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The use of boundary elements in two-dimensional acoustic analysis is presented
in this study, along with a detailed explanation of how to derive the final discrete
equations from the fundamental fluctuation equations. In order to overcome the
fictitious eigenfrequency problem that might arise during the examination of the
external sound field, this work employs the Burton-Miller approach. Additionally,
this work uses the Taylor expansion to extract the frequency-dependent
component from the BEM function, which speeds up the computation and
removes the frequency dependency of the system coefficient matrix. The
effect of the radiated acoustic field generated by underwater structures’ on
thin-walled structures such as submarines and ships is inspected in this work.
Numerical examples verify the accuracy of the proposed method and the
efficiency improvement.
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1 Introduction

Water, as another common acoustic medium, has a much higher acoustic impedance
than air, and the difference between it and the mechanical impedance of common structures
is not so large as to be directly negligible. Therefore, the effect of the radiated acoustic field
generated by the vibration of underwater structures on structures in general and on thin-
walled structures such as submarines and ships in particular is usually difficult to be directly
ignored. These structures are subject to significant vibration during underwater navigation.
Structural vibration causes noise [1–5], which in turn affects [6] the surrounding
environment, thus triggering the engineering requirements for noise reduction. The
analysis of the noise problem is actually the acoustic analysis [7, 8]. In the past
research, the acoustic problems are divided into the finite sound field problems (also
called the internal sound field problems) [9–12] and the infinite sound field problems (also
called the external sound field problems) [13–15]. For finite sound field or internal sound
field problems, the finite element method (FEM) [16–18] has been effective in solving such
problems and has been widely used in practical analysis. The analysis of the outer sound
field problem is much more complex than the inner sound field, and the analysis of the
infinite sound field [19, 20] leads to a drastic increase in the computational volume, which is
difficult to bear. The boundary element method (BEM) [21–26], on the other hand, only
needing to discretize the model on the boundary, while automatically satisfying the
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radiation conditions at infinity, is widely used in the analysis of
external acoustic problems [27, 28]. Moreover, BEM is a semi-
analytic method constructed on the basis of the basic solution,
leading to a higher accuracy.

Although BEM has many advantages in acoustic analysis, it
also has some drawbacks. The first one is the singularity problem,
which leads to poor accuracy or even wrong results. Chen et al.
[29–32] successfully applied the singular phase elimination
technique to the discontinuous higher-order element and
compared the accuracy performance of different elements. The
second one is the fictitious eigenfrequency problem [33–36], and
the main solutions to this problem are CHIEF method and Burton-
Miller method [37–40]. In this paper, Burton-Miller is used to
solve the fictitious eigenfrequency problem. The third one is the
high memory requirement problem. The coefficient matrix formed
using BEM [41–43] is a dense matrix with high memory
requirement, which limits the application of BEM in large-scale
problems. However, although the boundary element coefficient
matrix is dense, it has the property of low rank. A series of fast
methods [44–46] using low-rank decomposition have been
proposed, including fast multipole method, H-matrix, adaptive
cross approximation and some other fast algorithms, which could
successfully reduce the computational volume and memory usage,
making it possible to apply BEM on complex engineering problems
[47–49]. The fourth one is the frequency dependent problem.
Unlike FEM, the kernel function of BEM is frequency-
dependent. The discrete formation of the coefficient matrix is
influenced by frequency, necessitating its recalculation under each
distinct frequency [50–52], leading to a sharp increase in the
computational volume of the boundary element under
frequency band analysis. In acoustic wideband analysis,
researchers have developed some fast algorithms to enhance the
efficiency of solving large-scale problems. The frequency-
dependent terms are separated from the integration kernel
using Taylor series expansions of sine and cosine functions
[53–59], which reduces the workload and computational time
of numerical integration. To mitigate the frequency dependence
of the system coefficient matrix, this study uses the Taylor
expansion to extract the frequency-dependent terms embedded
within the product function of BEM. This approach is undertaken
to eliminate the influence of frequency variations on the matrix,
thereby enhancing the accuracy and versatility of BEM [60–63] in
diverse engineering applications.

