AUTHOR=Fu Chenbo , Che Qiushun , Li Zhanghao , Yuan Fengyan , Min Yong TITLE=Heavy users fail to fall into filter bubbles: evidence from a Chinese online video platform JOURNAL=Frontiers in Physics VOLUME=12 YEAR=2024 URL=https://www.frontiersin.org/journals/physics/articles/10.3389/fphy.2024.1423851 DOI=10.3389/fphy.2024.1423851 ISSN=2296-424X ABSTRACT=
Accelerated by technological advancements, while online platforms equipped with recommendation algorithms offer convenience to obtain information, it also brought algorithm bias, shaping the norms and behaviors of their users. The filter bubble, conceived as a negative consequence of algorithm bias, means the reduction of the diversity of users’ information consumption, garnering extensive attention. Previous research on filter bubbles typically used users’ self-reported or behavioral data independently. However, existing studies have disputed whether filter bubbles exist on the platform, possibly owing to variations in measurement methods. In our study, we took content category diversity to measure the filter bubbles and innovatively used a combination of participants’ self-reported and website behavioral data, examining filter bubbles on a single online video platform (Bilibili). We conducted a questionnaire survey among 337 college students and collected 3,22,324 browsing records with their informed authorization, constituting the dataset for research analysis. The existence of filter bubbles on Bilibli is found, such that diversity will decrease when viewing