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Electromagnetic polarizabilities are fundamental properties of the proton that
characterize its response to an external electromagnetic (EM) field. The
generalization of the EM polarizabilities to non-zero four-momentum transfer
opens up a powerful path to study the internal structure of the proton. They map
out the spatial distribution of the polarization densities in the proton, provide
access to key dynamical mechanisms that contribute to the electric andmagnetic
polarizability effects, and allow for the determination of fundamental
characteristics of the system, such as the electric and magnetic polarizability
radii. This article reviews our knowledge about proton EM generalized
polarizabilities (GPs). An introduction is given to the basic concepts and the
theoretical framework, which is then followed by a discussion that emphasizes
the recent developments and findings of the virtual Compton scattering (VCS)
experiments and future perspectives on the topic.
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1 Introduction

Explaining how the proton emerges from the interactions of its quark and gluon
constituents is a central goal of modern nuclear physics. In order to understand the
underlying dynamics of quarks and gluons in the proton as governed by quantum
chromodynamics (QCD), the theory of the strong interaction and theoretical
calculations require experimental guidance and confrontation with precise
measurements of the fundamental properties of the system. Starting with the simple
electromagnetic (EM) process, γ*p→p, one can access the charge and magnetization
densities in the proton via the measurement of the proton elastic form factors. A
wealth of information on the dynamics of the proton is hidden in the response of the
charge and magnetization densities of the proton to an external electromagnetic field, i.e., in
the EM polarizabilities. The classical concept of polarizabilities was extended to the case of
the nucleon with the first Compton scattering measurements on the proton in the 1950s
[1–5]. A polarizability is a fundamental structural constant for any composite system, and
the two scalar polarizabilities of the proton [6, 7] – the electric, αE, and the magnetic, βM –

can be interpreted as the response of the proton structure to an external electric and
magnetic field, respectively. They describe how easily the charge and magnetization
distributions inside the proton are distorted by the EM field and provide the net result
of the spatial distributions of the system. In order to measure the polarizabilities, one must
generate an electric ( �E) and a magnetic ( �H) field. The electric field strength needed to
induce any appreciable polarizability of the nucleon can be estimated as the ratio of the
average energy level spacing in the nucleon to the size of the nucleon,
i.e., ≈ 100MeV/(e fm) � 1023 Volt/m. Static electric field strengths of this intensity are
not available in a laboratory. Nevertheless, in the case of the proton, this is provided by the
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photons in the Compton scattering process. A classical estimate of
the electric field strength of a 100 MeV photon in Compton
scattering from the nucleon is approximately 1023 V/m, allowing
the Compton scattering process to be used for the experimental
access of the nucleon polarizabilities.

The two scalar polarizabilities appear as second-order terms in
the expansion of the real Compton scattering (RCS) amplitude in the
energy of the photon, as shown in Eq. 1.

H 2( )
eff � −4π 1

2
αE �E

2 + 1
2
βM �H

2( ). (1)

Moving on to higher orders, the third-order term depends on the
nucleon spin, and the corresponding polarizabilities are called spin
polarizabilities [8]. Here, there is no analog in classical
electrodynamics, but they practically describe the coupling of the
induced EM moments with the nucleon spin, and unlike the scalar
polarizabilities, they are not invoked by static EM fields. Coming back to
the two scalar polarizabilities, one can provide a simplistic description of
these quantities based on the resulting effect of an electromagnetic
perturbation applied to the nucleon constituents. An electric field
moves the positive and negative charges inside the proton in opposite
directions. The induced electric dipole moment is proportional to the
electric field, and the proportionality coefficient is the electric
polarizability, which quantifies the stiffness of the proton. On the
other hand, a magnetic field has a different effect on the quarks and
pion cloudwithin the nucleon, giving rise to twodifferent contributions in
the magnetic polarizability, a paramagnetic and a diamagnetic
contribution, respectively. Compared to the atomic polarizabilities,
which are of the size of the atomic volume, the proton electric
polarizability αE (see Figure 1) is much smaller than the volume scale
of a nucleon [6], and the typical units adopted for the polarizabilities are
10–4 fm3. The small magnitude underlines the stiffness of the proton, a
direct consequence of the strong binding of its constituents, and indicates
the intrinsic relativistic character of the system.

The first Compton scattering measurement of the proton
polarizabilities using a tagged photon beam was reported by [9].
More Compton scattering measurements on the proton followed in
the next few years, e.g., by the LEGS group [10] and the TAPS at the
Mainz Microtron (MAMI) setup [11] in 2001. Recent advances in
proton polarizability measurements involve the use of linear
polarization as an analyzer to measure the electric and magnetic
polarizabilities independently from each other, not relying on the
Baldin sum rule (see Eq. 2) [12, 13] (i.e., not relying on the value of
their sum), where the sum rule expresses the sum of dipole
polarizabilities in terms of an integral of the total
photoabsorption cross-section σT:

αE + βM � 1
2π2

∫∞

]0
]
σT ]( )
]2

. (2)

Two such measurements were reported recently. At the Mainz
Microtron, Compton scattering measurements on the proton
below the pion threshold were performed using a tagged photon
beam and a nearly 4π detector [14]. The electron beam, with an
energy of 883 MeV, impinged on a 10-µm-thin diamond radiator,
producing a linear polarized photon beam via coherent
Bremsstrahlung. The resulting photon beam passed a 3-mm-
diameter lead collimator and was incident on a 10-cm-long
liquid hydrogen target, while the final state particles were

detected using the Crystal Ball/TAPS setup [14]. The two static
polarizabilities of the proton were determined as αE = (10.99 ± 0.16 ±
0.47 ± 0.17 ± 0.34) 10–4 fm3 and βM = (3.14 ± 0.21 ± 0.24 ± 0.20 ±
0.35) 10–4 fm3. The second experiment [15] was performed at the
High Intensity Gamma-Ray Source (HIGS) facility at the Triangle
Universities Nuclear Laboratory, reporting for two polarizabilities
αE = (13.8 ± 1.2 ± 0.1 ± 0.3) 10–4 fm3 and βM = (0.2 ± 1.2 ± 0.1 ± 0.3)
10–4 fm3. The tensions between the MAMI and HIGS measurements
illustrate the difficulty in conducting these experiments and
highlight the need to be cautious in the treatment of the
experimental uncertainties. The first simultaneous extraction of
the six leading-order proton polarizabilities, namely, the two
scalar and the four spin-dependent polarizabilities, was recently
performed using an innovative bootstrap-based fitting method and
the complete set of experimental world data [16], leading to αE =
(12.7 ± 0.8(fit) ± 0.1(model)) 10–4 fm3 and βM = (2.4 ± 0.6(fit) ±
0.1(model)) 10

–4 fm3.
The generalization of the two scalar polarizabilities in four-

momentum transfer space [17], αE (Q2) and βM(Q
2), is an extension

of the static electric and magnetic polarizabilities obtained in RCS. The
generalized polarizabilities (GPs) are studied through measurements of
the virtual Compton scattering (VCS) process [17]: γ*p→ pγ. VCS is
accessed experimentally through the ep → epγ reaction, where the
incident real photon of the RCS process is replaced by a virtual photon.
The virtuality of the incident photon (Q2) sets the scale of the observation
and allows one to map out the spatial distribution of the polarization
densities in the proton, while the outgoing real photon provides the EM
perturbation to the system. The meaning of the GPs is analogous to that
of the nucleon form factors. Their Fourier transform will map out the
spatial distribution density of the polarization induced by an EM field.
They probe the quark substructure of the nucleon, offering a unique
insight into the underlying nucleon dynamics. They allow for the
determination of fundamental characteristics of the system, such as
the EM polarizability radii, and frequently enter as input parameters in
various scientific problems, e.g., in the hadronic two-photon exchange
corrections, which are needed for the precise extraction of the proton
charge radius from muonic hydrogen spectroscopy measurements [18].
The following sections review our knowledge about proton scalar
generalized polarizabilities. First, the theoretical context and
theoretical calculations of the GPs are discussed, followed by a review
of the virtual Compton scattering experiments with an emphasis on
recent developments, ongoing projects, and the consideration of future
prospects. This paper adds to and complements previous reviews
including those by [17, 19, 20] on the VCS; [18, 21] on dispersion
relations for Compton scattering; [22] on effective field theory and
Compton scattering experiments; [23] on the pion, nucleon, and kaon
polarizabilities; and [24] on covariant baryon chiral perturbation theories
(BChPTs), while we can refer to [25] for the extension of the discussion
to the spin structure of the nucleon that is not covered here.

