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Dimension reduction is an effectivemethod for system’s resilience analysis. In this
paper, we investigate the effect of network structure on the accuracy of resilience
dimension reduction. First, we introduce the resilience dimension reduction
method and define the evaluation indicator of the resilience dimension
reduction method. Then, by adjusting node connections, preferential
connection mechanisms, and connection probabilities, we generate artificial
networks, small-world networks and social networks with tunable assortativity
coefficients, average clustering coefficients, and modularities, respectively.
Experimental results for the gene regulatory dynamics show that the network
structures with positive assortativity, large clustering coefficient, and significant
community can enhance the accuracy of resilience dimension reduction. The
result of this paper indicates that optimizing network structure can enhance the
accuracy of resilience dimension reduction, which is of great significance for
system resilience analysis and provides a new perspective and theoretical basis
for selecting dimension reduction methods in system resilience analysis.
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1 Introduction

Resilience describes a system’s ability to retain the basic functionality when errors or
failures occur, which is a fundamental property for complex systems [1–4]. The loss of
resilience in numerous real-world systems could lead to catastrophic consequences, such as
large-scale extinctions in ecological networks [5], and cascading failures in infrastructure
systems [6]. As such, exploring resilience patterns for complex systems, making systems
resilient to environmental changes has been one of the most critical issues in network science.

Resilience is an absolute measure that quantifies the extent to which a system recovers
from instability. For instance, in biological systems, resilience may refer to a population’s
ability to maintain its size and distribution in the face of environmental changes, predation
pressures, diseases, or other disturbances. A population with high resilience can adapt to
environmental changes by regulating birth rates, death rates, immigration, and emigration,
thus maintaining population stability. In some literatures on network analysis, resilience
and robustness are used as interchangeable concepts [7]. Resilience is defined on network
dynamics [1, 8], measuring the ability of a network to maintain its structure and function in
the face of disturbances or attacks, while robustness is related to the static structure of a
network, measuring the ability to maintain its connectivity when a fraction of nodes (links)
is damaged [9]. However, when dealing with complex networks composed of numerous
interconnected components, traditional resilience analysis frameworks may become
inadequate. The multi-dimensional and nonlinear characteristics of these networks
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poses challenges for analysis. As a result, the dimension reduction
method is needed tomap a large number of nonlinear dynamic systems
to one-dimensional dynamic systems, while keeping systems’ key
dynamic characteristics. Gao et al. [1] proposed the dimension
reduction method that decomposes N-dimensional networks into
one-dimensional effective models and uses it to predict the global
activity of the original network. Subsequently, based on the theoretical
tools for large-scale networks and the advanced data analyzing
techniques [10–13], the method has been extended to many aspects
such as noise effects [14–16], reduction methods based on spectral
dimension [17], sequence mean field [18] and degree weighted average
[19], and has been applied to various fields [20–22]. The dynamic
characteristics of a system strongly depend on the underlying network
structure [17]. Understanding the topology or properties of a network
can help us better reveal its inherent behavior from different
perspectives [23–25]. Gao et al. [1] found that density,
heterogeneity, and symmetry are three key structural factors
affecting a system’s resilience. Xu et al. [26] established a dynamic
model of a multi-dimensional Supplier-Manufacturer network by
combining structural information and network parameters. The
results show that the resilience of Supplier-Manufacturer networks
is highly sensitive to network structural characteristics, namely, nesting,
and density. Dong et al. [3] found that community structure can
significantly affect the resilience of a system. Meng et al. [27] used link
density, algebraic connectivity, and aggregation coefficients to measure
the number of links, fault tolerance, and redundancy in a network to
evaluate the resilience of the power system. According to the simulation
experiments, Costa [28] found that applying growth strategies on pre-
existing structures can significantly enhance the resilience of complex
networks. Li et al. [29] proposed a network resilience evaluation
method that considers both network structure and node load, and
then improved the network resilience enhancement strategy based on
optimization theory. Laurence et al. [17] used the dominant eigenvalues
and eigenvectors of the network adjacency matrix to construct a
dimension reduction method based on spectrogram theory.
Therefore, network structure plays an important role in the system’s
resilience analysis. Real networks are usually heterogeneous [30, 31]
and may have certain topological structures or attributes. For example,
interpersonal networks on social networking platforms such as
LinkedIn have high assortativity coefficients, protein-protein
interaction networks in biology [32], and collaborative networks of
jazz musicians have obvious community structures [33]. The
dimension reduction proposed by Gao et al. [1] can be used to
accurately predict the system’s response to diverse perturbations and
correctly locate the critical points, at which the system loses its
resilience. So, what role does network structure play in resilience
dimension reduction?

