]. Waveguide absorbers are
designed to extract elastic wave energy, dissipating it with artificial spiral acoustic black
holes [8]. The narrow control frequency range, which is considered a drawback of passive
systems, is improved by invoking nonlinear dynamic theories [9].

The numerical simulation method is an effective and efficient approach which can
significantly reduce the cost of the design or analysis of vibration problems. Moreover,
topology optimization methods based on numerical techniques are developed to acquire
the desired structures with prescribed objectives and constraints. Early efforts on
structural design through topology optimization methods include previous research
works [10, 11]. Several widely used topology optimization algorithms, such as the
homogenization method [12], the solid isotropic material with penalization (SIMP)
method [13–16], the evolutionary structural optimization (ESO) method [17–20], the
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moving morphable component (MMC) method [21–24], and level
set-based methods [25–27], have gained great attraction in research
investigations. Liu et al. carried out the topology optimization of
attached piezoelectric actuators of thin-walled structures for both
vibration control and manufacturing constraints using a K-means
clustering method [28]. Liu et al. analyzed the topology optimization
of high-frequency vibration of solid structures using the energy finite
element method (EFEM), which allows less calculation and a clear
distribution of the energy density [29]. Yan et al. optimized the
distribution of damping material in shell structures to minimize the
residual vibration using SIMP, and the sensitivity was obtained using
the adjoint method [30]. For vibration isolation problems, Zhou et al.
developed a multi-objective and multi-level optimization method for
the design of supporting structures and loci of isolators [31]. The
topology optimization of one-material structures for displacement
antiresonances at frequencies of interest is carried out by Silva et al
[32]. These techniques allow the evolution of the topology without the
need to perform remeshing, and most of the topological numerical
methods have been implemented relying on the finite element method
(FEM), which usually easily leads to checkboard patterns and
grayscale problems.

However, the quantities on the boundary of the analyzing
domain are engineers’ concern in most cases for vibration
isolation or waveguide problems. Unlike the finite element
method, which involves substantial computational and memory
expenditure during mesh generation, the boundary element
method merely discretizes the model boundaries. This method
offers advantages such as dimension reduction, high
computational accuracy, and constant elements for modeling.
Thus, the combination of the LSM with the boundary element
method (BEM) provides an easy numerical updating process for
the topology evolution since the zero isosurface/isoline of the level
set function (LSF), which represents the boundaries emerging in the
design domain, has the same dimension as boundary elements’. The
simplicity of the pre-process and post-process in the generation of
boundary elements makes the combination approach a promising
tool for topology optimization problems. Jing et al. presented
topology optimization for maximizing the total potential energy
of thermal problems with the level set method and BEM [33]. Chen
et al. optimized the topology and shape of sound-absorbing
materials through isogeometric BEM [34–37] and optimized the
topology of vibrating structures that interacted with acoustic waves
through isogeometric FEM–BEM [38, 39], which reduced the
radiated sound power and improved optimization efficiency.
Isakari et al. developed topology optimization for acoustic-elastic
coupled problems by employing a fast BEM–FEM coupled solver
[40]. Oliveira et al. extended the isogeometric BEM to topology
optimization based on the LSM for elastic static problems [41].
Matsushima et al. solved the defect detection inverse problems using
the BEM [42], and Tang et al. considered the objective function,
which includes the tangential derivative of displacements for cavity
detection [43]. The application of the BEM-based topology method
to the design of vibration control structures, however, is not
sufficiently investigated. The suppression or magnification of the
vibration amplitudes at certain frequencies can effectively
manipulate the elastic wave propagation.

In view of the aforementioned advantages of the proposed
methodology, the present work aims to extend the BEM and level

set-based topology optimization to elastodynamic problems for
the design of vibration control structures. The paper first
introduces the formulas for the boundary integral equation
and its discretization, and then, the topology optimization
algorithm, which includes the formulation of the topology
derivative and evolution equation, is presented. Numerical
implementations are finally shown to demonstrate the
effectiveness of the method for vibration isolation and
waveguide applications.