2 Theoretical framework for VCS

2.1 VCS at low energy and the LET

The VCS [17] reaction can be obtained from RCS by replacing
the incident real photon with a virtual photon γ*. Experimentally,
VCS can be accessed as a subprocess of the reaction e(k) +N(p)→ e
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(k′) +N (p′) + γ(q′). The particle four-momentum vectors are
denoted as kμ and k′μ for the incoming and scattered electrons,
qμ and q′μ for the virtual photon and final real photon, and pμ and p′μ
for the initial and final protons, respectively. The modulus of the
three momenta is denoted as q = |q|. The variables that are indexed
“cm” are in the center-of-mass (c.m.) frame of the initial proton +
virtual photon, i.e., the c.m. of the Compton process. The kinematics
of the reaction are defined by five independent variables. The set of
variables that is typically adopted involves (qcm, q′, ϵ, θcm, ϕ), where ϵ
(see Eq. 3) is the virtual photon polarization parameter, i.e.,

ϵ � 1/ 1 + 2
q2lab
Q2

tan2 θe lab′ /2( )[ ]. (3)

qcm and q′ are the three-momentum moduli of the virtual and final
photons in the c.m., respectively, and θcm and ϕ are the c.m. angles of the
Compton process, i.e., the polar and azimuthal angles of the outgoing real
photon with respect to the virtual photon. In the above reaction, the real
final photon can be emitted by either the electron or nucleon. The first
contribution corresponds to the Bethe–Heitler (BH) process, which is
well known and calculable from QED with the nucleon electromagnetic
form factors as an input. The second part involves the VCS subprocess.
VCS can, in turn, be decomposed further into a Born term, where the
intermediate state is a nucleon, and a non-Born term, which contains all
nucleon excitations and meson-loop contributions, as shown in Figure 2.
The non-Born amplitude TNB contains the physics of interest and is
parametrized at low energy by the nucleonGPs. The three amplitudes add
up coherently (see Eq. 4) to form the total photon electroproduction
amplitude, i.e.,

Tep→epγ � TBH + TBorn + TNB � TBH + TVCS. (4)
In obtaining the non-Born amplitude, a multipole expansion [26]
is performed in the c.m. frame, yielding the multipoles
H(ρ′L′,ρL)S

NB (qcm′ , qcm). Here, L (L′) represents the angular
momentum of the initial (final) electromagnetic transition in
the (γ*p → γp) process, and S differentiates between the spin-
flip (S = 1) or non-spin-flip (S = 0) transition at the nucleon side. [ρ
(ρ′) = 0, 1, 2] characterizes the longitudinal (L), electric (E), or
magnetic (M) nature of the initial (final) photon. The GPs are
obtained as the limit of these multipoles when qcm′ tends to be zero
at arbitrarily fixed qcm. At this strict threshold, the final photon has
zero frequency, its electric and magnetic fields are constant,
corresponding to a “static field,” and the GPs represent the
generalization at finite qcm of the polarizability in classical
electromagnetism. For small values of qcm′ , one may use the
dipole approximation (L′ = 1), corresponding to electric and
magnetic final-state radiation that is dipolar only. In this case,
angular momentum and parity conservation lead to 10 different
dipole GPs [26] that the nucleon crossing combined with charge
conjugation symmetry then reduces further to 6 independent GPs
[27, 28], namely, the 2 scalar GPs (S = 0) and the 4 spin-dependent
(or spin-flip) GPs (S = 1). The two scalar GPs, the electric and
magnetic, are thus defined as

αE Q2( ) � − e2

4π
·


3
2

√
· P L1,L1( )0 Q2( ), (5)

βM Q2( ) � − e2

4π
·


3
8

√
· P M1,M1( )0 Q2( ), (6)

with e2/4π = αQED = 1/137, and at Q2 = 0, they coincide with RCS
static electromagnetic polarizabilities αE and βM.

At low energy q′ of the emitted photons, the low-energy theorem
(LET) and the low-energy expansion (LEX) for VCS [26] state that
the non-Born term starts at order q′, whereas the Born term enters at
1/q′. They offer a model-independent approach that allows us to
express the VCS cross-section in terms of the GPs and to access GPs
through experiments via the ep → epγ reaction. The LEX formula
yields for the photon electroproduction cross-section below the
pion-production threshold:

dσ � dσBH+Born +Φqcm′ Ψ0 + O q′2cm( ), (7)
Ψ0 � V1 PLL − PTT/ϵ( ) + V2 PLT, (8)

where, dσBH+Born is the BH + Born cross-section, which is entirely
calculable in QED and requires the nucleon elastic form factors GE

andGM as inputs. It contains no polarizability effect and serves as an
important cross-section of reference throughout the formalism.
(Φqcm′ ), V1, and V2 are kinematical factors. The term (Φqcm′ Ψ0)
is where the GPs first appear in the expansion. Ψ0 is the first-order
polarizability term obtained from the interference between the BH +
Born and non-Born amplitudes at the lowest order. It is therefore of
order q ′ 0

c.m., i.e., independent of qcm′ . In the phase-space factor
(Φqcm′ ), the term qcm′ has been explicitly factored out in order to
emphasize the fact that when qcm′ tends to be zero, (Φqcm′ Ψ0) tends
to be zero and the whole cross-section tends to be dσBH+Born. The
O(q ′2

cm) term represents all the higher-order terms of the expansion
and contains GPs of all orders. Below the pion-production
threshold, dσBH+Born dominates the cross-section, Ψ0 is the
leading polarizability term, and the higher-order terms O(q ′2

cm)
are expected to be negligible. The Ψ0 term contains three VCS
response functions or structural functions, namely, PLL, PLT, and
PTT, as defined in Eqs 9, 10, 11, which are combinations of the
lowest-order GPs.

PLL Q2( ) � −2 
6

√
MN · Gp

E Q2( ) · P L1,L1( )0 Q2( ), (9)

PTT Q2( ) � −3Gp
M Q2( ) · q2cm

~q0
· P M1,M1( )1 Q2( )(

− 
2

√
~q0 · P L1,M2( )1 Q2( ) ), (10)

PLT Q2( ) � 
3
2

√
· MN · qcm

~Q
· Gp

E Q2( ) · P M1,M1( )0 Q2( )
+ 3

2
qcm


Q2

√
~q0

· Gp
M Q2( ) · P L1,L1( )1 Q2( )[ ], (11)

whereMN is the mass of the nucleon. Here, we can point out that PLL
is proportional to the electric GP, PLT has a spin-independent part
that is proportional to the magnetic GP, plus a spin-dependent part
PLT spin, and PTT is a combination of two spin GPs.

2.2 Dispersion relation formalism

The LEX of the VCS observables provides a model-independent
method to analyze VCS experiments below the pion-production
threshold in terms of structural functions that contain information
about GPs. Nevertheless, the sensitivity of the VCS cross-section to
the GPs is enhanced in the region between the pion-production
threshold and the Δ-resonance region, where the LEX does not hold.
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Here, the dispersive approach provides a valuable theoretical framework
to extract theGPs. In theDR formalism, the non-Born contribution to the
VCS scattering amplitude is parametrized in terms of 12 independent
amplitudes Fi(Q

2, ], t), i = 1, . . ., 12, which depend on 3 kinematical
invariants, Q2, t, and the crossing-symmetric variable ] = (s − u)/(4MN)
[29]. The GPs are expressed in terms of the non-Born part FNB

i at the
points t = −Q2 and ] = 0. Assuming an appropriate analytic and high-
energy behavior, these amplitudes fulfill unsubtracted DRs in the variable
] at fixed t and fixed Q2:

ReFNB
i Q2, ], t( ) � Fpole

i Q2, ], t( ) − FB
i Q2, ], t( )

+ 2
π
P∫+∞

]thr
d]′]′ImFi Q2, ]′, t( )

]′2 − ]2
, (12)

where FB
i is the Born contribution as defined by [20, 26], whereas

Fpole
i denotes the nucleon pole contributions. Furthermore, Im Fi are

the discontinuities across the s-channel cuts, starting at the pion-
production threshold ]thr � mπ + (m2

π + t/2 + Q2/2)/(2M). The
validity of the unsubtracted DRs in Eq. 12 relies on the
assumption that at high energies (] → ∞, fixed t, and fixed Q2),
the amplitudes decrease fast enough such that the integrals converge.
The high-energy behavior of the amplitudes Fi was investigated
[29, 30], with the finding that the integrals diverge for F1 and F5. For
energies up to the Δ-resonance region, one can saturate the s-
channel dispersion integral by the πN contribution, setting the
upper limit of integration to ]max = 1.5 GeV. The remainder can
be estimated by energy-independent functions, which parametrize
the asymptotic contribution due to t-channel poles, as well as the
residual dispersive contributions beyond the value ]max = 1.5 GeV.
The asymptotic contribution to F5 is saturated by the π0 pole [29].
The asymptotic contribution to F1 can be described
phenomenologically as the exchange of an effective σ meson in
the same spirit as for unsubtracted DRs in the RCS case. The Q2

dependence of this term is unknown. It can be parametrized in terms
of a function directly related to the magnetic dipole GP βM(Q

2) and
fitted to VCS observables. Furthermore, it was found that the
unsubtracted DR for the amplitude F2 is not so well saturated by
πN intermediate states only. The additional s-channel contributions
beyond the πN states can effectively be accounted for with an
energy-independent function at fixed Q2 and t = −Q2. This
amounts to introducing an additional fit function, which is
directly related to the electric dipole GP αE (Q2). In order to
provide predictions for VCS observables, it is convenient to
adopt the following parametrizations for the fit functions:

αE Q2( ) − απNE Q2( ) � αexpE − απNE
1 + Q2/Λ2

α( )2, βM Q2( ) − βπNM Q2( )
� βexpM − βπNM

1 + Q2/Λ2
β( )2, (13)

where αE and βM are the RCS polarizabilities, with superscripts exp
and πN indicating the experimental value and the πN contribution
evaluated from unsubtracted DRs, respectively. In Eq. 13, the mass
scale parameters Λα and Λβ are free parameters, not necessarily
constant with Q2, which can be adjusted by a fit to the experimental
cross-sections.