In this paper, we investigate the effect of network structure on
the accuracy of resilience dimension reduction. First, we
introduce the resilience dimension reduction method and
define the resilience measurement error. Then, by adjusting
node connections, preferential connection mechanisms, and
connection probabilities, we construct TAC model, HK model
and TQmodel, respectively. Based on the TACmodel, HK model,
and TQ model, we generate artificial networks, small-world
networks and social networks with tunable assortativity
coefficients, average clustering coefficients, and modularities,
respectively. We conduct resilience dimension reduction

analysis experiments on gene regulatory dynamics. The
experimental results show that network structures with
positive assortativity, large clustering coefficient, and
significant community can enhance the accuracy of resilience
dimension reduction. Finally, through error analysis of resilience
dimension reduction on the reconstructed social networks, the
results validate our conclusion.

2 Method and models

2.1 Resilience dimension reduction method

In a multi-dimensional system, the dynamics of each component
not only depend on the self-dynamics but also relate to the
interactions between the components and their interacting partners
[34, 35]. The dynamic equation of a multi-dimensional system
consisting of N components (nodes) can be formally written as

dxi

dt
� F xi( ) +∑

N

j�1
aijG xi, xj( ). (1)

The first term on the right-hand side of Eq. 1 describes the self-
dynamics of each component, while the second term describes the
interaction between component i and its interacting partners. The
matrix element aij denotes the interactions between node i and j, and
aij = 1 when there are an link between node i and j, and aij =
0 otherwise.

The resilience of multi-dimensional systems can be captured by
calculating the stable fix point of Eq. 1. However, this point may
depend on the changes in any of the parameters of the adjacency
matrix. Moreover, there are maybe different forms of perturbations
bringing changes to the adjacency matrix, for example, node/link
removal, or weight reduction. It means that the resilience of multi-
dimensional systems depends on the network topology and the forms
of perturbations. For large-scale multi-dimensional models, it is
impossible to predict their resilience by direct calculations on Eq. 1.
A framework based on dimension reduction addresses this challenge.

In a network, the activity of each node is governed by its nearest
neighbors through the interaction term ∑N

j�1aijG(xi, xj) of Eq. 1. If
the adjacency matrix aij has little correlation, Gao et al. [1]
introduced an operator.

L y( ) � 1TAy

1TA1
, (2)

where the unit vector 1 � (1, 1, . . . , 1)T, y � (y1, y2, . . . , yN)T, and
yi represents a scalar related to node i, such as the activity of node i.
A � [aij]N×N is the adjacency matrix. The operator L averages the
scalar values of all neighboring nodes of the target node as the
output, and y � (y1, y2, . . . , yN)T as the input. Eq. 2 can be
written as

L y( ) � ∑N
i�1∑

N
j�1aijyj

∑N
i�1∑

N
j�1aij

�
1
N∑

N
j�1s

out
j yj

1
N∑

N
j�1s

out
j

� 〈soutj yj〉
〈soutj 〉 , (3)

where soutj � ∑N
i�1aij. If yj (xi) = G (xi, xj), when the degrees are

uncorrelated, then the mean of node j is independent of node i. In
other words, assuming that the nearest neighbor mean of i is the
same as the nearest neighbor mean of all other nodes, the interaction
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term in Eq. 1 composed of the sum of the actions of all neighbors j of
i can be written as

∑
N

j�1
aijG xi, xj( ) � sini 〈yj xi( )〉nn � sini L G xi, x( )( ), (4)

where sini � ∑N
j�1aij. 〈yj(xi)〉nn represents the mean value of the

neighbor node state yj (xi) of node i. Based on the Eq. 4, the Eq. 1 can
be written as

dxi

dt
� F xi( ) + sini L G xi, x( )( ). (5)