2 Boundary element method for 2D
elastodynamic problems

The linear elastodynamic problems are governed by the
equation written in the form of displacement [44]:

C2
1 − C2

2( )qj,jk y, t( ) + C2
2qk,jj y, t( ) � €qk y, t( ) y ∈ Ω, t ∈ 0,∞[ ],

(1)
where y denotes a point in the medium domainΩ and qj denotes the
xj component of the displacement vector in Eq. 1.C1 and C2 are the P
wave speed and S wave speed, respectively, which are written as

C1 �
�����������������������
E 1 − ]( )/ ρ 1 + ]( ) 1 − 2]( ){ }√

, (2)

C2 �
������������
E/ 2ρ 1 + ]( ){ }√

, (3)

where E is the Young’s modulus, ] is the Poisson’s ratio, and ρ is the
density of the medium, as shown in Eqs 2, 3.

Let us rewrite the governing equation by removing the time-
related terms due to the harmonic vibration of linear elastic
structures. Then, we have

C2
1 − C2

2( )Qj,jk y,ω( ) + C2
2Qk,jj y,ω( ) + ω2Qk y,ω( ) � 0, (4)

where ω is the circular frequency and Q is a complex number that
denotes the vibration displacement, including amplitude and
phase. The boundary integral equation (BIE) form of Eq. 4 is
written as

ckl ys( )Qk ys,ω( ) + ∫ΓΦkl* y, ys,ω( )Qk y,ω( )dΓ y( )
−∫ΓΨkl* y, ys,ω( )Tk y,ω( )dΓ y( ) � 0 ys ∈ Γ, (5)

where ckl is the free term of the BIE and the kernels Ψij (y, ys, ω) and
Φij (y, ys, ω) are known as displacement and traction fundamental
solutions for 2D elastodynamic problems, respectively:

Ψij* y, ys,ω( ) � 1

2πρC2
2

ψδij − χr,ir,j[ ], (6)

Φij* y, ys,ω( ) � 1
2π

dψ

dr
− 1
r
χ( ) δi,j

∂r

∂n
+ r,jni( ){

− 2
r
χ njr,j( −2r,ir,j∂r∂n) − 2

dχ

dr
r,ir,j

∂r

∂n

+ C2
1

C2
2

− 2( ) dψ

dr
− dχ

dr
− 1
r
χ( )r,inj}, (7)

where δij is Kronecker’s delta, r is the distance between ys and y, and
ni is the unit outward normal vector to the boundary in Eqs 6, 7.
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ψ � K0
iωr
C2

( ) + C2

sr
K1

iωr
C2

( ) − C2

C1
K1

iωr
C1

( )[ ], (8)

χ � K2
iωr
C2

( ) − C2
2

C2
1

K2
iωr
C1

( ), (9)

where i is the imaginary unit and Kj denotes the modified Bessel
functions of order j in Eqs 8, 9.

In order to evaluate the topological derivative, the expression of
the stress is required:

σ ij yin,ω( ) � ∫ΓTk y,ω( )Dkij yin, y,ω( )dΓ y( )
−∫ΓQk y,ω( )Skij yin, y,ω( )dΓ y( ), (10)

where yin is a point inΩ andDkij and Skij are three-order tensors in Eq. 10.
Discretizing Eq. 5 withN constant boundary elements, we obtain

a linear equation as follows:

ckl ys( )Qi
k ys,ω( ) +∑N

j�1
∫Γj

Φkl* y, ys,ω( ) dΓ y( )( )Qj
k y,ω( )

−∑N
j�1

∫Γj
Ψkl* y, ys,ω( ) dΓ y( )( )Tj

k y,ω( ) � 0,

(11)

where ckl � 1
2δkl when the boundary is smooth, ys is a point on the

boundary Γ, and Qj
k(y,ω) and Tj

k(y,ω) denote the kth component
of the displacement and traction of element Γj, respectively.

Let i in Eq. 11 vary from 1 to N; then, we obtain a system of 2N
linear algebraic equations as shown in Eq. 12.

HQ � GT, (12)
where H and G are 2N × 2N matrices, respectively, and Q and
T ∈ C2N.

