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An effective formula for the shape-sensitivity analysis of electromagnetic
scattering is presented in this paper. First, based on the boundary element
method, a new electromagnetic scattering formula is derived by combining
the traditional electromagnetic scattering formula with the non-uniform
rational B-spline (NURBS) curve, and the geometric model is represented by
NURBS, which ensures the geometric accuracy, avoids the heavy grid division in
the optimization process, and realizes the fast calculation of high-fidelity
numerical solutions. Second, by deducing the sensitivity variables, the
electromagnetic scattering equation of shape optimization is obtained, which
can provide reliable data references for shape optimization. Finally, the
effectiveness and accuracy of the algorithm are demonstrated by an example,
and the sensitivity data of some examples are given.
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1 Introduction

At present, the field of radar detection and target stealth design has become a research
hotspot, and electromagnetic simulation technology [1] as an indispensable tool in this field
is also very important. Commonly used computational electromagnetic methods include
finite element method (FEM) [2, 3], boundary element method (BEM) (or method of
moment) [4], and finite difference time domain method (FDTD) [5] [6–8]. Among them,
the boundary element method is more favored in solving electromagnetic problems because
it is only discretized on the surface of the structure and naturally satisfies the radiation
condition at infinity. Compared with other domain discretization methods, the boundary
element method has higher computational accuracy and smaller degrees of freedom.

Electromagnetic scattering sensitivity analysis has gradually become a hot field with the
development of computational electromagnetism. Sensitivity analysis is a statistical method
used to observe the behavior or changes in a model by varying its variables within a specific
range. It enables the identification and evaluation of relationships between data, systems, or
models in order to optimize the model efficiently [9–11]. In the context of electromagnetic
scattering, sensitivity analysis aims to explore and analyze how an object or system responds
and performs under such conditions. This analysis provides valuable guidance for
evaluating object performance and optimizing system design through parameter
adjustments [12-14]. Commonly employed methods for electromagnetic scattering
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sensitivity analysis include derivative-based local approach [15, 16],
linear-regression analysis [17-19], and variogram analysis [20, 21] of
response surfaces. In this study, we adopted the derivative-based
local approach and derived the corresponding shape sensitivity
analysis equation through partial differentiation with respect to
shape variables. However, the traditional boundary element
method employs low-order Lagrange polynomials as basis
functions (e.g., Raviart–Thomas [22] or RWG [1] basis
functions), which leads to certain limitations: 1) inability to
capture intricate details in complex models, resulting in reduced
geometric accuracy and 2) utilization of low-order basis functions
for approximating physical fields diminishes both the accuracy and
sensitivity of the objective function.

The isogeometric analysis (IGA) [23, 24] proposed by
Hughes et al. provides a new way to solve the above
problems. The key point of IGA is to approximate the
physical field by spline function. The use of IGA can avoid
repeated mesh division, realize the interaction between
Computer Aided Design and Computer Aided Engineering,
improve the accuracy of the objective function, and avoid the
secondary machining of the model. Isogeometric analysis was
first introduced into the finite element method and then quickly
generalized to other methods such as the boundary element
method. IGA received very wide attention as soon as it was
proposed and was quickly applied to elasticity [25–29], fracture
mechanics [8, 30–33], acoustic [34–43], fluid mechanics [44–46],
flexible composites [9, 47–51], heat conduction [52–55], etc.,
[56, 57]. However, IGA has not been used in electromagnetism
because it needs to meet the divergence and curl coincidence
conditions. [58], who proposed B-spline-compatible vector and
other geometric finite elements to construct discrete de Rham
sequences, made significant achievements in solving this problem
[59, 60]. The introduction of compatible B-splines into the
boundary element method [61] by Simpson et al. is an
important step in the application of the isogeometric
boundary element method (IGABEM) in electromagnetics.
[62] used the IGABEM to solve the three-dimensional double
periodic multilayer structure of electromagnetic scattering
problems. [63–65], using the IGABEM combined with the
nth-order perturbation method, quantitatively analyzed the
uncertainty of the electromagnetic scattering incidence
frequency of an antenna array structure. All these have
promoted the development of the IGABEM in electromagnetism.
In this paper, non-uniform rational B-spline (NURBS) is used as the
basis function, and the electromagnetic scattering analysis equation is
obtained by combining equal geometry and boundary elements. On
this basis, the electromagnetic scattering sensitivity analysis equation
for shape sensitivity analysis is derived. To sum up, the innovations of
this paper are as follows:

• The formula for electromagnetic scattering analysis is
obtained by using the NURBS curve as the basis function

• The IGABEM is used for shape design sensitivity for 2D
electromagnetic scattering.