In this paper, we introduce the Burton-Miller method and the
Taylor expansion technique through two examples of circular and
airfoil models. These two techniques solve the problem of spurious
peaks present in the boundary element method and eliminate the
influence of frequency variations on the matrix, thereby enhancing
the accuracy and versatility of BEM. This provides a reference value
for the study of underwater noise problems. In the course of this
study we found that no spurious peaks occur when the radius of the
circle is small. In the process of Taylor expansion, the magnitude of
the error in the analytical solution and Taylor expansion is related to
the number of expansion terms.

The following is the article’s remaining content: Using the
Burton-Miller approach and the Taylor expansion series, the
two-dimensional acoustic boundary element method is
introduced in Section 2. Sections 3 offers numerical examples to

back up the recommended method. Section 4 brings the text’s
conclusions to a close.

2 Two-dimensional acoustic boundary
element method

Suppose there exists a circular region Ωy, whose boundary is L.
If the domain is filled with a homogeneous ideal fluid medium, the
fluctuation equation for the sound pressure in this circular region is

∇2P x, t( ) − 1
c2f

∂2P x, t( )
∂t2

� 0,∀x ∈ Ωy (1)

in which ∇2 represents the Laplace operator, P(x, t) signifies the
sound pressure at a specific point x within the sound field at a
particular time t, and cf denotes the wave speed. Assuming a
simple harmonic sound field, the sound pressure can be
formulated as

P x, t( ) � p x( )e−iωt (2)
where p(x) denotes the time-independent sound pressure value
in imaginary units i � ���−1√

, and the angular frequencies ω � 2πf,
e−iωt are time-dependent terms. Since sound waves exist in
simple harmonic form in many cases, and since the Fourier
transform can be used to convert the time-domain data into the
result of superposition of different simple harmonic wave
components, in this paper we only consider the steady-state
simple harmonic sound field. Substituting Eq. 1 into Eq. 2, the
Helmholtz control differential equation based on sound pressure
is obtained as

∇2p x( ) + k2p x( ) � 0,∀x ∈ Ωy (3)

where k � ω
cf

denotes the wave number. Ultimately the two-
dimensional sound field problem transforms into a problem of
solving the partial differential Eq. 3, and therefore boundary
conditions need to be considered. For the 2D sound field
problem, there are three types of boundary conditions that are
usually considered, as shown in Figure 1:

Dirichlet boundary conditions, also known as Type I boundary
conditions, where the sound pressure is known as Eq. 4

p x( ) � �p x( ),∀x ∈ LD (4)
where () indicates that the value is known.

Neumann boundary conditions, also known as Type II
boundary conditions, where the normal derivative of the sound
pressure or the normal speed of vibration is known as Eq. 5

q x( ) � ∂p x( )
∂n x( ) � iρyωvy x( ),∀x ∈ LN (5)

in which q represents the acoustic flux, n(x) signifies the external
normal vector at point x, ρy denotes the density of the acoustic
medium, and vy represents the normal vibrational velocity of the
acoustic medium at the boundary Ωy, and the relationship between
the acoustic flux and the normal vibrational velocity can be deduced
from the Euler equation.

Robin boundary conditions, also known as Type III boundary
conditions, where there is a certain linear relationship between the
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sound pressure and the derivative of sound pressure, as shown in
Eq. 6

∂p x( )
∂n x( ) + ap x( ) � b,∀x ∈ LR (6)

where a and b are known coefficients.