3 Topology optimization algorithm

3.1 Topological derivative

To carry out the topology optimization for a continuous
medium, the sensitivity of the objective function with respect to
the change in topology is needed. As shown in Figure 1, the objective
function J is defined on Γf, which is a portion of the boundary of
domain Ωϵ. The sensitivity can be considered the topological
derivative T , which can be formulated by computing the
variation in the objective function δJ as a circular infinitesimal

cavity Ωϵ with a radius ϵ being generated. Taking ϵ → 0, the
topological derivative T at the center of the circular cavity
is obtained.

Usually, the objective function is defined as a real value on the
objective boundary Γf:

J � ∫
Γf
f Qk, Tk( )dΓ. (13)

As the cavity Ωϵ is generated, J changes to

J + δJ � Re ∫
Γf

f Qk, Tk( ) + ∂f

∂Qk
δQk + ∂f

∂Tk
δTk( )dΓ[ ]. (14)

Subtracting Eq. 13 from Eq. 14, δJ is obtained as follows:

δJ � Re ∫
Γf

∂f

∂Qk
δQk + ∂f

∂Tk
δTk( )dΓ[ ]. (15)

To evaluate δJ in Eq. 15, we have to calculate δQk on Γ. However,
the governing equation for δQk also governs the generated boundary
Γϵ and holds

C2
1 − C2

2( )δQj,jk y,ω( ) + C2
2δQk,jj y,ω( ) + ω2δQk y,ω( ) � 0 y ∈ Ω\Ωϵ ,

δQk y( ) � 0 y ∈ ΓQ,
δTk y( ) � 0 y ∈ ΓT,
δTk y( ) � −Tk y( ) y ∈ Γϵ ,

(16)

where δQk on Γϵ cannot be acquired easily in Eq. 16. Thus, we
introduce an adjoint field of ~Qk and ~Tk using Betti’s reciprocal
theorem [45] to avoid the direct evaluation of δQk as follows:

∫
Γ∪Γϵ

~TkδQi − ~QkδTk( )dΓ � 0, (17)

and substituting the boundary conditions in Eq. 21 and 17, we have

−∫
ΓQ
~QkδTkdΓ + ∫

ΓT
~TkδQkdΓ + ∫

Γϵ
~TkδQk + ~QkTk( )dΓ � 0. (18)

Assuming that Γf includes ΓQ and ΓT, δJ can be written as

δJ � Re ∫
ΓT

∂f

∂Qk
δQkdΓ + ∫

ΓQ

∂f

∂Tk
δTkdΓ[ ]. (19)

FIGURE 1
Variation in the objective function according to the removal of an
infinitesimal cavity Ωϵ.

FIGURE 2
Medium domain Ω defined by the LSF implicitly.
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Considering the adjoint field as the Lagrange
multiplier, we obtained δJ by subtracting Eq. 18 from Eq.
19 as follows:

δJ � Re ∫ΓT
∂f

∂Qk
− ~Tk( )δQkdΓ + ∫ΓQ

∂f

∂Tk
+ ~Qk( )δTkdΓ[

−∫Γϵ
~TkδQk + ~QkTk( )dΓ]. (20)

In order to avoid the evaluation of δQk, we can construct the
adjoint field ~Qk, which holds

C2
1 − C2

2( ) ~Qj,jk y,ω( ) + C2
2
~Qk,jj y,ω( ) + ω2 ~Qk y,ω( ) � 0 y ∈ Ω,

~Qk y( ) � − ∂f

∂Tk
y( ) y ∈ ΓQ,

~Tk y( ) � ∂f

∂Qk
y( ) y ∈ ΓT,

(21)

and Eq. 20 becomes Eq. 22.

δJ � Re −∫
Γϵ

~TkδQk + ~QkTk( )dΓ[ ], (22)

where the terms related to ~Qk and Qk can be evaluated by taking the
Taylor series expansions at the center of Ωϵ and the asymptotic
expansion of δQk at the center ofΩϵ can be used for the evaluation of
the terms, including δQk. The details of the evaluation can be found
in [46], where δJ can be written in the form of Eq. 23.

δJ � πϵ2( )T + o ϵ3( ). (23)
Let us consider the center of Ωϵ as point y, and the topological

derivative at the point y can be calculated by taking the limit, as
shown in Eq. 24.