The LEX and DR formalism have been widely tested in a series of
experiments discussed in the following sections. Data below the

pion-production threshold have been analyzed and compared with
both the LEX and DR. Furthermore, the polarizabilities have been
extracted via VCS measurements above the pion threshold by
utilizing the DR formalism, and the results are in excellent
agreement with those from the measurements below the pion-
production threshold. A fundamental difference between the two
(LEX vs. DR) analysis methods is that the DR formalism allows for
the direct extraction of the scalar GPs by fitting the parameters Λα

and Λβ to the data, whereas the LEX analysis provides access to
structural functions depending linearly on both scalar and spin GPs
[26]. In order to disentangle the scalar GPs, the contribution from
the spin GPs to the structural functions has to be subtracted using a
model, and for that, one typically uses the DR prediction for the spin
GPs. The complementarity and synergy of the two frameworks
extend further to the use of DR formalism toward the estimation of
higher-order terms in the LEX analysis. The LEX and DR
frameworks have so far illustrated remarkable agreement and
consistency in their extracted values of the scalar GPs from all
the experimental measurements.

2.3 Theoretical calculations of the
generalized polarizabilities

Theoretical calculations for the virtual Compton scattering have
been performed within a spectrum of frameworks that allow a
complementary insight into the mechanisms that govern the GPs.
The early calculations were conducted within the context of the non-
relativistic constituent quark model (NRCQM) [26, 31, 32], which
was later extended [33] to include relativistic effects by considering a
Lorentz covariant multipole expansion of the VCS amplitude and a
light-front relativistic calculation of the nucleon excitations. The
constituent quark model calculations have some limitations since
truncations are introduced that, e.g., lead to a violation of gauge
invariance. Nevertheless, the calculations have been constructive in
providing a first approximate estimate for the nucleon resonance
contributions to the GPs. The resonance contribution to the GPs has
been accounted for more accurately within the effective Lagrangian
model (ELM). These calculations are founded on a fully relativistic
effective Lagrangian framework, which includes baryon resonance
contributions and π0 and σ exchanges in the t-channel [34, 35] or on
calculations that use a coupled-channel unitary approach [36].

Calculations within the framework of the linear sigma model
(LSM) and chiral effective field theories offer a different perspective
through the prism of chiral symmetry and the pionic degrees of
freedom. The LSM allows for a simplistic description of the nucleon
that is based on relevant symmetries like Lorentz, gauge, and chiral
invariance. These calculations [37, 38] have revealed the existence of
relations between the VCS multipoles in addition to the usual
constraints of parity and angular momentum conservation
[27, 39]. The contribution of the pion-cloud effects can be
accounted for using chiral perturbation theories (ChPTs), an
expansion in the external momenta, and the pion mass (“p”-
expansion). The VCS amplitude is consistent with
electromagnetic gauge invariance, the pattern of chiral symmetry
breaking in QCD, and Lorentz covariance to a given order of the
small parameter p ≡{P, mπ}/Λ, where P stands for each component
of the four momenta of the photons and the three momenta of the
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nucleons and Λ is the breakdown scale of the theory. The first
calculation [40, 41] was performed at O(p3) with only nucleons and
pions as explicit degrees of freedom, using the heavy-baryon (HB)
expansion for the nucleon propagators, which amounts to making
an expansion in 1/MN along with the expansion in p. The
calculations were later extended to O(p4) and O(p5) [42, 43].
The inclusion of Δ(1232) as an explicit degree of freedom in the
calculation of the VCS process was first accounted for by [44] by
introducing the excitation energy of Δ(1232) as an additional
expansion parameter (“ϵ expansion”). An alternative counting
has also been proposed by [45] (“δ-expansion”), and it was
employed for the VCS process by [46] using a manifestly Lorentz
invariant version of the baryon chiral perturbation theory (BChPT).

A representative group of the above calculations is shown in
Figure 3. The differences in the Q2 dependence of the calculations
are driven by a number of parameters, i.e., in the NRCQM, the excited
states of the nucleon are given by resonances, and theQ2 behavior of the
GPs is determined by the electromagnetic transition form factors. The
LSM accounts for the excitation spectrum as pion–nucleon scattering
states with a different Q2 dependence and predicts a rapid variation at
smallmomentum transfer and a smooth variation at highermomentum,
while the ELMallows for both resonant and non-resonant contributions.
Nevertheless, all these calculations underestimate the static electric
polarizability at the real photon point (Q2 = 0) by 30%–40%. For the
magnetic GP, the pion cloud contributes to a positive slope at the origin,
while the N → Δ transition form factor drives the paramagnetic
contribution, which decreases as a function of Q2. The LSM describes
only the negative diamagnetic component; the NRCQM accounts only
for the positive paramagnetic contribution; and the interplay of the two
competing effects can be observed in the ELM calculation. The
calculation at the next-to-leading order in BChPT [46] is also shown

in Figure 3. Here, the consideration of the pion-cloud effects allows us to
overcome the shortcomings of the previousmodels in accounting for the
magnitude of the static electric polarizability. Nevertheless, the BChPT
prediction comes with a sizable theoretical uncertainty of ~30%,
highlighting the need for the next order calculation.

2.4 Radiative corrections to virtual Compton
scattering

The radiative corrections to virtual Compton scattering have been
developed in analogy with the radiative corrections to elastic scattering.
These corrections have been extensively studied by [47] and extended to
the high-energy limit for deeply virtual Compton scattering by [48]. The
main elements of the radiative corrections to the VCS experiments are
summarized here, while a detailed description of the steps applied in the
data analysis of theVCS experiments can be found in several works, such
as those by [49–52].

The calculation distinguishes between virtual corrections that
involve the exchange of a supplementary virtual photon and real
radiative corrections that involve the emission of a supplementary
real photon. The supplementary virtual photon is produced by a
variety of processes, such as vacuum polarization, electron self-
energy, or an additional loop between the lines of the reaction
diagram. The correction term, δV, varies slowly withQ

2 and is nearly
constant as a function of the other variables. For the part of the real
photon that can be emitted before or after the hadronic part of the
interaction, the process can be expressed as the sum of two terms,
δR1 and δR2. The first term depends on the maximum energy that the
soft photon can reach and on the missing-mass squared cut that is
used for each event in the data analysis, while δR2 contains correction

FIGURE 1
Experimental measurements and theoretical calculations for the static dipole electric polarizability of the proton [6, 14–16, 86]. This figure was
provided by F. Hagelstein.
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terms that do not involve such a dependence. The acceptance-
dependent part is implemented in the simulation of the experiment,
while the acceptance-independent correction is treated analytically
and has a weak dependence on Q2 and is nearly constant, excluding
the proximity of the BH peaks. Real external corrections, δ′, i.e., real
radiation coming from another nucleus in the target, are treated
in a classical way, as described by [53]. Thus, for the radiatively
corrected cross-section, one obtains the following expression of
Eqs 14, 15 [47]:

dσcorrexp � dσrawexp · Frad, (14)
with

Frad � 1 + δV + δR1 + δR2 + δ′[ ]−1, (15)
where dσrawexp is the raw measured cross-section. Beyond these primary
corrections, one can improve further by adding smaller terms, e.g., the
two-photon exchange contribution, δ1, and radiative corrections at the

proton side, δ(0)2 [47]. An example forQ2 = 0.3 GeV2 is at the kinematics
of the first VCS experiment at MAMI and the recent experiment at JLab
(VCS-I),Frad≃ 0.95 and≃ 0.99, respectively. TheFrad factor is determined
with an accuracy of ±2%. Nevertheless, in the case of the azimuthal
asymmetry measurements, the effect of these uncertainties in the
extraction of the polarizabilities is significantly suppressed.

3 Experimental measurements of the
generalized polarizabilities

3.1 Unpolarized cross-section
measurements

The VCS experimental program brings together measurements
that were conducted at the MAMI, MIT Bates, and JLab electron
accelerator facilities. The measurements span a period of three

FIGURE 2
Feynman diagrams of photon electroproduction. The small circles represent the interaction vertex of a virtual photon with a proton considered a
point-like particle, while the ellipse denotes the non-Born VCS amplitude.

FIGURE 3
The theoretical predictions of BChPT [46], NRQCM [32], LSM [37], ELM [36], and DR [21, 29, 30] are shown for the electric generalized polarizability
(A) and the magnetic generalized polarizability (B).
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decades, with the first one taking place in 1995 [54, 55]. The
experiments followed a similar technique, i.e., utilized an electron
beam, a liquid hydrogen target, and the detection of the two charged
particles e′ and p′ in magnetic spectrometers. The exclusive reaction
is then identified using the missing mass square of the undetected
photon. The extraction of GPs from the VCS cross-section
measurements is not direct and requires a fit made within a
theoretical framework. The experiments use two different
frameworks, with different domains of validity in W, that were
discussed in the previous section: a model-independent one based
on the LEX and a model-dependent one based on
dispersion relations.