The remainder of this paper is organized as follows: Section 2
gives the IGABEM formula for solving the electromagnetic
scattering analysis problem with NURBS as the basis function;

Section 3 introduces the shape sensitivity analysis formula with
shape design as variables; Section 4 presents twomodels to verify the
accuracy and effectiveness of the IGABEM, and some shape
sensitivity data of the models are also given; and Section 5
provides a summary of the paper.

2 Electromagnetic scattering analysis
with the Galerkin IGABEM under
transverse electric polarization

This section uses the IGABEM. First, the surface current is
obtained by solving the surface integral equation, and then the
scattering field is obtained by combining the obtained current with
the two-dimensional electric field radiation equation. Finally, the
two-dimensional radar cross-section is solved by the scattering field
and incident field.

2.1 Boundary integral equations

We first assume a bounded fieldΩ1 whose connected boundary Γ
is in the unbounded fieldΩ0 and whose permittivity and permeability
are the scalars ε0 and μ0, respectively. An electromagnetic plane wave
Einc with angular frequency ω is applied to an object with wave
number k � ω

����
ε0μ0

√
, as shown in Figure 1.

The surface integral equations on Ω are as follows:

iωμ LJ( ) ~r( ) + KM( ) ~r( )[ ]tan + 1
2
n̂ ~r( ) × M ~r( ) � Einc ~r( )[ ]tan, (1)

n̂ ~r( ) × iωε LM( ) ~r( ) − KJ( ) ~r( )[ ]tan + J ~r( ) � n̂ ~r( ) × Hinc ~r( )[ ]tan,
(2)

where J and M represent surface current and surface magnetic
flow, respectively, and (·)tan denotes tangential components of the
vector. The operators L (Eq. 4) and K (Eq. 3) are

LJ( ) ~r( ) � 1 + 1

k2
∇∇·[ ]∫Γ r( )G ~r, r( )J r( )dΓ r( ) (3)

KM( ) ~r( ) � ∇ × ∫Γ r( )G ~r, r( )M r( )dΓl r( ), (4)

where Einc(~r) andHinc(~r) represent the electric and magnetic fields,
respectively, generated by the incident wave, which exist only in Ω0.
G(~r, r) denotes Green’s function. Green’s function for 2D problems
(Eq. 5) can be written as

FIGURE 1
A target structure residing within an infinite domain impinged by
an electromagnetic plane wave Ω0 is the unbounded exterior region
to which the free space parameters are assigned (μ0 , ε0); n̂1 denotes
the boundary of Ω1. The normal vector n̂1 points toward the
interior of Ω1 from its interface.
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G ~r, r( ) � − i
4
H 2( )

0 kr( ), with r � |~r − r|, (5)
where H(2)

0 denotes the Hankel functions of the second kinds
of order zero.

Eqs 1, 2 are the surface electric field integral equation (EFIE) and
surface magnetic field integral equation (MFIE), respectively. When
dealing with closed conductors, the internal resonance phenomenon
is easy to occur, resulting in non-unique solutions for the EFIE and
MFIE. The most common way to deal with this problem is to
combine theMFIE with EFIE to obtain a combined integral equation
called the combined field integral equation (CFIE) (Eq. 6), which is
expressed as follows:

αEFIE + 1 − α( )ηMFIE, (6)

where η � �����
μ0/ε0

√
and 0#α#1, and α � 0.5 is commonly used.

When the incident wave is TE polarized, the incident electric
field and magnetic field are

Einc x( ) � eik x1 cos ϕinc( )+x2 sin ϕinc( )( )ẑ, (7)
and

Hinc x( ) � 1
η

−sin ϕinc( )x̂ + cos ϕinc( )ŷ[ ] · eik x1 cos ϕinc( )+x2 sin ϕinc( )( ).
(8)

The TE polarizes with only a ẑ component, so Eqs 6, 7 can be
written as

ωμ

4
∫

Γ y( )J y( )H 2( )
0 kr( )dΓ y( ) � Einc x( ) (9)

and Eq. 10

1
2
J x( ) + ik

4
∫

Γ y( )J y( ) n̂ x( ) · r̂[ ]H 2( )
1 kr( )dΓ y( ) � n̂ x( ) × Hinc x( ),

(10)
where Eq. 11

n̂ x( ) · r̂ � ∂r

∂n x( ) � r,ℓnℓ x( ), ℓ � 1, 2 (11)

and Eq. 12

n̂ x( ) × Hinc x( ) � Hn
inc x( ) � 1

η
n1 x( )cos ϕinc( )[

+n2 x( )sin ϕinc( )]eik x1 cos ϕinc( )+x2 sin ϕinc( )( )ẑ. (12)

FIGURE 2
Sectional model boundary NURBS curve and control point.

