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Topological indices are mathematical descriptors of the structure of a molecule
that can be used to predict its properties. They are derived from the graph theory,
which describes the topology of a molecule and its connectivity. The main
objective is mathematical modeling and topological properties of ϒ-graphyne.
Current research focuses on two structures made from hexagonal honeycomb
graphite lattices named triangular ϒ-graphyne and triangular ϒ-graphyne chains.
The authors have simultaneously computed the first and second Reverse Zagreb
indices, reverse hyper-Zagreb indices, and their polynomials. This research also
derives mathematical closed-form formulas for some of its fundamental degree-
based molecular descriptors. Researchers have been trying to synthesize a novel
carbon form called Graphyne. For over a decade but with no success. Recently,
some researchers have made a breakthrough in generating Carbons elusive
allotrope and solved a long-standing problem in carbon materials. This
wonder material is created to rival the conductivity of graphene but with
control. These results opened new ways of research in the fields of
semiconductors, electronics and optics. Furthermore, graphical and tabular
results will help to investigate the structure-property relationships in γ-graphyne.
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1 Introduction

Graph theory has been utilized extensively in the modeling of chemical structures,
and their mathematical modeling is referred to as chemical graph theory. This notion has
a significant impact on the advancement of chemical science. The study of topological
indices that can describe and predict organic molecules’ physicochemical and
pharmacological properties is novel and active research in chemical graph theory.
The topological index calculates the properties of interesting compounds, and it
remains invariant. In cheminformatics, if we want to study compounds’ properties
and chemical bioactivity, we must utilize the Quantitative structure-property
relationships (QSPR) together with topological indices. The selection of topological
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indices is based on previous validations by researchers, where these
indices were correlated with certain physico-chemical properties in
molecules; hence, they are applied to model the considered
structures. Numerous applications of the topological indices are
found in the Quantitative structure-activity relationship (QSAR),
which is used to forecast the physio-chemical characteristics of
chemical compounds [1–7]. Topological indices are the numbers
that belong to a chemical’s structure and are supposed to show how
it relates to other structures. The study of molecular descriptors
assists in compensating for the lack of chemical experiments by
giving a theoretical base for making chemical materials [8–14]. In
the structure-activity relationship, the topological architecture of
the chemical structure and the simple connectivity between
neighboring atoms are more important than the nature of
chemical bonds. This is because the nature of chemical bonds is
not seen as a significant factor in the biological activity of the
chemical compound [12, 15–19]. Harold Wiener, a chemist, used a
topological index for the first time in 1947 when chemists and
mathematicians defined 100 topological indices and investigated
many chemical structural features [19, 20]. Gutman described
Zagreb indices as degree-based topological indices more than
40 years ago [21]. Topological indices like these were proposed
to quantify the degree to which the carbon atom skeleton is
branched [22]. A molecule’s topological index is a non-
empirical numerical value [23]. Topological indices are
molecular graph invariants that can be employed to create
QSPR/QSAR as numerical descriptors [24]. These can be
shaped with a distance matrix and the chemical graph
(hydrogen-suppressed graph). Notations and terminology not
defined here can be found in refs [25–30] except if otherwise stated.

TheWeiner index [31]. and the Gutman defined and formulated
The first and second Zagreb indices as in 1972 [32].

M1 G( ) � ∑
uv∈E G( )

du + dv( )

M2 G( ) � ∑
uv∈E G( )

du.dv( )

Harold et al. [33] examined the connection between the Zagreb
indices and the overall energy of π-electrons, as indicated by
references [34–37] for more results related to Zagreb indices.
After Gutman, Shirdel et al [38] first and second hyper-Zagreb
indices such as

HM1 G( ) � ∑
uv∈E G( )

du + dv( )2

HM2 G( ) � ∑
uv∈E G( )

du × dv( )2

More see Reference [39–41]. Chemical graph theory has
applications in predicting molecular properties, such as boiling
points and solubilities. It also aids in understanding chemical
reactions and exploring molecular databases. Overall, chemical
graph theory provides a foundation for the analysis and
prediction of chemical structures and properties using graph
theory principles [42–47].

Graph Theory is widely used in real-world phenomena. For
communication networks, computational devices, and data
organization, a graph is extensively used in computer science and

the study of the properties of molecules in chemistry, physics,
and biology.