2.1 Boundary integral equation

BEM is centered on the derivation of the boundary integral equation.
By multiplying both ends of the Helmholtz equation by the weight
function A(x,y) and integrating over the sound field Ωy, we get

∫
Ωy

∇2p x( ) + k2p x( )[ ]A x, y( )dΩ y( ) � 0 (7)

Let the weight function A(x, y) satisfy
∇2A x, y( ) + k2A x, y( ) � −δ x − y( ) (8)

when x ∈ Ωy and x ∉ L, according to Eqs 7, 8, we get

∫
Ωy

p y( ) ∇2A x, y( ) + k2A x, y( )[ ]dΩ y( )
� −∫

Ωy

p y( )δ x − y( )dΩ y( ) � −p x( ) (9)

Equation 7 is transformed by Green’s second constant, and then
Eq. 9 can be substituted to obtain the integral equation:

p x( ) + ∫
L
B x, y( )p y( )dL y( ) � ∫

L
A x, y( )q y( )dL y( ) (10)

where q(y) � ∂p(y)
∂n(y) denotes the sound flux. According to the above

equation, the sound pressure at point x can be regarded as the result
of the superposition of the sound pressure and sound flux generated
by the sound source point y. If the field point x is approximated to
the integration boundary L, x ∈ L, Eq. 10 can be written as

c x( )p x( ) + ∫
L
B x, y( )p y( )dL y( ) � ∫

L
A x, y( )q y( )dL y( ) (11)

where the coefficient c(x) depends on the geometric features at
point x. Eq. 11 is known as the conventional boundary integral
equation (CBIE). If the boundary at point x is smooth, then
c(x) � 1/2. Derivation to the outer normal n(x) yields the
normal derivative boundary integral equation (NDBIE), as shown as

c x( )q x( ) + ∫
L
D x, y( )p y( )dL y( ) � ∫

L
E x, y( )q y( )dL y( ) (12)

The kernel function of each order in Eqs 11, 12 can be expressed
as Eq. 13

A x, y( ) � i
4
H 1( )

0 kr( )
B x, y( ) � ∂A x, y( )

∂n x( ) � −ik
4
H 1( )

1 kr( ) ∂r

∂n x( )
E x, y( ) � ∂A x, y( )

∂n x( ) � −ik
4
H 1( )

1 kr( ) ∂r

∂n x( )
D x, y( ) � ∂2A x, y( )

∂n x( )∂n y( ) �
ik
4r
H 1( )

1 kr( )nj x( )nj y( )

−ik
2

4
H 1( )

2 kr( ) ∂r

∂n x( )
∂r

∂n y( ) (13)

where r � |x − y| denotes the Euclidean distance between the field
point and the source point, andH(1)

n denotes the nth order first class
Hankel function.

When solving a two-dimensional sound field problem using Eq.
11 or Eq. 12 alone, there are some special frequencies where the
computed results will deviate significantly from the analytical
solution. However, these are only mathematical problems
brought about by the use of boundary integral equations for

FIGURE 1
Schematic representation of the three boundary conditions.

FIGURE 2
Schematic diagram of CBE21 element.
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solving the problem and do not have any real physical significance,
and these frequencies are called fictitious eigenfrequencies.
Although using either boundary integral equation alone may fail
to obtain the correct solution at a particular frequency, a linear
combination of Eqs 11, 12 gets an exact and unique solution, which
is known as the Burton-Miller method. The combined form can be
expressed as

CBIE + αNDBIE � 0 (14)
where α denotes the coupling coefficient, α � i/k when the wave
number k ≥ 1, and vice versa α � i.

Different element types can be used to discretize the boundary,
and in order to facilitate the representation of the element types, a
convention is adopted for the representation of the element types:
CBEmn denotes a continuous element, m denotes m geometric
interpolation points, and n denotes n physical interpolation points.
The boundary is now discretized into a number of constant elements
CBE21 since there is only one interpolation point in the element. A
schematic diagram of the this element is shown in Figure 2.