FIGURE 3
The RCS for PEC cylinder. (A) The RCS at 800 MHz under back-scattering. (B) The RCS at ϕinc = 0 at different frequency.

Frontiers in Physics frontiersin.org03

Hu and Liu 10.3389/fphy.2024.1424995

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2024.1424995


In IGA, NURBS is used for constructing geometry and
discretizing physical field. A point with Cartesian coordinate x at
a NURBS (Eq. 13) curve is expressed by

x ξ( ) � ∑Nf

i�1
Ri ξ( )Pi, (13)

where Pi denotes the ith control point. Rz
i (ξ) is the NURBS basis

function with order p and ξ parametric coordinates. The electric and
magnetic currents inΩ0 are discretized with NURBS basis functions
as Eq. 14

J y( ) � ∑Nf

i�1
Rz

i y( )XJ
i , J x( ) � ∑Nf

i�1
Rz

i x( )XJ
i . (14)

Using the weighted basis function and the test function to
expand Eqs 8, 9, the matrix elements of Eqs 8, 9 can be obtained
as Eq. 15

AJ
E j, i( ) � ωμ

4
∫

Γ x( )
Rz

j x( ) · ∫
Γ y( )R

z
i y( )H 2( )

0 kr( )dΓ y( )dΓ x( )

� ωμ

4
∑Ne

~e�1
∑Ne

e�1
∫

Γ
~e

Rz
j x ξ( )( ) · ∫

Γe
Rz

i y ξ( )( )H 2( )
0 kr ξ( )( )

× dΓ y ξ( )( )dΓ x ξ( )( ) (15)
and Eq. 16

AJ
H j, i( ) � 1

2
∫

Γ x( )
Rz

j x( ) · Rz
i x( )dΓ x( ) + ik

4
∫

Γ x( )
Rz

j x( ) · ∫
Γ y( )R

z
i y( )

× n̂ x( ) · r̂[ ]H 2( )
1 kr( )dΓ y( )dΓ x( )

� 1
2
∑Ne

~e�1
∫

Γ
~e

Rz
j x ξ( )( ) · Rz

i x ξ( )( )dΓ x ξ( )( ) + ik
4
∑Ne

~e�1

× ∑Ne

e�1
∫

Γ
~e

Rz
j x ξ( )( ) · ∫

Γe
Rz

i y ξ( )( )
× n̂ x ξ( )( ) · r̂ ξ( )[ ]H 2( )

1 kr ξ( )( )dΓ y ξ( )( )dΓ x ξ( )( ),
(16)

FIGURE 4
Current for the cylinder at 800 MHz with ϕinc � 0. (A) |Jz(ϕ a)|; (B) Re Jz(ϕ a); and (C) Im Jz (ϕ a).
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where Ne is the number of NURBS elements and dΓ � J(ξ)dξ with
the Jacobian matrix J(ξ).

The vector elements on the right side of Eqs 8, 9 can be expressed
as follows Eq. 17:

BE j( ) � ∫
Γ x( )

Rz
j x( ) · Einc x( )dΓ x( )

� ∑Ne

~e�1
∫

Γ
~e

Rz
j x ξ( )( ) · Einc x ξ( )( )dΓ x ξ( )( ) (17)

and Eq. 18

BH j( ) � ∫
Γ x( )

Rz
j x( ) · n̂ x( ) × Hinc x( )[ ]dΓ x( )

� ∑Ne

~e�1
∫

Γ
~e

Rz
j x ξ( )( ) · n̂ x ξ( )( ) × Hinc x ξ( )( )[ ]dΓ x ξ( )( ). (18)

The discretized formulations of Eqs 8, 9 are given by Eq. 19

AJ
E X

J � BE (19)

and Eq. 20

FIGURE 5
Electric field distribution around the PEC cylinder at 800 MHz: (A) ABS (Ez); (B) |Re(Ez)|; and (C) |Im(Ez)|.