1.1 γ-graphyne

γ-graphyne is a two-dimensional carbon allotrope that belongs
to the graphyne family. It is a highly intriguing material because of
having unique structure and exceptional properties. Gamma
graphyne has shown promising potential as a catalyst for various
chemical reactions, demonstrating its usefulness in energy
conversion and storage. Researchers actively explore its
properties, synthesizing methods, and applications to harness its
full potential. The importance of (2D) derivatives of graphite
structures like graphyne is rising due to their promising
properties like band tunable gaps, charge carrier mobilities, etc.
Hexagons and sp2 hybridized (the mixing of one s and two p atomic
orbitals) carbon atoms make up the two-dimensional sheet known
as graphene. Its significance and novelty are due to its remarkable
physical, mechanical, chemical, and electrical properties [48].
Recently, increasing interest in graphene-based material achieved
the Nobel Prize in Physics in 2010 for groundbreaking experiments
in 2D substance graphene [49]. The states of sp2 atoms remain
similar when carbyne chains [50]. Acetylenic connections are added
to a honeycomb structure made of carbon (C) atoms that have
undergone sp hybridization to create graphyne, two-dimensional
materials developed from graphene. Due to acetylene groups, these
structures exhibit a diverse spectrum of electrical, optical, and
mechanical properties [51]. Various graphene ganoscroll (GN)
derivatives are under study, and their crystal structures are
shown in [52]. Because of their high heat storage capacity on
adsorption and negligible change in computed activation barriers,
graphyne has been suggested by Swathi et al. for use as substrates
with graphene in practical devices [53]. M. Kando et al. verified from
vibrational investigations that practically all oligomer model planar
configurations are at least local energy minima [54]. The fascinating
and distinctive mechanical and electron-conducting properties of
graphyne were predicted [55–58] optical characteristics. In
particular, like in graphene, the electron conduction in graphynes
would be incredibly rapid. Unlike graphene’s multidirectional
conduction, some graphynes’ electron conduction can be
regulated in a specific direction because triple bonds can bend
Dirac cones [55, 56]. Although the topological descriptors for the
structures of the graphene nanoscroll (GNs) have not yet been
investigated, due to the importance in applications of structures, the
study of the topological indices of these distinct networks to
compare and contrast the complexity of these structures is
necessary aspect [59–61]. Molecular descriptors for the structure
of γ-graphyne have not investigated before, as given in Figures 1, 2.
Consequently, the authors in [62] have shown its significance. The
reverse vertex degree, which focuses on less-connected nodes, can
illuminate various physical and chemical phenomena. For example,
in catalysis, active sites often occur at low-degree vertices where
unique reactions happen. Similarly, in material science, defects and
irregularities frequently reside at these less-connected nodes,
impacting properties like conductivity and strength. In biological
networks, reverse vertex degree analysis reveals crucial nodes in
protein interactions or metabolic pathways, often associated with
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FIGURE 1
Molecular graph γ-graphyne [62].

FIGURE 2
Graphical representation of triangular γ-graphyne.
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rare but significant interactions. By examining these less-connected
vertices, we uncover insights into reactivity, stability, and
functionality, demonstrating the practical significance of
topological indices in real-world applications.

ϒ-Graphyne, with its tunable band gap and high electron mobility,
is promising for electronics, semiconductors, and energy storage
devices. It enhances supercapacitors, batteries, and hydrogen storage.
Additionally, it is valuable in sensors, catalysis, optoelectronics, and
composite materials due to its unique structure and properties.

2 Calculation method

Amolecular graph is a simple graph in which vertices and edges
reflect atoms and bonds [63–65]. The number of edges that a vertex
is associated with determines its degree. A graph’s maximum vertex
degree is represented by the symbol (G). Kulli introduces the
concept of reverse vertex degree with the formula as

Cv � Δ G( ) − dg V( ) + 1

Where Cv is denoted by the reverse degree, Δ(G) is the
maximum degree and dg(V) shows the minimum vertices
adjacent to v [12, 66].

Gutman (1972) defined and formulated the first and second
Zagreb indices [32]. We defined the CM1(G) and CM2(G) reverse
Zagreb index.