The boundary is now discretized into N constant elements, and the
values of the physical quantitiesp and q on the elements are equal to the
values of the interpolated nodes. For the integral of the i node over the j
element, Eq. 11 can be discretized into the following form

c x( )pi +∑N
j�1

∫
Lj

B x, y( )dL y( )pj � ∑N
j�1

∫
Lj

A x, y( )dL y( )qj (15)

in which ∫
Lj
A(x, y)q(y)dL(y) and ∫

Lj
B(x, y)p(y)dL(y) are both

directly computable. Introducing the coefficient matrices G and H,
we have Eqs 16, 17

Ĥ
ij � ∫

Lj

B x, y( )p y( )dL y( ) (16)

and

Gij � ∫
Lj

A x, y( )q y( )dL y( ) (17)

Then Eq. 15 can be rewritten as

∑N
j�1

Hijpj � ∑N
j�1

Gijqj (18)

If we assume that the boundary is smooth, then c(x) = 1/2, and
Hij in Eq. 18 can be expressed as Eq. 19

Hij �
Ĥ

ij
, i ≠ j

Ĥ
ij + 1

2
, i � j

⎧⎪⎪⎨⎪⎪⎩ (19)

The same discretization can be performed on Eq. 12, and then
according to Eq. 14 the matrix form of the linear system equations
can be obtained as Eq. 20

Hp � Gq (20)

FIGURE 3
Sound pressure obtained using CBIE and Burton-Miller for different radius. (A): r0= 0.60m, (B): r0= 0.65m, (C): r0= 0.70m, (D): r0 = 0.75m, (E): r0 =
0.80 m, (F): r0 = 0.85 m.
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Reassembling Eq. 20 by moving all the unknowns to the left side
of the equation and transferring all the knowns to the right side of
the equation yields Eq. 21

Ax � b (21)
where A represents the asymmetric full-rank coefficient matrix, x
denotes the unknown vector associated with the boundary nodes,
and b signifies the known vector. By solving this equation, the
unknown values at all nodes can be determined. Subsequently, the
sound pressure Py at any point within the domain can be calculated
by substituting the obtained results into Eq. 22.

Py � Gyq −Hyp (22)

where Hy and Gy are the coefficient matrices when the field point y
is in the outer acoustic domain.

2.2 Wideband analysis based on
Taylor theory

The Green’s function A(x, y) incorporates the n-th order
Hankel function of the first kind, which exhibits an explicit
dependence on the wave number k. The Taylor expansion of this
Hankel function, centered at a designated frequency expansion
point z0 � k0r, can be formulated as Eq. 23

H 1( )
n z( ) � ∑∞

m�0

z − z0( )m
m!

H 1( )
n z( )[ ] m( )

z�z0 (23)

where we have Eq. 24

H 1( )
n z( )[ ] m( )

z�z0 �
dmH 1( )

n z( )
dzm

|z�z0 (24)

The Taylor expansion of the kernel functions presented in Eq. 23
can be analogously derived by substituting z and z0 with kr and k0r,
respectively.

Note the considerable challenge in deriving an explicit
expression for the m-th order derivative of the n-th order Hankel
function, as presented in Eq. 23. To overcome this difficulty, a
recursive formulation for the Hankel function is introduced as

dH 1( )
n z( )
dz

� n

z
H 1( )

n z( ) −H 1( )
n+1 z( ) (25)

The recursive expression for the m-th order derivative of the
n-th order Hankel function can be obtained through iterative
differentiation of Eq. 25 with respect to the variable z.
Specifically, this involves repeatedly applying the differentiation
operator to obtain the desired derivative order, as shown in Eq. 26.

H 1( )
n z( )[ ] m( ) � ∑m

i�1
H 1( )

n z( )[ ] m−i( ) −1( )i+1 m − 1( )!
zi m − i( )! − H 1( )

n+1 z( )[ ] m−1( )

(26)

FIGURE 4
Sound pressure calculated with different number of Taylor expansion terms. (A): r0 = 0.10 m, (B): r0 = 0.15 m, (C): r0 = 0.20 m, (D): r0 = 0.25 m,
(E): r0 = 0.30 m, (F): r0 = 0.35 m.
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By substituting Eq. 23 into Eqs 11, 12, then incorporating the
impedance boundary condition q(x) � iρyωvy(x) to represent the
sound absorption properties, the integrals in Eqs 11, 12 can be
reformulated into an expansion form tailored to the fixed frequency
point k0:

∫
L
B x, y( )p y( )dL y( ) � ∑∞

m�0

k − k0( )m
m!