The LEX formalism is valid only below the pion-production
threshold. The VCS amplitude is considered real, a property that
holds only for W < (MN + mπ). As soon as hadronic intermediate
states beyond that of the nucleon can be created on-shell, starting
with a nucleon plus a pion, the VCS amplitude acquires an
imaginary part, and the LEX formalism [26] is not valid
anymore. The LEX fit is performed at fixed qcm and ϵ and yields
the two structural functions PLL − PTT/ϵ and PLT. The scalar GPs can
then be deduced if one subtracts from these two structural functions
their spin-dependent part, namely, PTT and PLTspin. In the absence of
available measurements of the spin GPs, this subtraction relies on a
model calculation. In practice, dσBH+Born is the cross-section without
the polarizability effect, and the structural functions PLL − PTT/ϵ and
PLT are obtained by fitting the deviation of dσexp from dσBH+Born. The
dispersion relations provide a powerful formalism to analyze VCS
experiments both below and above the pion-production threshold.
The imaginary part of the VCS amplitude is a central ingredient of
the model, entering dispersive integrals saturated by πN
intermediate states. The existence of free parameters in the
model related to the unconstrained part of αE (Q2) and βM(Q

2)
allows us to perform an experimental fit in order to extract the scalar
GPs. In practice, the DR fit is based on the comparison of the
measured cross-section to the one calculated using the DR model
and is less straightforward than the LEX fit since the structural
functions or GPs do not appear in a simple analytic form in the
model cross-section. Here, the spin GPs are fully constrained in the
DR model and cannot be fitted. The formalism is suited for values of
W up to ~1.3 GeV, i.e., slightly above the ππN threshold and
covering most of the Δ(1232) resonance region.

The first experimental measurements involved the MAMI-I
experiment [54, 55], which made use of the A1 experimental
setup at MAMI (see Figure 4). The experiment was pioneering
since it was the first to establish and implement all the experimental
considerations of the VCS measurements, from the design of the
experiment to the numerous aspects of the data analysis, e.g., the
radiative corrections, dedicated Monte Carlo simulations, the
implementation of the LEX fit methods for the GP extraction.
The measurements targeted the region below the pion-
production threshold, covering an extended range of photon
energies, but were limited to in-plane angles. The first
experiment at JLab [56, 57] explored the highest photon
virtualities so far, in the range Q2 = 1–2 GeV2. The GPs were
found to be very small, pointing to a rapid fall-off with Q2. For a
common Q2, data were taken both below and above the pion-
production threshold, and the GPs were extracted independently
for the two datasets. This allowed us to show for the first time that

the GP extractions both below and above the pion-production
threshold, using LEX and DR formalisms, respectively, yielded
consistent results. It was also shown that the sensitivity to
polarizabilities is amplified when one measures above the pion
threshold and into the nucleon resonance region. The MIT Bates
experiment [58, 59] was the first to use an extracted CW beam from
the MIT Bates South Hall Ring, and it exploited the potential of the
out-of-plane kinematics. It took advantage of the unique strengths of
the out-of-plane spectrometer (OOPS) system to access large out-of-
plane angles, combined with the ability to perform simultaneous
measurements at different azimuthal angles, using up to four
identical, lightweight magnetic spectrometers. This, in turn,
allowed a significant reduction in the systematic uncertainties of
the measurement. Data were taken at the smallest Q2 so far (i.e., at
0.057 GeV2), enabling the first extraction of the mean-square electric
polarizability radius of the proton. This experiment was also the first
to evidence a bias in the LEX fit and highlight the limitations of using
this method of extraction for the GPs.

The above group of experiments took place during the first
decade of the VCS program and shaped a preliminary
understanding of the proton electric and magnetic GPs, covering
a broad range in momentum transfer. The measurements came with
relatively large experimental uncertainties, primarily for the
magnetic polarizability, highlighting the experimental challenges
in extracting the weak magnetic polarizability signal. One puzzling
observation of the reported measurements involved the electric GP.
Here, the data pointed to an enhancement of the αE magnitude at
Q2 = 0.33 GeV2 compared to the other measurements, which
violated the theoretical expectation for a monotonic fall-off as a
function of Q2. Consequently, a follow-up experiment was
conducted at MAMI, at the same Q2 = 0.33 GeV2, aiming to
cross-check and confirm the findings of MAMI-I. The
measurements of the MAMI-IV experiment [60] used the same
experimental setup, focused on angular kinematics very similar to
MAMI-I, and confirmed the results that were previously found.

The confirmation of the puzzling structure of αE (Q2) by two
independent experiments motivated the need for further
measurements. The experiments that followed focused on
providing a finer Q2 mapping of the polarizabilities and
improving the precision of the results. The MAMI-V experiment
[61] determined the electric GP at Q2 = 0.20 GeV2 from the cross-
section and asymmetry measurements in the Δ(1232) resonance.
Here, the αE extraction was performed exclusively within the DR
framework since the LEX formalism is not applicable in the Δ(1232)
region. In parallel to the polarizability measurement, the experiment
offered the first extraction of the N → Δ quadrupole amplitude
through the photon excitation channel, thus providing a stringent
control to the model uncertainties of the N → Δ transition form
factors that have relied exclusively on measurements of the
dominant pion–electroproduction channel. The MAMI-VI
experiment [62] was performed at three values of Q2 = 0.10, 0.20,
and 0.45 GeV2. The structural functions and scalar GPs were
extracted with high precision from cross-section data below the
pion-production threshold, utilizing both LEX and the DR
formalism. Out-of-plane kinematics were selected at each Q2, in
line with the approach of the MIT Bates experiment, but they
covered a larger angular phase space. Capitalizing on the
experience and lessons learned from the previous measurements,
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a novel bin selection method was developed, aiming to suppress the
higher-order terms of the LEX. The DR model was utilized to
provide an estimate of the higher-order terms of the LEX
expansion. The theoretical cross-sections, dσDR and dσLEX, were
calculated using the same input values of structural functions. Since
dσDR includes all orders in qc.m.′ , the difference (dσDR − dσLEX) is a
measure of the higher-order terms O(q ′2

c.m.) of Eq. 7, as given by the
DR model. Accordingly, the following dimensionless estimator of
Eq. 16 was constructed:

O q ′2
c.m.( )

DR
� dσDR − dσLEX

dσBH+Born
, (16)

at each point in the VCS phase space. The model-dependent
estimator was used first in the design of the experiment in order
to define kinematics, where O(q ′2

c.m.) is expected to be small. It was
later employed in the data analysis of the experiment to study the
behavior of the LEX fit under varying conditions. LEX fits were
performed including a varying number of experimental bins,
corresponding to gradually increased values of the O(q ′2

c.m.)DR

estimator by setting the condition O(q ′2
c.m.)DR ≤K and letting the

threshold K vary. Polarizability LEX fits were performed, and their
results were compared with and without the novel bin selection
method, while a comparison was also done with the results of the DR
fit analysis that is not bound to similar restrictions in the phase-
space selection. The analysis concluded with the selection of
Koptimal = 0.025 as the value providing the most reliable LEX fit.
The studies indicated that the effect of the higher-order
contributions becomes small and less of a concern at momentum
transfers higher than 0.4 GeV2. Careful consideration is to be given
in the data analysis at lower-momentum transfers, where the
resulting phase-space masking takes a typical shape, as shown in
Figure 5. The refinements in the data analysis procedure of MAMI-
VI allowed us to eliminate any bias arising from the higher-order
contributions and minimize the systematic uncertainties in the
extraction of the GPs. The refined analysis procedure of MAMI-
VI was utilized for a reanalysis [63] of the MAMI-I and MAMI-IV
data. Compared to the results of the original analysis, the extracted
values for the αE were slightly reduced, but the change was not
considerable so as to eliminate the observed structure in the
electric GP.

The most recent measurements involve the VCS program in Hall C
at the Thomas Jefferson National Accelerator Facility. The first stage of
this effort (the VCS-I experiment) [63] acquired data in the region Q2 =
0.28 GeV2 to 0.40 GeV2, aiming for high-precision measurements in the
region where the puzzling structure of αE (Q

2) [56, 60] was previously
reported. The experiment capitalized on the unique capabilities of the
experimental setup in Hall C at Jefferson Lab that allowed us to conduct
measurements of the scalar GPs with unprecedented precision. Cross-
section measurements were conducted for azimuthally symmetric
kinematics in the photon angle, i.e., for (ϕγ* γ, π − ϕγ*γ), since the
measurement of the azimuthal asymmetry in the cross-section
enhances the sensitivity in the extraction of the polarizabilities and
suppresses part of the systematic uncertainties. Moreover, the ep→epπ0

reaction was measured simultaneously with the ep→epγ reaction. The
cross-section of the pion–electroproduction process is well understood
in this kinematic regime, and its measurement offers a stringent, real-
time normalization control for the measurement of the ep→epγ cross-
section. Overall, a significant improvement was made in the precision of

the extracted generalized polarizabilities compared to previous
measurements.