CM1 G( ) � ∑
uvєE G( )

cu + cv( )

CM2 G( ) � ∑
uvєE G( )

cu× cv( )

Ivan Gutman introduced the first and second hyper-Zagreb
indice [32, 38, 67]. We defined the HCM1(G) and HCM2(G)
reverse Zagreb index.

HCM1 G( ) � ∑
uvєE G( )

cu + cv( )2

HCM2 G( ) � ∑
uvєE G( )

cu× cv( )2

The first and second Zagreb polynomials were introduced by
Ivan Gutman [11]. We defined the CM1(G.x) and CM2(G.x)
reverse Zagreb index.

CM1 G.x( ) � ∑
uvєE G( )

x cu+cv( )

CM2 G.x( ) � ∑
uvєE G( )

x cu×cv( )

The same paper first and second hyper-Zagreb indices [38]. We
defined the HCM1(G.x) and HCM2(G.x) reverse Zagreb index.

HCM1 G.x( ) � ∑
uvєE G( )

x cu+cv( )2

HCM2 G.x( ) � ∑
uvєE G( )

x cu × cv( )2

Similarly, many other indices are essential in relationship QSPR/
QSAR analysis. Review topological indices and further information
in an in-depth review of references [68–74].

3 Results and discussion

3.1 Triangular γ-graphyne

We have discussed molecular structure, edge partitioning
technique, and robust computational results. In this study, as the
focus is on the mathematical modeling of graphyne, we deliberately
treat the π bonds within the benzene rings and the acetylene bonds
bridging the benzene rings as equivalent despite their believed
different chemical characteristics. We applied topological indices
on the triangular γ-graphyne structure and obtained novel and new
findings. Using the edge partitioning technique and topological
indices, each row of the system given in Figure 3 contains 3n2 +
9n + 6 vertices and 9

2n
2 + 21

2 n + 6 edges, where n is the number of the
rows, and the number of edges that are incident on vertex u and
vertex v governs their degrees denoted by the du(G) or dv(G).In our
graph model, the notation duv = d22 represents an edge connecting
two vertices, with each vertex having two edges (or a degree of 2).

Similarly, ’d23’ refers to an edge connecting two vertices, where
one vertex has two edges, and the other has three. Lastly, ’d33’
indicates an edge connecting vertices that each have three edges.
These notations are crucial for understanding the edge-vertex
relationships and their degrees in our graph-theoretical framework.

E1 � uvєE G( )|dG u( ) � 2, dG v( ) � 2{ }, E1| | � 3n + 6

Where |E1| denotes the number (elements of) of edges

E2 � uvєE G( )|dG u( ) � 2, dG v( ) � 3{ }, E2| | � 6n

E3 � uvєE G( )|dG u( ) � 3, dG v( ) � 3{ }, E3| | � 1
2

9n2 + 3n( )

Clearly. We have cu � Δ(G) − dG (u) + 1 � 4 − dG (u),
We know that there are three different types of reverse edges.

CE1 � uvєE G( )|cu � 2, cv � 2{ }, E1| | � 3n + 6

CE2 � uvєE G( )|cu � 2, cv � 1{ }, E2| | � 6n

CE3 � uvєE G( )|cu � 1, cv � 1{ }, E3| | � 1
2

9n2 + 3n( )

Theorem 3.1.1: If G is a graph of the Triangular γ- graphyne.
Then, we have the

i. CM1(G) � 9n2 + 33n + 24
ii. CM2(G) � 1

2 (9n2) + 1
2 (51n) + 24

iii. HCM1(G) � 18n2 + 108n + 96
iv. HCM2(G) � 1

29n
2 + 1

2 147n + 96
Proof: our results using the reverse edge partition of the

triangular - γ graphyne;

CM1 G( ) � ∑
uvєE G( )

cu+cv( )

� 4 3n + 6( ) + 3 6n( ) + 2
1
2

9n2 + 3n( )( )
� 9n2 + 33n + 24

CM2 G( ) � ∑
uvєE G( )

cu× cv( )

� 4 3n + 6( ) + 2 6n( ) + 1
1
2

9n2 + 3n( )( )

� 1
2

9n2( ) + 1
2

51n( ) + 24
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HCM1 G( ) � ∑
uvєE G( )

cu+cv( )2

� 16 3n + 6( ) + 9 6n( ) + 4
1
2

9n2 + 3n( )( )
� 18n2 + 108n + 96

HCM2 G( ) � ∑
uvєE G( )

cu× cv( )2

� 16 3n + 6( ) + 4 6n( ) + 1( ) 1
2

9n2 + 3n( )

� 1
2
9n2 + 1

2
147n + 96

Theorem 3.1.2: If G is a graph of the Triangular γ- graphyne.
Then, we have then.