FIGURE 6
Sensitivity of RCS for the PEC cylinder to shape change: (A) RCS sensitivity at 800 MHz with ϕinc � 0. (B) RCS sensitivity with ϕinc � 0 at different
frequencies.
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AJ
H XJ � BH. (20)

In addition, combining the EFIE with the nMFIE yields the CFIE
as Eq. 21

αAJ
E + 1 − α( )ηAJ

H[ ]︸��������︷︷��������︸
A� A j,i( )[ ]

XJ � αBE + 1 − α( )ηBH︸�������︷︷�������︸
B� B j( )[ ]

. (21)

Hence, we can obtain the following linear system of equations
Eq. 22:

AXJ � B. (22)
By solving the above equation, we can obtain the surface current

J, scattered electric field, and magnetic field. In addition, the value of
the 2D radar scattering cross-section RCS2D that we require can be
obtained from the obtained scattered electric field, as shown below:

RCS2D � 2πρ
Esca| |2
Einc| |2. (23)

In general, we convert Eq. 22 to the following expression when
using it, as Eq. 24:

RCSdbsm � 10 × lg RCS2D( ). (24)

3 Sensitivity analysis of electromagnetic
scattering problems

By differentiating Eq. 8 with respect to an arbitrary shape design
variable, one can obtain the following formulations for
electromagnetic shape design sensitivity analysis:

ωμ

4
∫

Γ y( )
_J y( )H 2( )

0 kr( )dΓ y( ) + ωμ

4
∫

Γ y( )J y( ) _H 2( )
0 kr( )dΓ y( )

+ωμ
4
∫

Γ y( )J y( )H 2( )
0 kr( )d _Γ y( ) � _Einc x( ). (25)

The dot _( ) above represents the differentiation of the shape design
variable. The formula of _H

(2)
0 (kr) and _Einc(x) Eq. 26:

FIGURE 7
Sensitivity of the current for the PEC cylinder to shape change: (A) |Jz(ϕ a)|; (B) Re Jz(ϕ a); and (C) Im Jz (ϕ a).
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_H
2( )
0 kr( ) � −kH 2( )

1 kr( ) _r (26)
and Eq. 27

_Einc x( ) � ik[ _x1 cos ϕinc( ) + _x2 sin ϕinc( )]eik x1 cos ϕinc( )+x2 sin ϕinc( )( )ẑ,
(27)

where Eq. 28

_r � r,ℓ _xℓ − _y
ℓ
),( (28)

where x and y and  � 1 or 2 are, respectively, the coordinate
points x and y of Cartesian components. The index after the comma
indicates the partial derivative with respect to the coordinate
component. Einstein’s summation convention is used throughout
this article, so the repeated indicators in this article represent
summations within their ranges. _nℓ(y) and d _Γ(y) can be written
as Eq. 29

_nℓ y( ) � − _yκ,ℓnκ y( ) + _yκ,mnκ y( )nm y( )nℓ y( ) (29)

and Eq. 30

d _Γ y( ) � _y
ℓ,ℓ − _y

ℓ,κnℓ y( )nκ y( )]dΓ y( ),[ (30)

where an index after a comma denotes the partial derivative with
respect to the coordinate component and _yk,m � ∂ _yk/∂ym.

By differentiating Eq. 9 with respect to an arbitrary shape design
variable, one can obtain the sensitivity formulations for the nMFIE,
which is expressed as Eq. 31

1
2
_J x( ) + ik

4
∫

Γ y( )
_J y( ) r,ℓnℓ x( )[ ]H 2( )

1 kr( )dΓ y( ) + ik
4
∫

Γ y( )J y( )
×[ _r,ℓnℓ x( ) + r,ℓ _nℓ x( )]H 2( )

1 kr( )dΓ y( ) + ik
4
∫

Γ y( )J y( )
× r,ℓnℓ x( )[ ] _H 2( )

1 kr( )dΓ y( ) + ik
4
∫

Γ y( )J y( )
× r,ℓnℓ x( )[ ]H 2( )

1 kr( )d _Γ y( ) � _H
n

inc x( ), (31)
where Eqs 32–34

_H
2( )

1 kr( ) � H 2( )
1 kr( ) _r

r
−H 2( )

2 kr( )k _r, (32)