T y( ) � lim
ε→0

δJ

πε2
. (24)

FIGURE 3
Definition of the boundary conditions for example 1.

FIGURE 4
Intermediate optimized solutions during the iteration for example 1: a) Step 8, b) Step 10, c) Step 12, d) Step 13, e) Step 20, and f) Step 30.
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The formula for T (y) is given in Eq. 25.

T y( ) � Re
λ + 2μ

4μ λ + μ( ) 4σjk y( )~σjk y( ) − σjj y( )~σkk y( )( )[
−ρω2Qj y( ) ~Qj y( )] y ∈ D, (25)

where λ and μ are Lamé constants, which are given in Eq. 26.

λ � 2]G
1 − 2]

μ � E

2 1 + ]( ).
(26)

3.2 LSM

The elastic material medium is defined by the LSF ϕ in
the design domain D. As shown in Figure 2, for a point y in D,
the medium and void are defined using the value of ϕ(y) as
shown in Eq. 27.

< ϕ y( )≤ 1, y ∈ Ω
ϕ y( ) � 0, y ∈ Γ
−1≤ ϕ y( )< 0, y ∈ D\Ω

⎧⎪⎨⎪⎩ . (27)

The optimization problem for minimizing the objective function
J � ∫Γf

f(Qk, Tk)dΓ can be given in Eq. 28.

infϕ J χϕ( ) � ∫
Γ
f Qk, Tk( )χϕdΓ, (28)

subject to

FIGURE 5
Convergence of the objective function and area for example 1.

FIGURE 6
Objective function response of the structure before and after optimization for example 1 as ω varies from 100 Hz to 500 Hz: a) the vibration
amplitude at objective boundary with frequency sweep from 100 Hz to 500 Hz before optimization. b) The vibration amplitude at objective boundary
with frequency sweep from 100 Hz to 500 Hz before optimization (f–ω plane). c) The vibration amplitude at objective boundary with frequency sweep
from 100 Hz to 500 Hz after optimization. d) The vibration amplitude at objective boundary with frequency sweep from 100 Hz to 500 Hz after
optimization (f–ω plane).

Frontiers in Physics frontiersin.org05

Li et al. 10.3389/fphy.2024.1426846

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2024.1426846


I � Re ∫
D
α C2

1 − C2
2( )Qj,jk y,ω( ) + C2

2Qk,jj y,ω( ) + ω2Qk y,ω( )[ ]dΩ[ ]
� 0,

(29)
where α is the Lagrange multiplier in Eq. 29.

G χϕ( ) � ∫
D
χϕdΩ − Gmax ≤ 0, (30)

where G is the volume constraint which controls the size of the
material area, χϕ is the characteristic function, and Gmax is the
admissible upper limit of the material area in Eq. 30.

Let us rewrite the objective function J using �J as follows:

�J � F + I + λG χϕ( ), (31)

where λ is the Lagrange multiplier for the area constraintG in Eq. 31.
According to the Karush–Kuhn–Tucker (KKT) condition, the
optimal solution of the optimization problem is shown in Eq. 32.

�J′ � F′ + I′ + λ � 0, I � 0, λG χϕ( ) � 0, λ≥ 0, G χϕ( )≤ 0.

(32)
Let us introduce the reaction-diffusion equation:

∂ϕ y( )
∂t*

� K T − λ + τ∇2ϕ y( )( ), (33)

where T is the topological derivative F′ + I′ and K and τ are positive
constants referred to as Tikhonov regularization parameters [47] in Eq.
33.K controls the updating speed, and τ decides the curvature of the LSF.

4 Numerical implementation

4.1 Example 1: vibration isolation at
y-direction

Let us consider the structure depicted in Figure 3, where we can
find the excitation force F = 1.0 × 106 N with the frequency at 230 Hz

and the objective function f � |Qy − �Qy|2 with a given �Qy � 0. The
material constants are given as follows: Young’s modulus E = 1.248 ×
108Pa, Poisson’s ratio ] = 0.34, and density ρ = 1.6 × 104 kg/m3.
�Qy � 0 implies that the purpose of the optimization is to decrease
the vibration amplitude in the y-direction at the bottom of the
rectangular design domain. The parameters for the evolution
equation are specified as K = 25 and τ = 0.5.