I. CM1(G.x) � (3n + 6)x4 + (6n)x3 + (12 (9n2 + 3n))x2

II. CM2(G.x) � (3n + 6)x4 + (6n)x2 + (12 (9n2 + 3n))x
III. HCM1(G.x) � (3n + 6)x16 + (6n)x9 + (12 (9n2 + 3n))x4

IV. HCM2(G.x) � (3n + 6)x16 + (6n)x4 + (12 (9n2 + 3n))x
Proof: our results using the reverse edge partition of the

triangular - γ-graphyne;

CM1 G.x( ) � ∑
uvєE G( )

x cu+cv( )

� 3n + 6( )x4 + 6n( )x3 + 1
2

9n2 + 3n( )( )x2

CM2 G.x( ) � ∑
uvєE G( )

x cu× cv( )

� 3n + 6( )x4 + 6n( )x2 + 1
2

9n2 + 3n( )( )x
HCM1 G.x( ) � ∑

uvєE G( )
x cu+cv( )2

� 3n + 6( )x16 + 6n( )x9 + 1
2

9n2 + 3n( )( ) x4

HCM2 G.x( ) � ∑
uvєE G( )

x cu× cv( )2

� 3n + 6( )x16 + 6n( )x4 + 1
2

9n2 + 3n( )( )x

3.2 Triangular chain γ-graphyne

We have discussed molecular structure, edge partitioning
technique, and robust computational results. We applied
topological indices on the triangular γ-graphyne chain structure
and obtained novel and new findings from Figure 4. Using the edge
partitioning technique and topological indices, each column of the
system given in Figure 4 having 12n + 6 vertices and 15n + 6 edges,
where n is the number of the column, and the number of edges that
are incident on vertex u and vertex v governs their degrees denoted
by the du(G) dv(G),where the notation duv = d22 represents an edge
connecting two vertices, with each vertex having two edges (or a
degree of 2). Similarly, d23’ refers to an edge connecting two vertices,
where one vertex has two edges, and the other has three. Lastly, ’d33’
indicates an edge connecting vertices that each have three edges.
These notations are crucial for understanding the edge-vertex
relationships and their degrees in our graph-theoretical framework.

E1 � uvєE G( )|dG u( ) � 2, dG v( ) � 2{ }, E1| | � 4n + 5

E2 � uvєE G( )|dG u( ) � 2, dG v( ) � 3{ }, E2| | � 4n + 2

E3 � uvєE G( )|dG u( ) � 3, dG v( ) � 3{ }, E3| | � 7n − 1

Clearly. We have cu � Δ(G) − dG (u) + 1 � 4 − dG (u),
We know that there are three different types of reverse edges.

CE1 � uvєE G( )|cu � 2, cv � 2{ }, E1| | � 4n + 5

CE2 � uvєE G( )|cu � 2, cv � 1{ }, E2| | � 4n + 2

FIGURE 3
Triangular γ-graphyne.
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CE3 � uvєE G( )|cu � 1, cv � 1{ }, E3| | � 7n − 1

Theorem 3.2.1: If G is a graph of the triangular chain γ-graphyne
chain. Then, we have the

i. CM1(G) � 42n + 24
ii. CM2(G) � 31n + 23
iii. HCM1(G) � 128n + 94
iv. HCM2(G) � 87n + 87
Proof: our results using the reverse edge partition triangular

chain γ-graphyne;

CM1 G( ) � ∑
uvєE G( )

cu+cv( )

� 4 4n + 5( ) + 3 4n + 2( ) + 2 7n − 1( )
� 42n + 24

CM2 G( ) � ∑
uvєE G( )

cu× cv( )