_r,ℓ � _xℓ − _y
ℓ

( )nℓ x( )
r

− _rr,ℓnℓ x( )
r

, (33)
_nℓ x( ) � − _xκ,ℓnκ x( ) + _xκ,mnκ x( )nm x( )nℓ x( ), (34)

and Eq. 35

_H
n

inc x( ) � 1
η
eik x1 cos ϕinc( )+x2 sin ϕinc( )( ){ _n1 x( )cos ϕinc( )+ _n2 x( )sin ϕinc( )

+ ik · n1 x( )cos ϕinc( )+n2 x( )sin ϕinc( )[ ] ·[ _x1 cos ϕinc( )
+ _x2 sin ϕinc( )]}ẑ. (35)

Discretizing the sensitivity of the electric current in the domain
using the sum of weighted basis functions yields Eq. 36

_J y( ) � ∑Nf

i�1
Rz

i y( ) _XJ

i , _J x( ) � ∑Nf

i�1
Rz

i x( ) _XJ

i . (36)

By using the weighted basis function and the test function to
discretize Eq. 24, the matrix elements of Eq. 24 can be obtained
as Eq. 37

FIGURE 8
Sensitivity of the electric field around the cylinder to shape changes at 800 MHz ϕinc � 0 TE polarization: (A) Abs(Ez)/dR; (B) |Re(Ez)|/dR; and
(C) |Im(Ez)|/dR.

FIGURE 9
NURBS curve and control points of a deformation circle model.
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AJ
E j, i( ) � ωμ

4
∫

Γ x( )
Rz

j x( ) · ∫
Γ y( )R

z
i y( )H 2( )

0 kr( )dΓ y( )dΓ x( )
_A
J

E j, i( ) � ωμ

4
∫

Γ x( )
Rz

j x( ) · ∫
Γ y( )R

z
i y( ) _H 2( )

0 kr( )dΓ y( )dΓ x( )+
ωμ

4
∫

Γ x( )
Rz

j x( ) · ∫
Γ y( )R

z
i y( )H 2( )

0 kr( )[ _y
ℓ,ℓ − _y

ℓ,κnℓ y( )nκ y( )]
× dΓ y( )dΓ x( )

_BE j( ) � ∫Γ x( )R
z
j x( ) · _Einc x( )dΓ x( )

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
(37)

Similarly, by using theweighted basis function and the test function to
discretize Eq. 30, the matrix elements of Eq. 30 can be obtained as Eq. 38

AJ
H j, i( ) � 1

2
∫

Γ x( )
Rz

j x( ) · Rz
i x( )dΓ x( ) + ik

4
∫

Γ x( )
Rz

j x( ) · ∫
Γ y( )R

z
i y( ) r,ℓnℓ x( )[ ]H 2( )

1 kr( )dΓ y( )dΓ x( )

_A
J

H j, i( ) � ik
4
∫

Γ x( )
Rz

j x( ) · ∫
Γ y( )R

z
i y( ) _r,ℓnℓ x( ) + r,ℓ _nℓ x( )[ ]H 2( )

1 kr( )dΓ y( )dΓ x( )+
ik
4
∫

Γ x( )
Rz

j x( ) · ∫
Γ y( )R

z
i y( ) r,ℓnℓ x( )[ ] _H 2( )

1 kr( )dΓ y( )dΓ x( )+
ik
4
∫

Γ x( )
Rz

j x( ) · ∫
Γ y( )R

z
i y( ) r,ℓnℓ x( )[ ]H 2( )

1 kr( ) _y
ℓ,ℓ − _y

ℓ,κnℓ y( )nκ y( )[ ]dΓ y( )dΓ x( )
_BH j( ) � ∫Γ x( )R

z
j x( ) · _Hn

inc x( )dΓ x( )

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
(38)

The discretized formulations of Eqs 24, 30 based
on Galerkin’s IGABEM with B-spline basis functions are given
by Eq. 39

FIGURE 10
Current for the deformation circle model: (A) current at ϕinc � 0. (B) Current at ϕinc � 45. (A) |Jz(ϕ a)| and (B) | Jz(ϕ a)|.