Im1

∫
L
A x, y( )q y( )dL y( ) � ∑∞

m�0

k − k0( )m
m!

Im2

α∫
L
D x, y( )p y( )dL y( ) � ∑∞

m�0

k − k0( )m
m!

kIm3 + k2Im4( )
α∫

L
E x, y( )q y( )dL y( ) � ∑∞

m�0

k − k0( )m
m!

kIm5

(27)

where

Im1 � −∫
L

irm−1

4
zH 1( )

1 z( )[ ] m( )
z�k0r

∂r

∂n y( )p y( )d y( )
Im2 � ∫

L

irm

4
H 1( )

0 z( )[ ] m( )
z�k0rq y( )dL y( )

Im3 � ∫
L

αirm−1

4
H 1( )

1 z( )[ ] m( )
z�k0rnj x( )nj y( )p y( )dL y( )

Im4 � ∫
L

αirm

4
H 1( )

2 z( )[ ] m( )
z�k0r

∂r

∂n x( )
∂r

∂n y( )p y( )dL y( )
Im5 � −∫

L

αirm

4
H 1( )

1 z( )[ ] m( )
z�k0r

∂r

∂n y( ) q y( )dL y( )

(28)

wherein, the m-th derivative of the function zH(1)
1 (z) appearing in

the integral Im1 can be calculated as Eq. 29

FIGURE 5
Sound pressure calculated with different number of Taylor expansion terms. r0 = 0.40 m. (A): 1–250 Hz, (B): 250–500 Hz, (C): 500–750 Hz,
(D): 750–1000 Hz.
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FIGURE 6
CPU time for different number of expansion terms.

FIGURE 7
The airfoil Model.
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zH 1( )
1 z( )[ ] m( ) � m H 1( )

1 z( )[ ] m−1( ) + z H 1( )
1 z( )[ ] m( )

(29)

Substituting Eq. 27 into Eqs 11, 12 then simultaneously applying
the impedance boundary condition q(x) � iρyωvy(x) yields the
following result:

C x( ) p x( ) − q x( )[ ]
+ ∑∞

m�0

k − k0( )m
m!

Im1 − Im2( ) + Im3 − Im5( )k + Im4 k
2[ ] � 0 (30)

Owing to the presence of singular kernel functions and their
normal derivatives in Eq. 14, the boundary integrals containing a
sequence of expansion expressions in Eq. 28 exhibit singularities
as well. These integrals are evaluated by employing the Cauchy

principal value and the Hadamard finite part integral
technique [64].

The discretization of Eq. 30 is achieved through the application
of the collocation method, employing constant elements, which
results in:

C + ∑∞
m�0

k − k0( )m
m!

Im1 + kIm3 + k2Im4( )⎡⎣ ⎤⎦p
� αC + ∑∞

m�0

k − k0( )m
m!

Im2 + kIm5( )⎡⎣ ⎤⎦q (31)

where we have Eq. 32

C �
C1 0

1
0 CN

⎡⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎦ (32)

FIGURE 8
Sound pressure obtained using the analytical method and the boundary element method based on Taylor expansion. (A): 1–1000 Hz, (B):
1000–2000 Hz, (C): 2000–3000 Hz, (D): 3000–4000 Hz.
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In the present study, we employ the Taylor expansion
technique to decompose the frequency-dependent system
matrix given in Eqs 11, 12 into a summation of frequency-
dependent scalar functions multiplied by frequency-
independent system matrices. Upon examination of Eq. 31,
it becomes evident that the coefficients Im1 , I

m
2 , I

m
3 , I

m
4 , I

m
5

exhibit no frequency dependence. Consequently, these
coefficients need to be computed only once for multi-
frequency problems, thereby eliminating the need for
repeated computations. As a result, the coefficient matrix
remains frequency-independent.