Then, based on the mean field approximation theory, L (G (xi,
x)) ≈ G (xi, L(x)), L (F(x)) ≈ F (L(x)), L (sin◦G (x, L(x))) ≈ L (sin)◦G
(L(x), L(x)). Eq. 5 can be written as

dxi

dt
� F xi( ) + sini G xi, L x( )( ), (6)

dx
dt

� F x( ) + sin◦G x, L x( )( ), (7)

and then this allows us to write Eq. 6 and Eq. 7 as

dL x( )
dt

� L F x( ) + sin◦G x, L x( )( )( ) ≈ F L x( )( )
+ L sin( )◦G L x( ), L x( )( ), (8)

where ◦ represents Hadamard convolution [36].
Finally, based on the Eq. 3, we obtain the average effective state

of the system

xeff � 1TAx

1TA1
� 〈soutx〉

〈s〉 , (9)

and the nearest neighbor weighted degree

βeff �
1TAsin

1TA1
� 〈soutsin〉

〈s〉 , (10)

where sout � (sout1 , sout2 , . . . , soutN )T is the vector of outgoing degrees
with soutj � 1

N∑
N
i�1aij. sin � (sin1 , sin2 , . . . , sinN)T is the vector of

incoming degrees with sini � 1
N∑

N
j�1aij. 〈soutx〉 � 1

N∑
N
i�1souti xi,

〈soutsin〉 � 1
N∑

N
i�1souti sini . 〈s〉 = 〈sin〉 = 〈sout〉 is the average

weighted degree.
Based on the Eqs 8–10 and Eq. 1 is simplified into an effective

one-dimensional equation

dxeff

dt
� F xeff( ) + βeffG xeff , xeff( ). (11)

Although the resilience function is uniquely determined by the
dynamical functions F(xi) and G (xi, xj), the actual position of the
system along this curve, capturing its momentary state, is determined
by the network topology aij. So we constructed networks with different
structures to explore the effect of network structure on the accuracy of
the resilience dimension reduction method.

2.2 Models

Networks with different topological structures have different
properties. The section mainly introduces three models for
generating tunable parameter networks.

1) The assortativity coefficient ρ is an indicator that measures the
degree of correlation between adjacent nodes in a network [37].
The Tunable-Assortativity-Coefficient (TAC) model changes
the network’s assortativity by adjusting the node connectivity,
and generates the artificial networks with tunable assortativity
coefficient ρ. The program for an artificial network using the
TAC model can be divided into three steps.

a) Initial condition: Randomly generate a connected network
consisting of n0 nodes and m0 edges.

b) Network growth: Add one new node i at each time step
and connect to m existing nodes, and m ≤ m0.

c) Preferential connection: The probability pj of a new node
being connected to an existing node i and the degree ki of
node i satisfy the relationship pj � kαj /∑ik

α
i (where α is a

tunable parameter) [38].

2) The Holme-Kim (HK) model can construct artificial networks
with tunable average clustering coefficient C [39]. When
generating a network, the HK model will generate a fixed
number of closed triangular adjacency relationships as required
to adjust the average clustering coefficient C of the network.
The program for generating artificial networks using the HK
model can be divided into four steps.

a) Initial condition: Randomly generate a connected network
consisting of n0 nodes and m0 edges.

b) Network growth: Add one new node i at each time
step. At the same time, node i selects m existing nodes
as neighbor nodes through preferential connection or
triangulation, and m ≤ m0.

c) Preferential connection: Calculate the probability Πj (Πj =
kj/∑iki) of node j being selected as a neighbor node by the
new node i based on the degree kj of each existing node j in
the network. The new node i selects the neighbor nodes
based on probability Πj, and the first neighbor node of
node i is selected according to the preferential connection.

d) Triangle formation: Triangle formation is generally executed
with a probability of 1 − Pt after preferential connection. If a
new node i has already selected a neighbor j, then the selection
range for the next neighbor of node i is all the neighbors of
node j, thus forming a closed triangular adjacency relationship.