The VCS-I data were acquired in Hall C of Jefferson Lab.
Electrons with energies of 4.56 GeV at a beam current of up to
20 μA were produced by the Jefferson Lab Continuous Electron
Beam Accelerator Facility (CEBAF) and were scattered from a 10-
cm-long liquid-hydrogen target. The Super High Momentum
Spectrometer (SHMS) and the High Momentum Spectrometer
(HMS) of Hall C were used to detect, in coincidence, the scattered
electrons and recoil protons, respectively (see Figure 6). Both
spectrometers are equipped with similar detector packages,
including a set of scintillator planes that were used to form the
trigger and provide time-of-flight information and a pair of drift
chambers used for tracking. The coincidence time was determined
as the difference in the time-of-flight between the two
spectrometers, accounting for path-length variation corrections
from the central trajectory and for the individual start times. The
experimental setup offered a resolution of ~1 ns (FWHM) in the
coincidence timing spectrum. Random coincidences were
subtracted using the side (accidental) bands of the coincidence
time spectrum. The events of the exclusive reaction ep→ epγ were
identified from the missing-mass reconstruction through a
selection cut around the photon peak in the missing-mass-
square spectrum. Data were taken with an empty target in
order to account for the background contributions from the
target walls. Elastic scattering measurements with a proton
target were performed throughout the experiment for
calibration and normalization studies.

The measurement of the absolute VCS cross-section,
σ ≡ d5σ/dEe′dΩe′dΩcm, requires the determination of the five-fold
solid angle, where dEe′ and dΩe′ are the differential energy and solid
angle of the scattered electron in the laboratory frame, respectively,
and dΩcm is the differential solid angle of the photon in the center-
of-mass frame. The experimental acceptance was calculated with the
Hall C Monte Carlo simulation program, SIMC, which integrates
the beam configuration, target geometry, spectrometer acceptances,
resolution effects, energy losses, and radiative corrections. The
cross-section of the ep→epγ process receives contributions from
the photon that is emitted by either the lepton, i.e., the BH process,
or by the proton, the fully virtual Compton scattering (FVCS)
process. The FVCS amplitude can, in turn, be decomposed into a
Born contribution, with the intermediate state being the nucleon,
and a non-Born contribution that carries the physics of interest and
is parametrized by the GPs. The BH and the Born-VCS
contributions are well known and calculable in terms of the
proton electromagnetic form factors. The GPs were extracted
from the measured cross-sections through a fit that employs the
DR model [21, 29, 30] for VCS. In DR formalism, the two scalar
GPs enter unconstrained and can be adjusted as free parameters,
while the proton electromagnetic form factors are introduced as
input. The experimental cross-sections were compared to the DR
model predictions for all possible values for the two GPs, and αE (Q

2)
and βM(Q

2) were fitted by χ2 minimization. The extracted electric
and magnetic GPs from the VCS-I experiment are shown in
Figure 7. The measurements suggest a local enhancement of αE
(Q2) in the measured region, at the same Q2 as previously reported
by [54, 55, 60], but with a smaller magnitude than what was
originally suggested. The Q2-dependence of the electric GP was
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explored using two types of approaches [64], namely, methods that
use traditional fits to the data using predefined functional forms and
methods that are based on data-driven techniques that assume no
direct underlying functional form. Both methods point to a Q2-
dependence for αE(Q

2) that is consistent with the presence of a
structure in the measured region, in sharp contrast with the current
theoretical understanding that suggests a monotonic dependence of
αE(Q

2) with Q2. For βM(Q
2), the results point to a smooth Q2-

dependence and the near-cancellation of the paramagnetic and the
diamagnetic contributions in the proton at ~ Q2 = 0.4 GeV2. A
comparison with the theory predictions of BChPT [46], NRQCM
[32], LSM [37], ELM [36] and DR [21, 29, 30] is shown in Figure 7.
As shown in the figure, the theoretical predictions for the GPs vary
notably, and the experimental results impose strict constraints to
the theory.

3.2 Spin asymmetry measurements

The VCS experimental program has been extended beyond the
unpolarized cross-section measurements to measurements of beam
single-spin asymmetries (SSAs) and double-spin asymmetries (DSAs).
Here, the goal is to study observables beyond the two scalar GPs,
including the four lowest-order spin-dependent GPs. This effort has
so far involved a couple of exploratory beam SSA and DSA experiments

that turned out to be challenging and offered limited sensitivity to the
observables of interest.

The beam single-spin asymmetry in VCS [65] was introduced to
access non-trivial phases of QCD and test the diquark model
predictions. The observable of interest is the asymmetry (dσ+ −
dσ−)/(dσ+ + dσ−), where dσ+ and dσ− stand for the photon
electroproduction cross-sections with a longitudinally polarized
electron beam of helicity +1

2 and −1
2, respectively. The numerator

of the asymmetry is equal to Im(TVCS) ·Re(TVCS + TBH) and
illustrates that the beam SSA is proportional to the imaginary
part of the VCS amplitude. Consequently, one must measure
above the pion-production threshold to access this asymmetry.
Furthermore, the asymmetry vanishes at azimuthal angles of 0°

and 180°, so one must measure at out-of-plane kinematics. One can
distinguish the two terms that drive the beam SSA numerator. The
first term, Im(TVCS) ·Re(TVCS), is exclusively due to the VCS
contribution and measures the relative phase between longitudinal
and transverse virtual Compton helicity amplitudes. The second
one, Im(TVCS) ·Re(TBH), is an interference term that measures the
relative phases between the VCS and BH amplitudes. In kinematics
where the BH dominates the cross-section, this interference
amplifies the VCS contribution and enhances the asymmetry.
The MAMI-II experiment [66, 67] measured the beam SSA in
the first resonance region at Q2 = 0.35 GeV2, covering out-of-
plane c.m. angles up to 40°. The SSA was small, less than 10%,

FIGURE 4
Three magnetic spectrometer setup of A1 at MAMI. The photo was provided by M. Weis, PhD thesis, University of Mainz, 2003.
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and the measurement was of a limited precision. The data illustrated
a good agreement with the DR calculation that adopts the (γ(*)N →
πN) multipoles of the MAID [68, 69] analysis, but in the kinematics
of the experiment, the DR calculation had little sensitivity to the
GPs. On the other hand, the measurement had good sensitivity to
the two longitudinal multipoles S1+ and S0+ in the (pπ0) channel that
are involved in the (pπ0) intermediate state of the VCS process.

The theoretical context of the doubly polarized VCS has been
studied by [20, 35]. The observables, i.e., the doubly polarized cross-
sections or asymmetries, require polarization on both the leptonic
and hadronic parts. Experimentally, the double-polarization
observable is determined via Eq. 17

Pcm
ı̂ � d5σ h, ı̂( ) − d5σ h,−ı̂( )

d5σ h, ı̂( ) + d5σ h,−ı̂( ), (17)

where ı̂ � x, y, z is the c.m. axis for the recoil proton polarization
component, h � ± 1

2is the beam helicity, and d5σ(h, ı̂) is the doubly
polarized (ep → e′p′γ) cross-section. The LET expansion for the
double-polarization observables [20, 35], which is valid below the
pion threshold, leads to Eq. 18

Pcm
ı̂ � Δd5σBH+B + ϕqcm′ ΔMnB h, ı̂( ) +O q′ 2

cm( )
2d5σ

, (18)

FIGURE 5
Phase space masking based on the higher-order estimator for
one of the kinematics of the MAMI-VI experiment. The red area of the
phase space is excluded from the data analysis. Figure was provided by
Jure Bericic, PhD thesis, University of Ljubljana, 2015.

FIGURE 6
(A) Experimental setup of the VCS-I experiment at Jefferson Lab. An electron beam impinges on a liquid hydrogen (red sphere) target. The
interaction is mediated through the exchange of a virtual photon (orange wavy line). The scattered electron and recoil proton are detected using two
magnetic spectrometers in coincidence. The real photon (green wavy line) that is produced in the reaction provides the electromagnetic perturbation
and allows us to measure the proton polarizabilities. (B) The (undetected) real photon is identified through the reconstruction of the missing mass
spectrum of the reaction and allows the selection of the VCS events. (C) The cross-section of the VCS reaction measures proton generalized
polarizabilities. The dashed line denotes the Bethe–Heitler + Born contributions to the cross-section.
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where Δd5σBH+B is the difference between the doubly polarized cross-
sections d5σBH+B(h, ı̂) − d5σBH+B(h,−ı̂), d5σ is the unpolarized (ep
→ e′p′γ) cross-section, and (ϕqcm′ ) is a phase-space factor. The non-
Born terms ΔMnB are linear combinations of the VCS structural
functions P⊥

LT, P
⊥
TT, P

′⊥
TT, P

′⊥
LT, P

z
LT, and P

′z
LT, which can be expressed as

linear combinations of the six GPs, namely, the two scalar and the four
spin-dependent GPs. More detailed formulas are given in the studies by
[20, 35]. Double-polarization observables were explored in theMAMI-IV
experiment, at kinematics similar to those of the MAMI-I experiment.
The beam was longitudinally polarized, and a focal-plane polarimeter
(FPP) was used to measure the recoil proton transverse polarization
components. From the double-polarization observables, the structural
function P⊥

LT was extracted for the first time. P⊥
LT is a linear combination

of the structural functions PLL and PTT, where PLL is proportional to the
electric GP and PTT is a combination of the two spin GPs P(M1,M1)1 and
P(L1,M2)1. The extracted value P⊥

LT � (−15.4 ± 3.3 +1.5
stat −2.4 syst) GeV−2 [70]

is larger in magnitude than most model predictions. This exploratory
double-polarization experiment turned out to be more challenging than
the unpolarized experiments, and the measured double-spin asymmetry
was less sensitive than expected to the GPs. In order to disentangle all six
lowest-order GPs, one will require an extensive experimental program,
with more data that span a wider range of the kinematical variables.