� 4 4n + 5( ) + 2 4n + 2( ) + 1 7n − 1( )
� 31n + 23

HCM1 G( ) � ∑
uvєE G( )

cu+cv( )2

� 16 4n + 5( ) + 9 4n + 2( ) + 4 7n − 1( )
� 128n + 94

HCM2 G( ) � ∑
uvєE G( )

cu× cv( )2

� 16 4n + 5( ) + 4 4n + 2( ) + 1 7n − 1( )
� 87n + 87

Theorem 3.2.2: If G is a graph of the triangular chain γ-graphyne
chain. Then, we have the

i. CM1(G.x) � (4n + 5)x4 + (4n + 2)x3 + (7n − 1)x2

ii. CM2(G.x) � (4n + 5)x4 + (4n + 2)x2 + (7n − 1)x
iii. HCM1(G.x) � (4n + 5)x16 + ( 4n + 2)x9 + (7n − 1) x4

iv. HCM2(G.x) � (4n + 5)x16 + (4n + 2)x4 + (7n − 1) x
partition triangular chain γ- graphyne;

CM1 G.x( ) � ∑
uvєE G( )

x cu+cv( )

� 4n + 5( )x4 + 4n + 2( )x3 + 7n − 1( )x2

CM2 G.x( ) � ∑
uvєE G( )

x cu× cv( )

� 4n + 5( )x4 + 4n + 2( )x2 + 7n − 1( )x
HCM1 G.x( ) � ∑

uvєE G( )
x cu+cv( )2

� 4n + 5( )x16 + 4n + 2( )x9 + 7n − 1( ) x4

HCM2 G.x( ) � ∑
uvєE G( )

x cu× cv( )2

� 4n + 5( )x16 + 4n + 2( )x4 + 7n − 1( ) x

4 Numerical and graphical results and
discussions

This section presents numerical and graphical results for the
triangular γ-graphyne and triangular chain γ-graphyne via

FIGURE 4
Graphical representation of Triangular γ-graphyne chain.

TABLE 1 Numerical results of CM1 (G), CM2 (G), HCM1 (G), and HCM2 (G) for
triangular γ-graphyne.

mn CM1(G) CM2(G) HCM1(G) HCM2(G)
1
2
3
4
5
6
7
8
9

66
126
204
300
414
546
696
864
1050

54
93
141
198
264
339
423
516
618

222
384
582
816
1086
1392
1734
2112
2526

174
261
357
462
576
699
831
972
1122

TABLE 2 Numerical results of CM1 (G), CM2 (G), HCM1 (G), HCM2 (G)
triangular chain γ-graphyne.

n CM1(G) CM2(G) HCM1(G) HCM2(G)
1
2
3
4
5
6
7
8
9

66
108
150
192
234
276
318
360
402

54
85
116
147
178
209
240
271
302

222
350
478
606
734
862
990
1118
1246

174
261
348
435
522
609
696
783
870
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reverse degree-based topological indices. We compute numerical
values for the first and second reverse Zagreb indices, as well as
the first and second hyper-reverse Zagreb indices at different
values of n, as seen in Tables 1, 2. Furthermore, we have plotted
bar graphs to investigate the behavior of these topological indices
at different n values, as given in Figures 5, 6. Additionally, we
observed that the reverse first hyper Zagreb index has the highest
value while the reverse second Zagreb index has the lowest value.

5 Conclusion

An edge partitioning technique based on graph theory is
used on the molecular topology of γ–graphyne. Mathematical

closed-form formulas are derived for several of its significant
degree-based molecular descriptors. The results show that the
reverse first hyper Zagreb index has the highest value. It is
observed that the reverse first hyper Zagreb index has high
predictive performance among all the other computed
molecular descriptors. These numerical values signify various
physicochemical properties of triangular γ-graphyne and chain
triangular γ-graphyne. The results obtained in this study will
help to investigate the structure-property relationships in γ-
graphyne. In future research, we plan to calculate entropy,
Mpolynomial indices, Zagreb connections, and distancebased
topological indices to further characterise the molecular
structure of Triangular γ–Graphyne and Triangular
γ–Graphyne chain. Such analysis will provide additional

FIGURE 5
Graphical representation of triangular γ- graphyne.

FIGURE 6
Graphical representation of triangular γ-graphyne chain.
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insight into the properties and behaviour of these materials,
and may contribute to their potential applications in
various fields.
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