3) The modularity Q is a parameter used to characterize the
strength of community features. The Tunable-Modularity
(TM) model can adjust the connection probability as needed
to generate the artificial networks with tunable modularityQ.
The program for an artificial network using the TM model
can be divided into three steps.

a) Initialize the network: Create an initial network containing
a small number of nodes that are interconnected to ensure
network connectivity.

b) Gradually add nodes: Gradually add new nodes and
connect them to existing nodes.

c) Reconnect edges: When connecting new nodes, reconnect
some edges according to the required modularity to adjust
the network’s community structure.
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In Addition, by adjusting the reconnection probability, we can
generate small-world networks and social networks [40] with
different average clustering coefficients, assortativity coefficients,
and modularities.

3 Simulation results

3.1 Dynamic equation

The dynamic equation of the gene regulatory network is
governed by Michaelis-Menten [1].

dxi

dt
� −Bxq

i +∑
N

j�1
Aij

xh
i

xh
i + 1

, (12)

where the first item on the right-hand side describes the self-
dynamic of each cell, and the second item is intercellular
activity. The Hill coefficient h describes the level of
cooperation in gene regulation [34]. We conduct interference
experiments on three types of different tunable parameter
networks, and explore the resilience reduction performance
of tunable parameter networks. Then we mainly perturb the
network in three different ways, including randomly deleting a
certain proportion of nodes, deleting a certain proportion of
edges, and changing a certain proportion of global weights. The
initial state of all nodes is set to x0 = 2, and it depends on the
dynamic equation to calculate the node state when the system
converges. Conducting 100 removals for each type of
perturbation. Based on the mapping process and Eqs 11, 12
is rewritten as

dxeff

dt
� −Bxq

eff + βeff
xh
eff

xh
eff + 1

. (13)

Based on this, we define the system’s resilience measurement error to
quantify the accuracy of the resilience dimension reduction model.
The parameter settings for the gene regulatory dynamic equation are
B = 1, q = 1, and h = 2.

3.2 Evaluation indicator

In this section, we define the system’s resilience measurement
error Err to quantify the accuracy of the resilience dimension
reduction model. The Err can be expressed as

Err � ∑
l

i�1
|xeff i( ) − x βeff i( )( )|, (14)

where xeff(i) − x (βeff(i)) denotes the error between the numerical
value xeff(i) of the system state obtained through Eq. 9 and the
numerical value x (βeff(i)) of the system state obtained through Eqs
10, 13. l represents the total number of perturbations, including
randomly removing a certain proportion of nodes, removing a
certain proportion of links, and changing a certain proportion of
global weights. We conduct 100 experiments on each perturbation.
The smaller the Err value, the better the performance of the
dimension reduction method.

3.3 Result analysis

We analyze the accuracy of the resilience dimension reduction
method on empirical networks, as measured by the error Err (Eq.
14). Table 1 shows the accuracy results of resilience dimension
reduction on empirical networks. We can find that the errors Err of
resilience dimension reduction on Facebook and Twitter networks
are relatively small comparing with other networks (biological and
ecological networks) (bold values in Table 1). For the same
dynamics, the errors Err of resilience dimension reduction on
Polbooks and Jazz networks are smaller than that of E. coli and
S. cerevisiae networks (bold values in Table 1), which indicates that
comparing with other networks, the accuracy of resilience
dimension reduction on social networks is larger, and dynamics
do not affect the accuracy of resilience dimension reduction. As
shown in Figure 1, the error Err of uniform networks is smaller than
that of homogeneous networks, random networks, scale-free
networks, small-world networks, and community networks, while
the error Err of scale-free networks is larger than that of uniform
networks, homogeneous networks, random networks, small-world
networks, and community networks. Hence, we obtain the order of
accuracy of resilience dimension reduction as follows: uniform
networks, small-world networks, homogeneous networks,
community networks, random networks, and scale-free networks.
The dimension reduction method analysis by Gao et al. [1], it can be
concluded that the accuracy of a uniform network reaches the
optimal values, which is shown in Figure 1. In addition, we can
also find that the accuracy of small world networks is smaller than
the one obtained from the uniform networks and larger than the
ones get from other networks. The reason lies in the fact that a
uniform network, each node is connected to the same number of
other nodes. Comparing with other networks, small-world networks
usually have higher homogeneity, meaning that nodes tend to
connect to nodes with similar degrees, while in scale-free
networks, the connection patterns of nodes exhibit high
heterogeneity, meaning that there are a few “hub nodes” with a
large number of connections. The above results indicate that the
dimension reduction method of the resilience has remarkable
performance for social networks.