2.3 Symbols

The following symbols are used in the formulas:

3 Numerical example

3.1 Cylindrical Shell’s 2-D cross section

Considering a infinitely long cylindrical shell pipe model, in
which the radius is r0, and the center of the circle is at (0, 0). Take
the cross section of this cylindrical shell, then it is a two-
dimensional problem. The normal velocity v0 at the boundary

of the cross section is randomly set to be a constant, 9.6 × 10−5

m/s. The boundary conditions are q � iρyωv0. The cross section
is uniformly discretized into 100 constant elements. When the
pipe radius r0 is taken as 0.60 m . . .. . . 0.85 m, and the frequency
f is taken as 0–1,000 Hz (in step of 1 Hz), the sound pressure at
point (2, 0) m is calculated here using CBIE and Burton-Miller,
respectively. The results of sound pressure calculated using these
two methods are shown in Figure 3.

Several conclusions can be inferred from Figure 3. As the radius
of the pipe increases, the sound pressure also increases. The results
obtained using the conventional boundary element method (CBEM)
and Burton-Miller exhibit a high degree of similarity. However,
when the radius exceeds 0.60 m, CBEM tends to produce fictitious
engenfrwquencies, whereas the Burton-Miller method proves
effective in mitigating this issue.

The sound pressure results obtained using BEM based on Taylor
expansion are presented in Figure 4. A frequency step of 1 Hz is
utilized, and the width of each frequency band is set to z. The
notation Taylor_3 refers to the numerical solution derived using
Taylor expansion with three expansion terms (TM = 3). Similarly,
Taylor_5, Taylor_7, and Taylor_10 represent the numerical
solutions employing five, seven, and ten expansion terms,
respectively.

It becomes evident that sound pressure values exhibit
variations across different frequency bands, as shown in
Figure 4. Furthermore, within the same frequency band, the
sound pressure values determined through the numerical
method closely align with those obtained analytically.
However, as the distance from the expansion point increases,
the error also increases. Among the considered Taylor expansion
terms, Taylor_10 demonstrates the closest agreement with the
sound pressure values obtained analytically. This implies that
increasing the number of Taylor expansion terms leads to a
numerical solution that more closely approximates the
analytical solution.

As depicted in Figure 4, the numerical results exhibit general
concordance with the analytical solution across various numbers of
expansion terms. However, notable discrepancies arise at the
extremities of the frequency band range. The observed agreement
between the numerical and analytical solutions is primarily evident
in the central region of the frequency spectrum. The discrepancies
observed at the lower and upper ends of the frequency range
primarily arise from the positioning of the fixed frequency
expansion point at the midpoint of the range. As a result, as the
distance from this fixed expansion point increases, the accuracy of
the numerical results tends to deteriorate. To mitigate these
deviations, the original frequency range of [1, 1,000] Hz has been
subdivided into four distinct subranges: [1, 250] Hz, [250, 500] Hz,
[500, 750] Hz, and [750, 1,000] Hz. Subsequent numerical
simulations have been conducted within these refined subranges.
As an illustrative example, consider the case where r0 � 0.40 m. As
can be seen from Figure 5, by adopting this segmented approach, the
accuracy and reliability of the numerical results are improved,
particularly at the extremities of the frequency spectrum.

The CPU time consumed using CBIE and Taylor expansion is
demonstrated in Figure 6. We can see that the former method takes

p is sound pressure

k is wave number

n is external normal direction of the boundary

q is normal derivative of p

i is imaginary unit, i � ���−1√

ρy is structural density

ω is frequency of the incoming force

vy is normal velocity

r is the Euclidean distance between the field point and the source point

cf is wave velocity

L is the integration boundary

∇2 is the Laplace operator

x is source point

y is field point

H is the coefficient matrix of the vector p

G is the coefficient matrix of the vector q

c(x) is 1/2 if the boundary Γ is smooth in the vicinity of the source point x

p(x) is intensity of the incoming wave at source point x

p(y) is sound pressure at field point y

q(y) is normal derivative of p(y)

() is known function given on the border
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much more time than the latter. Therefore, The decoupling method
represented by Taylor expansion effectively reduces the time for
wideband computation.