4 Induced polarization in the proton

The measurements of the generalized polarizabilities provide
access to the spatial deformation of the quark distributions in the
proton subject to the influence of an external electromagnetic field
[71]. Here, the method follows an extension of the formalism to
extract the light-front quark charge densities [72] from the proton
form factor data. The induced polarization in the proton from the
GP world data was extracted by [64]. In this work, an accurate
parametrization of the polarizabilities was first derived from a fit to
the experimental data, and from that, the induced polarization in the
proton, P0, defined by Eqs 19, 20 was extracted based on the
formalism discussed by [71], i.e.,

�P0
�b( ) � b̂∫∞

0

dQ

2π( ) QJ1 bQ( )A Q2( ), (19)

where �b is the transverse position, b � | �b|, b̂ � �b/b, and J1 is the first-
order Bessel function. A is a function of the GPs:

A � − 2MN( ) 
τ

√ 
3
2

√ 
1 + 2τ
1 + τ

√
× −P L1,L1( )0 + 1

2
P M1,M1( )0 −


3
2

√
P L1,L1( )1{

−

3
2

√
1 + τ( ) P M1,M1( )1 + 

2
√

2MNτ( )P L1,M2( )1[ ]}.
(20)

The GPs are expressed in the typical multipole notation P(ρ′l′,ρl)S

[26], where ρ (ρ′) refers to the Coulomb/electric (L) or magnetic
(M) nature of the initial (final) photon, l (l′ = 1) is the angular
momentum of the initial (final) photon, and S differentiates
between the spin-flip (S = 1) and non-spin-flip (S = 0)
transition at the nucleon side. τ ≡ Q2/(4M2

N), with MN being
the nucleon mass. In calculating the A function, the two scalar
GPs are defined using Eqs 5, 6, and the spin GPs are fixed by the
dispersion relations. For the asymptotic part of αE (Q2), one uses
the following parametrization of Eq. 21 that is derived from an
experimental fit to the world data:

αE Q2( ) � p0pe−0.5*
Q2−p1
p2( )2

+ 1

p3 + Q2/p4( )2[ ] fm3( ), (21)

with p0 = (30.4 ± 6.1)10–5 (fm3), p1 = 0.345 ± 0.008 (GeV2), p2 =
0.040 ± 0.003 (GeV2), p3 � 34.217 ± 1.136 (fm−3

2), and
p4 � 0.014 ± 0.002 (GeV2fm

3
2). For βM(Q

2), the world data are
described accurately using the DR model [21, 29, 30], following a
single-dipole behavior for the unconstrained part of the scalar GPs
with a mass scale parameter of Λβ = 0.5 GeV. The derived induced
polarization as a function of the transverse position of the proton is
shown in Figure 8. The distribution follows a change of sign of
~0.25 fm and exhibits a secondary maximum in the amplitude
of ~0.35 fm.

FIGURE 7
Electric and magnetic generalized polarizability measurements. The VCS-I results [64] are shown as red-circles, and the world data [14, 54–56, 58,
60–62] are presented as open symbols. The results from the dispersion-relation fits and the low-energy expansion fits are shown as circles and boxes,
respectively. The theoretical predictions of BChPT [46], NRQCM [32], LSM [37], ELM [36], and DR [21, 29, 30] are also shown.
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5 Electric and magnetic
polarizability radii

A primary measure that quantifies the extension of a spatial
distribution is the mean square radius. The mean square electric
polarizability radius of the proton 〈r2αE〉 can be determined from
measurements of the VCS reaction since it is related to the slope of
αE (Q2) at Q2 = 0 as defined by Eq. 22

〈r2αE〉 � −6
αE 0( ) ·

d

dQ2
αE Q2( )|Q2�0. (22)

The first 〈r2αE〉 extraction became possible with the MIT Bates GP
measurements at Q2 = 0.057 GeV2 [58]. In this work, the mean
square electric polarizability radius was determined from a dipole fit
to the RCS and the MIT Bates data points, giving 〈r2αE〉 �
1.95 ± 0.33 fm2 [58]. A more reliable extraction was done
recently, taking into account a more extensive dataset from
modern experiments in tandem with a comprehensive
consideration of the fitted functions and the fitting range. Li
et al. (2022a) conducted the 〈r2αE〉 extraction using a variety of

functional forms that can fit the data, i.e., combinations of
polynomial, dipole, Gaussian, and exponential functions. The fits
were explored in two groups: one group considered the full Q2 range
and the second focused on a limited range at low-Q2 that does not
include the αE anomaly, i.e., within Q2 = [0,0.28] GeV2. For the
experiments where the polarizabilities were derived by both the
dispersion relations and the low-energy expansion analysis, the
variance of the two results is treated as a model uncertainty for each
data point. For each group of fits, the final value for 〈r2αE〉 is determined
from the weighted average of the results of the individual fits. The
uncertainty of 〈r2αE〉 receives contributions from two terms, the
uncertainty of the weighted average and the weighted variance of the
individual fit results, which effectively reflect the model dependence on
the choice of the fitted parametrization. The final result is then derived
from the average of the two group values, with their spread accounted for
as a model uncertainty. The extraction of the polarizability radius is
sensitive to the value of the static (Q2 = 0) electric polarizability. If one
considers the recent measurement from MAMI [14], αE (0) = (10.99 ±
0.16 ± 0.47 ± 0.17 ± 0.34) 10–4 fm3, the extracted value for the
polarizability radius following the above analysis procedure is
〈r2αE〉 � 1.36 ± 0.29 fm2. We note that the MAMI measurement
[14] is in excellent agreement with the αE (0) PDG value.
Nevertheless, a recent experiment at HIGS [15] points to a tension
compared to the MAMI measurement and reports a higher value of αE
(0) = (13.8 ± 1.2 ± 0.1 ± 0.3) 10–4 fm3, albeit with a higher experimental
uncertainty. If one adopts the HIGS value for αE (0), one derives the
polarizability radius 〈r2αE〉 � 1.67 ± 0.50 fm2. In both cases, extracted
〈r2αE〉 is considerably larger than the mean square charge radius of the
proton, i.e., 〈r2E〉 ~ 0.7 fm2 [6, 73] as shown in Figure 9. The dominant
contribution to this effect is expected to arise from the deformation of the
mesonic cloud in the proton under the influence of an external EM field.

For the extraction of the mean square magnetic polarizability
radius from the magnetic polarizability measurements, one follows a
procedure that is equivalent to the extraction of 〈r2αE〉 since the
magnetic polarizability radius expression (Eq. 23) is similar, i.e.,

〈r2βM〉 � −6
βM 0( ) ·

d

dQ2
βM Q2( )|Q2�0. (23)

The reported values for βM(0) from the MAMI [14] and HIGS [15]
experiments exhibit tensions similar to those were reported for αE (0). If
one adopts the MAMI measurement, βM(0) = (3.14 ± 0.21 ± 0.24 ±
0.20 ± 0.35) 10–4 fm3, that is of higher precision and in good agreement
with the PDG value, one derives 〈r2βM〉 � 0.63 ± 0.31 fm2 [64]. If
instead one adopts the HIGS measurement, βM(0) = (0.2 ± 1.2 ± 0.1 ±
0.3) 10–4 fm3, then the magnetic polarizability radius is consistent with 0,
i.e., 〈r2βM〉 � 0.20 ± 0.36 fm2.

6 Future experiments and prospects

6.1 Unpolarized cross-section
measurements

The next phase of the VCS program at Jefferson Lab will
involve the VCS-II experiment [74]. Cross-section
measurements of the VCS reaction with an unpolarized
electron beam will use the VCS-I experimental setup in Hall

FIGURE 8
Induced polarization in the proton [64] when submitted to an EM
field as a function of the transverse position with photon polarization
along the x-axis for by = 0. The x–y axis defines the transverse plane,
with the z-axis being the direction of the fast-moving protons.