FIGURE 11
Electric field distribution around the PEC cylinder at 800 MHz: (A) ABS (Ez); (B) |Re(Ez)|; and (C) |Im(Ez)|.
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AJ
E
_X
J + _A

J

E X
J � _BE (39)

and Eq. 40

AJ
H
_X
J + _A

J

H XJ � _BH. (40)
Thus, the sensitivity formulation of the CFIE is formed by
combining the sensitivity formulation of the EFIE and nMFIE,
which is expressed as Eq. 41

αAJ
E + 1 − α( )ηAJ

H[ ]︸��������︷︷��������︸
A� A j,i( )[ ]

_X
J + α _A

J

E + 1 − α( )η _AJ

H[ ]︸���������︷︷���������︸
_A� _A j,i( )[ ]

XJ

� α _BE + 1 − α( )η _BH︸�������︷︷�������︸
_B� _B j( )[ ]

. (41)

Hence, we can obtain the following linear system of equations
Eq. 42:

FIGURE 12
Sensitivity of the current to shape change: (A) current sensitivity with ϕinc � 0. (B) Current sensitivity with ϕinc � 45. (A) | (ϕ a)| sensitivity and (B)
|Jz(ϕ a)| sensitivity.

FIGURE 13
Sensitivity of the electric field around themodel to shape change at 800 MHz: (A) Abs (Ez) sensitivity; (B) |Re(Ez)| sensitivity; and (C) |Im(Ez)| sensitivity.
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A _X
J + _AXJ � _B. (42)

By solving the above equation, the sensitivity of the surface
current _J can be obtained. In addition, the sensitivity of the
scattered electric field and magnetic field can also be obtained.
In addition, the sensitivity of RCS2D in Eq. 22 will be solved by
differentiating Eq. 22 with respect to the design variable.

4 Numerical results

In this section, the framework is written in Fortran
90 language, and the correctness and effectiveness of the
IGABEM are verified by perfect electric conductor (PEC)
circular examples. In addition, the sensitivity analysis of the
two important parameters of the model shape and the incident
wave is also be carried out.

4.1 Numerical verification using the PEC
cylinder model

In the first example, a PEC cylinder of radius 1 is geometrically
modeled using NURBS curves, as shown in Figure 2. The object is hit
by an incident TE-polarized plane wave.

First, we use the IGABEM/CFIE to calculate the RCS value at
800 MHz, 0 < ϕsca < 2π, and back-scattering (ϕinc� 0). The
comparison between the result and the analytical solution is
shown in Figure 3A. The figure shows that the analytical solution
is very consistent with that of the IGABEM/CFIE. In addition, the
RCS value begins to fluctuate when the scattering angle reaches 135°

and reaches a maximum when the scattering angle reaches 180°.
In addition, because of the symmetry of the example itself, its

RCS is also symmetric at approximately 180°. Then, the
IGABEM/CFIE is used to calculate the RCS value of the back-
scattering at different frequencies. Figure 3B shows that its RCS
gradually decreases with the change in frequency, and the final
region is stable.In addition, the current at ϕinc � 0 at 800 MHz is
also calculated, and its absolute value, real part, and imaginary
part are compared with the analytical solution, as shown in
Figure 4. As can be seen, the IGABEM/CFIE is still in good
agreement with the analytic solution. Furthermore, it can be seen
that the current fluctuates greatly on both sides, and the
fluctuation is small near ϕa � π degrees, and the current is
almost zero.

Finally, in order to observe the distribution of the electric field
around the cylinder, we calculated the electric field near 20 × 20 m
around the cylinder with ϕinc � 0 at 800 MHz, as shown in Figure 5.
It can be seen that the electric field is mainly distributed in the
direction of the incident angle, and the direction of the incident
angle is symmetrical.

In order to explore the sensitivity of the cylinder to shape change, we
first calculated the sensitivity of the RCS scattered by the back-scattering
at 800MHz, 0# ϕsca # 2π, and compared the result with the analytical
solution in Figure 6A; it can be seen that the IGABEM/CFIE still
maintains a high coincidence. In addition, its RCS fluctuates more
when ϕsca � π but less on both sides. In addition, the sensitivity of RCS
to shape change under back-scattering at different frequencies was

calculated, as shown in Figure 6B. It can be seen that with the
change in frequency, the RCS sensitivity gradually increases and
eventually becomes stable.

In addition, the IGABEM/CFIE was used to calculate the
sensitivity of the current to shape change at 800 MHz with
ϕinc � 0. The comparison results of the absolute value, real part,
and imaginary part with the analytic solution are shown in Figure 7.
It can be seen that the analytical solution is still very consistent with
the IGABEM/CFIE. In addition, the current fluctuates greatly on
both sides, and the sensitivity of the current is symmetric
about ϕa � π.