The intermediate results at steps 8, 10, 12, 13, 20, and 30 are
presented in Figure 4. A small cavity is generated from step 8 and
disappears at step 12; however, the cavities appear again at step
13 and reduce the vibration amplitude at the objective boundary.
The convergence of the objective function and the area is shown in
Figure 5. The convergence curve of the objective function shows the
change in the vibration amplitude at the objective boundary, and it
can be seen that the value of the objective function increases at step
8 and decreases rapidly from step 13. The increase in the objective
function implies that the starting point of the topological derivative
may just lose a solution and look for the next solution. Thus, one can
find that the objective function increases first and then decreases
rapidly. Finally, the objective function becomes smaller compared
with it at the beginning. The optimal structure leads to a reduction in
the vibration amplitude from 0.36 to 0.09 (normalized).

Let us consider the response problem of the optimized structure
under the excitation frequency range [100, 500] Hz. As shown in
Figure 6, the objective function, which implies the vibration
amplitude at the objective boundary, presents a value of 10–2 at
the optimizing frequency of 230 Hz before the optimization.
However, the objective function decreases to approximately 10–7

after the optimization. The frequency sweep analysis implies that the
optimized structure is effective for the isolation of vibration in the
vicinity of 230 Hz, when the displacement response along the y-
direction of the bottom of the rectangular structure is considered.

4.2 Example 2: vibration isolation at
x-direction

In elastodynamic problems, when a structure is subjected to
excitation forces, both longitudinal and transverse waves are

FIGURE 7
Definition of the boundary conditions for example 2.

FIGURE 8
Convergence of the objective function and area for example 2.
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generated inside the structure. At positions perpendicular to the
direction of the excitation force, longitudinal waves in the
structure are the main influencing factor of the magnitude of
the external normal amplitude, while at positions parallel to
them, transverse waves in the structure are the main
influencing factor of the magnitude of the external normal
amplitude. The model optimization in example 1 reduces the
amplitude at the position perpendicular to the direction of the

excitation force. Therefore, this example studies the amplitude
magnitude at the position parallel to the excitation force in
the structure.

Example 2 employs the model presented in Figure 7, where the
objective boundaries are specified on the left and right sides of the
square design domain uniformly. The material constants are given
the same as those in example 1. The displacements along the x-direction
are controlled through the definition of the objective function

FIGURE 9
Intermediate optimized solutions during the iteration for example 2: a) Step 8, b) Step 9, c) Step 10, d) Step 11, e) Step 20, and f) Step 30.
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f � |Qx − �Qx|2 and �Qx � 0. The constraints and harmonic loads are
applied to themodel with the excitation frequency at 250 Hz. Tikhonov’s
regularization parameters are specified as K = 21 and τ = 0.3.

Figure 8 shows the convergence of the objective function and the
area during the calculation. The objective function decreases to
0.029 from step 15 and converges to the vicinity of 0.027. A cavity is
generated at step 8 and enlarged with the evolution of the LSF.
Furthermore, from step 15, the generated cavity almost remains
unchanged until step 40, and the results of steps 20 and 30 are also

FIGURE 10
Objective function response of the structure before and after optimization for example 2 asω varies from 50 Hz to 500 Hz: a) the vibration amplitude
at objective boundary with frequency sweep from 50 Hz to 500 Hz before optimization. b) The vibration amplitude at objective boundary with frequency
sweep from 50 Hz to 500 Hz before optimization (f–ω plane). c) The vibration amplitude at objective boundary with frequency sweep from 50 Hz to
500 Hz after optimization. d) The vibration amplitude at objective boundary with frequency sweep from 50 Hz to 500 Hz after optimization
(f–ω plane).

FIGURE 11
Definition of the boundary conditions for example 3.