FIGURE 9
Proton electric polarizability radius rαE ≡


〈r2αE〉

√
as extracted from

theGPworld data [64]. Themeasurements of the proton charge radius
rE [87–94] (blue boxes) are shown for comparison.
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C to extend the kinematic coverage and improve the precision of
the measured GPs. Data will be acquired for 62 days of beam-on-
target, with an E◦ = 1.1 GeV and 2.2 GeV electron beam at I =
75 μA impinged on a 10-cm liquid-hydrogen target.
Measurements will be taken within the region Q2 = 0.05
(GeV/c)2 to Q2 = 0.50 (GeV/c)2 to provide high-precision data
combined with a fine mapping as a function of Q2. The
experiment will explore αE with a set of measurements that
are all uniform regarding their systematic uncertainties. This
will make it possible to identify the shape of the observed
structure in terms of electric polarizability more reliably and
with high precision. Moreover, a systematic set of measurements
will be conducted in kinematics, where the suggested structure in
αE emerges in an anti-diametric way in the VCS cross section. As
shown in Figure 10, the sensitivity of the VCS cross-section to αE
undergoes a crossing point and reverses for the two wings of the
resonance. Targeted measurements on both wings of the
resonance will allow to decouple the observation of the non-
trivial structure in the polarizability from the influence of
experimental systematic uncertainties. The precision of the
βM measurements will be further improved to allow a good
handle on the interplay between the diamagnetic and
paramagnetic contributions in the nucleon. The projected
VCS-II measurements are shown in Figure 11.

6.2 Beam-charge and beam-spin asymmetry
measurements

The recent measurements for the GPs highlight the need to
access these quantities by employing alternative experimental
methods. This will allow us to provide an independent
confirmation, in particular for the observed structure in the
electric polarizability. So far, the experimental measurements of
the proton generalized polarizabilities have used unpolarized
electron beams. The only exception is that of the exploratory
MAMI measurement of beam-spin asymmetries that, as
discussed in the previous section, had a weak sensitivity to
polarizabilities. An alternative and powerful avenue to access the
proton GPs beyond the unpolarized VCS measurements with an
electron beam is presented by the use of polarized and positron
beams [75]. The lepton beam charge (e) and polarization (λ)
dependence of the lp → lpγ differential cross-section are given by
Eq. 24

dσeλ � dσBH + dσVCS + λ d~σVCS + e dσINT + λ d~σINT( ), (24)

where dσ (d~σ) represents the polarization-independent
(dependent) contributions, which are even (odd) functions of
the azimuthal angle ϕ. dσINT involves the real part of the VCS
amplitude that contains the GP effects, while d~σINT is proportional
to the imaginary part of the VCS amplitude, which does not
depend on the GPs. Combining lepton beams of opposite
charge and different polarizations enables the complete
separation of the four unknown INT and VCS contributions.
By employing unpolarized electron and positron beams, one
can construct the unpolarized beam-charge asymmetry (BCA)
AC
UU as defined in Eq. 25

AC
UU � dσ++ + dσ+−( ) − dσ−+ + dσ−−( )

dσ++ + dσ+− + dσ−+ + dσ−−
� dσINT

dσBH + dσVCS
.

(25)

With polarized lepton beams, on the other hand, one can construct
the lepton beam-spin asymmetry (BSA), as defined by Eq. 26.

Ae
LU � dσe+ − dσe−

dσe+ + dσe−
� d~σVCS + ed~σINT

dσBH + dσVCS + e dσINT
.

(26)

The theoretical groundwork and the first study for the potential of
this type of experiment were presented by [75]. It was illustrated that
targeted measurements of un-polarized BCAs and polarized BSAs
exhibit remarkable sensitivity to both scalar GPs. A combination of
both types of asymmetries, such as in Eqs 27, 28

~AVCS ≡ A+
LU 1 + AC

UU( ) + A−
LU 1 − AC

UU( )
� 2d~σVCS

dσBH + dσVCS
,

(27)

and

~AINT ≡ A+
LU 1 + AC

UU( ) − A−
LU 1 − AC

UU( )
� 2d~σINT

dσBH + dσVCS
,

(28)

is powerful toward separating the contribution from the d~σVCS and
d~σINT terms, offering not only sensitivity to the GPs but also a cross-
check of the unitarity input in the dispersive formalism, as
discussed by [75].

Plans for a first experiment with beam-charge and beam-spin
asymmetry measurements at Jefferson Lab have been presented at
JLab, PAC51 Letter-of-Intent LOI-12-23-001 [76]. For the
unpolarized beam-charge asymmetries, the proposed experiment
targetsQ2 = 0.35GeV2, the kinematics of high interest for the electric
GP. The experiment will require a combination of electron and
positron beam measurements at an energy of E◦ = 2.2 GeV. The
SHMS and HMS magnetic spectrometers in Hall C will measure
e(+,−) and p, respectively, while the range of center-of-mass energies
that exhibit optimal sensitivity to the polarizabilities spans W =
1,150 MeV–W = 1,190 MeV. The measurements will access out-of-
plane kinematics up to ϕ = 30o, and θγ*γ spans a range, as shown in
Figure 12, for one bin in the center-of-mass energy. The experiment
aims for a 1% statistical uncertainty for each of the (+,-)
measurements, and the results will be limited by the systematic
uncertainties. The experiment will require 1 week of beam-on-target
with an electron beam at a current of I ~ 50 μA. The measurements
with a positron beam will require more beam time since the
accelerator cannot offer such a high level of beam current for the
positrons. The beam time will depend on the final performance of
the delivered positron beam, which is currently under development
at Jefferson Lab. For an unpolarized positron beam, it is expected at
the level of a few ~ μA. In an optimistic scenario where one can
achieve 5 μA, approximately 10 weeks of beam-on-target will be
needed for the experiment. The projected measurement for αE is
shown in Figure 12.

The use of a polarized beam offers one more alternative path for
GP measurements. Here, the goal is to measure BSAs, which can be
done independently with either an electron or a positron beam. Such
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measurements with a polarized electron beam can become readily
available at Jefferson Lab. A measurement is considered again at
Q2 = 0.35 GeV2 with an electron beam energy of E◦ = 2.2 GeV. Here,
the sensitivity to the polarizabilities is enhanced at higher center-of-
mass energies, in the range W = 1210 MeV–W = 1250 MeV. The
projected results for the proposed measurements, considering
~2 weeks of beam-on-target with an electron beam of I = 70 μA
at 85% polarization, are shown in Figure 13. The beam-spin
asymmetry allows us to suppress many of the systematic
uncertainties, and the statistics become the limiting factor for
these measurements. One can thus run additional beam time in

order to further reduce the experimental uncertainties that are
shown in Figure 13. The scenario of a BSA measurement with a
positron beam has also been considered. For a group of similar
measurements (i.e., at the same kinematics and with the same
precision as the electron BSA measurements), one can, in
principle, achieve an equally competitive extraction of the
polarizabilities compared to the measurements with an electron
beam. Nevertheless, the limitation here involves the beam time that
is needed for the measurements, since the beam current for a
polarized positron beam at Jefferson Lab will be significantly
suppressed. Considering a beam current of I ~ 50 nA and a

FIGURE 10
Projected cross-section measurements of the VCS-II experiment. The W-dependence of the cross-section is shown at Q2 = 0.35 (GeV/c)2 for
θγ*γ � 140°, and ϕγ*γ � 0° (A), and 180° (B). The different curves illustrate the sensitivity of the cross section to αE, within the range Λα = 0.1–1.3.

FIGURE 11
The VCS-II-projected measurements for αE and βM are shown as red solid points. The world data are shown as open symbols, with the exception of
the VCS-I results that are indicated by filled gray circles. The gray band in the electric GP plot indicates the data-driven extraction of the polarizability [64].
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beam polarization of 60%, one will need a beam time that is three
orders of magnitude higher compared to the measurements with an
electron beam. As such, this path is not viable based on the expected
performance of a future positron beam at JLab.

6.3 Conclusion and outlook

The Compton scattering process provides a unique tool to study
the electromagnetic polarizability mechanisms in the proton. The
generalization of the polarizabilities to non-zero four-momentum
transfer extends the applicability of these measurements to the study
of the spatial distribution of the polarization densities in the proton,
offering a unique insight into the underlying dynamics of the
fundamental quark and gluon constituents. The experimental
signal of interest is very small, and the measurements come with
significant challenges. Three decades of virtual Compton scattering
experiments have led to remarkable progress in the measurement of
these fundamental properties of the proton. The experimental
progress has been enabled by the advances in the theoretical
front and by the close synergy of the theoretical and
experimental efforts. The recent experiments illustrated that we
accomplished a significant improvement in the precision of the
measurements compared to the early VCS experiments. The electric
and magnetic GPs of the proton are now understood with a good
level of precision. The magnetic polarizability signal is more
challenging to extract, considering the cancellation of the
paramagnetic and diamagnetic contributions in the proton.
Nevertheless, there is room for improvement, and upcoming
experiments will add further to our understanding of both scalar
GPs. A question remains regarding the observed structure in the
electric GP that the theory is not able to explain. This structure is
suggested by three independent experimental measurements [54, 55,
60, 64]. The world data suggest a deviation from amonotonic fall-off
with Q2 at intermediate momentum transfers within ~3σ [64]. This
allows for a ~1% probability that the observation is coincidental.