Finally, in order to observe the sensitivity distribution of the
electric field to shape change within the range of 20 × 20 around the
cylinder, the sensitivity of the electric field to shape change under
back-scattering at 800 MHz was calculated, as shown in Figure 8. It
can be seen that the electric field is more sensitive to the shape
change in the direction of the incident angle, and the remaining
regions are almost zero. In addition, the direction of the incidence
angle is symmetrical.

4.2 Deformation circle model

The deformation circle model is suitable for studying the
shape change of objects under the action of external forces and
is usually used in structural mechanics and civil engineering fields.
In this section, we construct a deformation circle model by
changing the location of control points p2, p4, p6, and p8 in
Figure 2, as shown in Figure 9. Due to the particularity of the
deformation circle, we explore the model from two perspectives
ϕinc � 0 and ϕinc � 45.

First, we calculate the current at ϕinc � 0 and ϕinc � 45 at 800MHz
using the IGABEM/CFIE. As shown in Figure 10, when ϕinc � 0, the
current fluctuates greatly on both sides and is smaller when
90 < ϕa < 270. When ϕinc � 45, the current also fluctuates greatly
on both sides, and it fluctuates less when 150 < ϕa < 300.

In order to clearly observe the electric field distribution in the
20 × 20 region around the deformation circle model, the electric field
distribution under ϕinc � 45 at 800 MHz was also calculated, as
shown in Figure 11. It can be seen that the electric field is more
densely distributed in the direction of the incident angle and smaller
in the other regions.

In addition, in order to explore the current sensitivity to
shape change, we also calculated the current sensitivity to shape
change at 800 MHz, ϕinc � 0, and ϕinc � 45. As shown in
Figure 12, when ϕinc � 0, the current fluctuates greatly on
both sides, while the current fluctuates slightly when
120 < ϕa < 250. In addition, due to the unique symmetry of
the model, its current sensitivity is also symmetric about ϕa � π.
When ϕinc � 45, the current fluctuates more on both sides and
less at 150 < ϕa < 290. In addition, due to the unique symmetry
of the example, 0 < ϕa < 90 is symmetric with respect to ϕa � 45.
90 < ϕa < 360 is symmetric between ϕa � 225.

Finally, in order to better observe the sensitivity of the electric
field around the deformation circle model to shape change,
we calculated the sensitivity of the electric field to shape change
at 800 MHz when ϕinc � 0 in the surrounding 20 × 20 region,
as shown in Figure 13. As shown in the figure, the electric field
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is relatively dense at the rear of the model, and because of
the inherent symmetry of the deformation circle model, its
electric field distribution is symmetrical with respect to the
incident angle.

5 Conclusion

In this paper, a formula that can be used to calculate two-
dimensional electromagnetic scattering analysis is proposed by
combining equal geometry and boundary elements, and then, a
formula for electromagnetic scattering shape sensitivity analysis is
proposed on the basis of the formula, which can provide reliable data
guidance for sensitivity analysis and model optimization. Finally,
two calculation columns are used to verify the effectiveness of the
proposed method.

In future studies, we will extend the proposed algorithm to solve
three-dimensional electromagnetic problems, thereby further
enhancing its generality and applicability in various engineering fields.
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Appendix A: Analytical solution

The analytical solution for the scattered electric field of an infinite
perfectly electric cylinder with TE-polarized incident waves is

Es
z ρ, ϕsca( ) � ∑∞

n�0
jncnAnH

2( )
n k0ρ( )cos nϕsca( ), (A1)

where |Ei
z| � 1 for convenience, ϕsca is the bistatic scattering angle,

and cn � 1 for n � 0, and cn � 2 otherwise. For the conducting
cylinder, the coefficient An is

An � − Jn k0α( )
H 2( )

n k0α( ), (A2)

where α is the radius of the cylinder. The scattered far electric
field is

Es
z ρ, ϕsca( ) � ��

2
π

√
e−j k0ρ−π/4( )���

k0ρ
√ ∑∞

n�0
−1( )ncnAn cos nϕsca. (A3)

The induced electric current Jz(ϕα) is

Jz ϕα( ) � 2
πη0k0a

∑∞
n�0

j( )ncn cos nϕα

H 2( )
n k0a( ) , (A4)

where ϕα is the azimuthal angle on the surface of the cylinder. The
above formula is the analytical solution of the scattered electric field
of the PEC under TE polarization.
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