FIGURE 12
Convergence of the objective function and area for example 2.
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presented in Figure 9. The reduction in the objective function
demonstrates the effectiveness of the vibration suppression of the
amplitude along the x-direction at the objective boundary.
Moreover, the reduction in the vibration also happens at the
neighborhood of 250 Hz according to the results of frequency
sweep. The excitation frequency of 250 Hz is near the second
natural frequency of the original design domain, and the peaks of
the objective function in the frequency sweep analysis are shifted
after optimization, as shown in Figure 10. The objective function
with �Qx � 0 changes along with the displacement’s change, and the

response presented in Figure 10B implies that not only the peak at
250 Hz is removed but also the first natural frequency is shifted.

4.3 Example 3: vibration enhanced at
certain boundary

Another application of the proposed method is to enhance the
vibration amplitude at a certain boundary. The model depicted in
Figure 11 has the objective boundary defined on the right side of a

FIGURE 13
Intermediate optimized solutions during the iteration for example 3: a) Step 8, b) Step 9, c) Step 10, d) Step 11, e) Step 12, and f) Step 16.
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square design domain asymmetrically. The material constants are
the same as in the previous examples,’ and the excitation frequency
is set at 150 Hz. The initialQx values at the objective boundary (from
elements 32–35) lie between 1.09 × 10−3 m and 1.14 × 10−3 m. In
order to guide the vibration energy to the objective boundary and
strengthen the vibration amplitude, the objective function is defined
as f � |Qx − �Qx|2 with �Qx � 2.50 × 10−2. The purpose is to reduce
the objective function, and then, the amplitude can be enlarged due
to the form of the defined f.

The reduction in the objective function can be observed in
Figure 12, and it implies that the displacement is increasing. From

step 16, the objective function decreases almost by 80%, and the
cavity emerges from step 8, as shown in Figure 13. The cavity
expands along with the iteration of LSF, which becomes steady from
step 15. It can be seen that the generated cavity is located near the
objective boundary, which leads to the strengthening of the
vibration. The responses of both the objective function and
displacement Qx are displayed in Figure 14, where one can find
that the order of the magnitude of the vibration amplitude along the
x-direction is enlarged from 10–3 to 10–2. Figure 14 also shows that
the natural frequencies are modified by the change in topology. The
detail of the vibration amplitude change at 150 Hz is presented in
Table 1, where one can also find the change in the objective function.

Example 3 shows that the proposed topology optimization
method can also be applied to vibration-enhancing problems,
and the elastic wave can be guided to a certain portion of the
boundary. Furthermore, τ affects the final optimized results, as
shown in Figure 15, where the results at step 40 with τ = 0.1, τ =
0.3, τ = 0.7, and τ = 0.9 are presented, and it is found that the results
can be manipulated by changing the curvature of LSF by defining
different values of τ. The manufacturing requirement can be satisfied
by choosing an appropriate value of τ.

FIGURE 14
Responses of the objective function and vibration amplitude at the objective boundary of the structure before and after optimization for example
3 as ω varies from 50 Hz to 300 Hz: a) responses of the objective function and b)responses of the vibration amplitude.

TABLE 1 Values of f and Qx at 150 Hz for example 3.

Element no. f f* Qx(m) Qx*m)

32 5.70 × 10−4 1.10 × 10−4 1.12 × 10−3 1.45 × 10−2

33 5.68 × 10−4 1.03 × 10−4 1.14 × 10−3 1.48 × 10−2

34 5.69 × 10−4 1.15 × 10−4 1.14 × 10−3 1.42 × 10−2

35 5.71 × 10−4 1.50 × 10−4 1.09 × 10−3 1.27 × 10−2

FIGURE 15
Optimized results with different τ values for example 3: a) τ = 0.1, b) τ = 0.3, c) τ = 0.7, and d) τ = 0.9.
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5 Conclusion

The work is undertaken to propose a topology optimization
methodology for 2D elastodynamic problems using BEM. The
topological derivative obtained using the adjoint viable method
includes the stress tensors of both the original and adjoint fields. The
topology optimization methodology can generate clear boundaries due
to the implicit expression of the voids by the LSF. Fortunately, the
boundary-only discretization, which is one of the features of the BEM,
leads to an easy rebuild of the numerical models in the iteration process.
Several numerical examples with different optimization purposes are
presented. The results of the simulations show that the proposed
methodology is effective for structure topology design in the
application of vibration isolation and waveguide problems.
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