Here, one may consider the possibility that some of the systematic
uncertainties associated with the analysis of the VCS measurements
may have been underestimated and that they are not under control
within the reported level. Toward that end, it becomes important to
come forward with different methods of measurement for the GPs.
This was proposed recently [76] by pursuing beam-charge and
beam-spin asymmetry measurements. If the observed structure in
the electric GP is confirmed by a new experiment that involves a
different framework for the extraction of the polarizabilities, then a
definitive answer will have been provided on the existence of the
effect. A measurement of beam-spin asymmetries with an electron
beam can be done at Jefferson Lab with the existing capabilities of
the laboratory. A beam-charge asymmetry measurement will
become possible in the near future once a positron beam at
Jefferson Lab becomes available.

The experimental measurements of the GPs serve as high-
precision benchmark data for the theory. They offer guidance to
the theoretical calculations and our understanding of the underlying
dynamics in the nucleon. Considering the size of the theoretical
uncertainties, the experiment is currently ahead of the theory in
terms of precision. The chiral effective field theory offers a quantum
field theory with the Lagrangian written in terms of hadronic fields,
in contrast to QCD, which is written in terms of quark and gluon
fields and allows a QCD description of low-energy phenomena. The
most recent work involves the next-to-leading order BChPT
calculation [46] that is shown in Figure 14. The theory is in good
agreement with the experimental data, but as shown in the figure,
the results come with relatively large uncertainties, pointing to the
need for the next-order calculation. These calculations are expected
to become available in the near future. Regardless of the size of the
theoretical uncertainties, BChPT prediction does not account for
any irregularity in αE (Q

2) that breaks the monotonic fall-off withQ2.
The lattice QCD (LQCD) allows an alternative path to calculate the
polarizabilities through a space–time discretization of the theory
based on the fundamental quark and gluon degrees of freedom,
starting from the original QCD Lagrangian. The progress on that

FIGURE 12
Beam-charge asymmetry-projectedmeasurements with a positron and an electron beam: (A)measurements at a fixed bin atW= 1170MeV and ϕ =
30o. The black curve corresponds to mass-scale parameters Λα = Λβ = 0.7. The two red (blue) curves explore the sensitivity to the electric (magnetic) GP
by varying Λα (Λβ) from 0.5 to 0.9. (B) The projected measurement for αE from the BCA measurements is shown in red, along with the world data.
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front is steady but still slow. These calculations are still limited to
static polarizabilities. The LQCD is in agreement with the
experimental data but within relatively large uncertainties. The
recent LQCD calculation [77] at the physical pion mass reports
for the electric polarizability αE = (11.8 ± 2.3 ± 3.7) 10–4 fm3. By the
end of the decade, one can expect that the LQCD uncertainties for
the static polarizabilities will improve to a level of precision that is
comparable to the experiment, and that the first LQCD calculations
for the GPs will become available.

While the chiral effective field theory and LQCD are making
progress to provide refined calculations, parallel efforts focus on the
study of potential mechanisms that could account for the observed
structure in the αE (Q2). A recent study focused on the role of the
resonance contributions to the generalized electric and magnetic
nucleon polarizabilities, analyzed within the holographic QCD
model [78]. Based on this calculation, as shown in Figure 15, the
resonance contributions alone cannot account for the observed
structure in αE (Q2). Nevertheless, there may be confusion
because the type of GPs in the calculation involves only the
symmetric GPs that are calculated in the forward VVCS and
have to be distinguished from the ones in the VCS, as
discussed by [46].

The article discussed the recent progress and developments of
the VCS program and the proton EM generalized polarizabilities.
Future experiments have the potential to extend the application of
the VCS program beyond the study of the scalar GPs to study the
spin-dependent GPs. Although the spin-dependent polarizability
mechanisms do not allow for an intuitive and simplistic description
of the underlying effects, their measurement can contribute
constructively to the understanding of the nucleon structure.
Here, we outline in brief some opportunities along this line of
measurement. One prospect is presented through the measurement
of the PTT structural function, which is a combination of two spin-
dependent GPs, as indicated in Eq. 10. PTT appears in the LEX
formalism (i.e., in Eqs 7, 8) in the (PLL − PTT/ϵ) term. Thus, one can

extract PTT by conducting unpolarized VCS measurements at
different values of ϵ for a common Q2. The magnitude of PTT is
expected to be small, according to DR and BChPT calculations, and
this renders the extraction of the experimental signal challenging.
Another path is to target a combination of unpolarized and
polarized observables at a common value of ϵ, as discussed by
[79, 80], in order to measure different linear combinations of PLL
and PTT and ultimately accomplish their separation. This method
was first explored in the MAMI-IV experiment, but the correlation
of the two structural functions from the two (polarized/unpolarized)
measurements had a strong overlap and did not allow a good
separation of the two terms. One can revisit this strategy,
targeting an optimal combination of kinematics that will allow
the extraction of PLL and PTT. Additional opportunities can be

FIGURE 13
Beam-spin asymmetry measurements using an electron beam. (A) Measurements at a fixed bin at W = 1230 MeV and ϕ = 30o. The black curve
corresponds to mass-scale parameters Λα=Λβ=0.7. The two red (blue) curves explore the sensitivity to the electric (magnetic) GP by varying Λα (Λβ) from
0.5 to 0.9. (B) The projected measurement for αE from the BSA measurements is shown in red, along with the world data.

FIGURE 14
The next-to-leading order BChPT calculation [46] for αE (Q2) is
shown as a red line, and the band reflects the theoretical uncertainty of
the calculation. The DR calculation [21, 29, 30] is indicated with the
blue line.
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presented in the future once the DR model is further developed to
allow the spin-dependent GPs (currently predicted by the DR) to
enter as free parameters in the calculation. This will empower the
DR framework to explore the simultaneous extraction of the scalar
and spin GPs by combining an extended set of VCS measurements
and taking advantage of the enhanced sensitivity of the GPs in the Δ
resonance region. Lastly, sum rules [81] have been derived in recent
years, relating VCS, RCS, and doubly virtual Compton scattering
(VVCS) at low-momentum transfers. [82], by generalizing the
Gerasimov–Drell–Hearn sum rule [83–85] to finite photon
virtuality, obtained two new model-independent relations,
linking parameters that characterize different sectors of low-
energy interactions between the nucleon spin structure and
electromagnetic waves. These parameters are extracted from
experimental information in VCS, RCS, and VVCS, i.e., they
involve the generalized polarizabilities, the spin polarizabilities,
the longitudinal–transverse polarizability, and the generalized
GDH integral, while the nucleon form factors and the
anomalous magnetic moments enter as additional input in the
sum rules. These sum rules can be tested with experimental
measurements and can be useful in constraining the low-energy
spin structure of the nucleon.

In summary, this article reviews our knowledge about a fundamental
property of the proton, i.e., its response to an external electromagnetic
field, which is described by the scalar polarizabilities and their
generalization to non-zero momentum transfer. The recent progress
of the last 5 years involves, for the most part, new experimental results.
As such, the paper emphasizes the recent developments and findings of
the virtual Compton scattering experiments and the discussion of future
perspectives on the topic, which are discussed in tandem with the
advances on the theory front. The first conclusion is that experimental
progress is currently ahead of theory. The recent experiments have
achieved a high level of precision in themeasurement of the GPs andwill
soon be extended across the full range of the kinematical phase space.
GPs are a key element of the proton structure, and they complement the
information that is provided by the nucleon form factors, providing

access to the spatial distribution of the polarization densities in the
proton. The induced polarization as a function of the transverse position
of the proton has been measured quite accurately, providing an insight
into the spatial dependence of the polarizability effects. Fundamental
characteristics of the system, such as the electric and magnetic
polarizability radii, have been determined with good precision due to
the recent experimental advances of the VCS experiments. A long-
standing puzzle involves electric polarizability. A structure in αE
(Q2) has been observed at intermediate momentum transfers,
which breaks the monotonic dependence with Q2. This
observation cannot be explained by the theory at the moment.
The effect has been confirmed by three independent experiments at
the 3σ level. This leaves a possibility of ~1% that the observation
may be coincidental, while one should consider the possibility that
part of the systematic uncertainties of the VCS experiments may
have been underestimated and should be revisited. A critical part
of future experimental studies will involve the measurement and
confirmation of this effect using a different method, as proposed by
the beam-spin and beam-charge asymmetry measurements. The
measurements of the magnetic GP are more challenging than those
of the electric GP, but considering the experimental level of
precision, it is expected that within this decade, we will be able
to meaningfully disentangle the magnitude of the paramagnetic
and diamagnetic contributions in the proton. The experimental
measurements have provided high-precision benchmark data for
the theory, and now, progress in the ChPT and LQCD calculations
is needed in order to achieve a deep understanding of the key
dynamical mechanisms that contribute to the electric and
magnetic polarizability effects.
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FIGURE 15
Total contributions to the proton αE (Q

2) + βM(Q
2) from low-lying

nucleon resonances, as calculated by [78]. The solid (dotted) blue line
represents the results for the contribution of the sharp (not-sharp)
resonances. The green solid line represents the low-energy
behavior for the low-lying nucleon resonance contributions following
from the interpolation of experimental data from helicity amplitudes
for γp → BX scattering processes, as discussed by [78]. A comparison
with an interpolation of the experimental GP data is shown with the
solid red line equipped with the shadow error region. The figure was
provided by F. Castellani.
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