3.2 Airfoil model

Due to the continuous development of artificial intelligence, bionic
technology is becoming more and more sophisticated. Now we are
working on the fins of an underwater bionic fish, which we can simplify
into a wing-shaped model. For the airfoil model shown in Figure 7,
CBIE and Taylor expansion is used to calculate the sound pressure at (2,
0) in the four frequency bands of [1–1,000] Hz, [1,000–2,000] Hz,
[2,000–3,000] Hz and [3,000–4,000] Hz, respectively, as shown in
Figure 8. It can be seen that the analytical solution bears a
substantial resemblance to the solution derived using Taylor
expansion across various frequency bands. Notably, the outcome at

the Taylor expansion point precisely aligns with the analytical solution.
However, as one moves further away from the expansion point, the
divergence between the two solutions gradually increases.

To minimize the errors arising from the calculation, we will
continue to subdivide [1–1,000] Hz into [1–250] Hz, [250–500] Hz,
[500–750] Hz and [750–1,000] Hz, as shown in Figure 9. It can be
seen that as the frequency band decreases, the solution based on
Taylor expansion results in smaller errors. Therefore, we can
conclude that the smaller the frequency band of the expansion,
the closer the result of the Taylor expansion is to the real solution.

3.3 Sound barrier model

The acoustic analysis of a half-Y-shaped sound barrier
(Figure 10) is carried out in this subsection. Figure 11 gives the
real part, the imaginary part and the amplitude of the sound pressure

FIGURE 9
Sound pressure obtained using analytical solution and Taylor expansion methods. (A): 1–250 Hz, (B): 250–500 Hz, (C): 500–750 Hz,
(D): 750–1000 Hz.
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at point (16, 2). It can be seen that the sound pressure exhibits
variation among the different expansion terms, particularly at the
extremities of the frequency range. Consequently, in this subsection,
an adaptive band segmentation technique is employed to partition
the frequency range of [1, 200] Hz into two sub-intervals. The sound
pressure results of the two sub-intervals are shown in Figure 12. It
can be seen that the results obtained demonstrate a remarkable
consistency, irrespective of the number of expansion terms
employed. This result just validates the effectiveness of the
proposed adaptive band segmentation technique.

Figure 13 compares the CPU time spent on the proposed
method and CBEM for two different frequency settings. It can be

seen that the proposed method exhibits a substantial decrease in
CPU time when compared to CBEM. Although the CPU time
escalates with an augmentation in the number of Taylor
expansion terms, using Taylor expansion will still greatly reduce
the CPU time used for wideband computation using the
proposed method.

4 Conclusion

This paper focuses on the two-dimensional acoustic problems. The
Burton-Miller method is used to solve the fictitious eigenfrequency

FIGURE 11
Sound pressure results at (16, 2) for the half-Y-shaped model. (A): the real part, (B): the imaginary part, (C): the amplitude.

FIGURE 10
Half-Y-shaped sound barrier model.
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problem. The Taylor expansion method is used to solve the problem of
frequency dependence and low computational efficiency in wideband
analysis, showing the time requirement advantage of the Taylor
expansion over CBEM. The error in Taylor expansion-based analysis
is reduced by narrowing the frequency bands. The validity of the
adaptive frequency band segmentation technique is verified by
comparing the sound pressure of each expansion term. The necessity
of Taylor expansion is illustrated by comparing the CPU time. In
practical engineering applications, the circular and airfoil arithmetic
examples in this paper provide a reference for studying the noise

problem of underwater vehicles. The Burton-Miller method and the
Taylor expansion technique introduced in the paper are also able to be
applied to other areas of acoustics.
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FIGURE 12
Sound pressure at (16, 2). (A): 1–100 Hz, (B): 100–200 Hz.

FIGURE 13
CPU time spent on numerical simulations using CBEM and Taylor expansion. (A): Frequency band (1, 100) Hz, step 1 Hz. (B): Frequency band
(1, 100) Hz, step 0.1 Hz.
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