In Table 1, we find that the error Err of resilience dimension
reduction on Polbooks network is larger than that of Jazz network.
The reason is that the accuracy of the resilience dimension reduction
method varies depending on the size and structure of the network.
So we investigate the accuracy of resilience dimension reduction on
networks with different network sizes. As shown in Figure 2, we find
that the error Err of network with N = 200 is larger than that of
150 and 100, and the error Err of network withN = 150 is larger than
that of 100, which indicates that the network size will affect the
accuracy of resilience dimension reduction, and the larger the size,
the greater the influence. We can also find in Figure 2 that as the
assortativity coefficient ρ increases, the error Err decreases.
Therefore, one can find that the accuracy of resilience dimension
reduction for social networks is large. The question is raised what
kind of structure can enhance the accuracy of resilience dimension
reduction? We generate artificial networks with different structures
(assortativity coefficient, average clustering coefficient and
modularity) and analyze the accuracy of the resilience dimension
reduction method.
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Firstly, based on the models in Section 2.2, we generate three sets
of networks with 200 nodes and 800 edges, including assortativity
coefficient ρ ∈ [-0.4,0.4], average clustering coefficient C ∈ [0.1,0.7]
and modularity Q ∈ [0.1,1.0]. Figure 3A shows the accuracy of
dimension reduction on networks with different assortativity
coefficients ρ. As the assortativity coefficient ρ increases, the
error Err decreases, indicating that the network structure with
high assortativity coefficient has larger accuracy of resilience
dimension reduction. The error Err of the network resilience
dimension reduction method with the assortativity coefficient
ρ > 0 is smaller than that of the network resilience dimension
reduction method with the assortativity coefficient ρ < 0, indicating
that the accuracy of resilience dimension reduction is larger for the

network structure with positive assortativity coefficient. Figure 3B
shows the accuracy of resilience dimension reduction under
different average clustering coefficients C. As the average
clustering coefficient C increases, the error Err decreases. The
results indicate that the dimension reduction method could
generate larger accuracy for networks with large average
clustering coefficient. Figure 3C shows the accuracy of resilience
dimension reduction under different modularity Q. As the
modularity Q increases, the error Err decreases. The results
indicate that the accuracy of resilience dimension reduction is
large for networks with high modularity. The clustering
coefficient measures the probability that the neighbors of a node
are also neighbors of each other, reflecting the local clustering

TABLE 1 Network characteristics of empirical networks and accuracy results of resilience dimension reduction.

Networks N E Dynamics C ρ Err

E.coli 1,550 3,244 Gene regulatory 0.0018 −0.3523 0.2764

S.cerevisiae 4,441 12,873 Gene regulatory 0.0001 −0.5580 0.3167

Facebook 539 6,384 SIS [41] 0.2262 0.2227 0.0198

Twitter 148 3,942 SIS [41] 0.4262 −0.0632 0.0254

Polbooks 105 882 Gene regulatory 0.4875 −0.1279 0.1642

Jazz 198 5,484 Gene regulatory 0.2525 0.0196 0.0983

Rain forest-Ants 41 468 Mutualistic [42] 0 1 1.4310

Rain forest-Plants 51 488 Mutualistic [42] 0 1 2.4985

Coral Reefs-Fish 26 140 Mutualistic [42] 0 1 0.2595

Coral Reefs-Anemones 10 108 Mutualistic [42] 0 1 0.2319

FIGURE 1
The resilience dimension reduction performance of different networks.
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property of the network. Assortativity describes the tendency of
similar nodes (such as nodes with similar degrees) in the network to
connect with each other. The community structure network refers to
the clear division of the network into communities, where nodes
within a community are densely connected while connections
between communities are relatively sparse. Networks with large
clustering coefficient often have large modularity, which indicates
that networks with clustering coefficient also exhibit large
modularity, leading to smaller resilience dimension reduction
errors. Networks with large assortativity, similar nodes are more

likely to form tightly connected communities, which suggests that
networks with large assortativity also large modularity, resulting in
smaller resilience dimension reduction errors. Both clustering
coefficient and assortativity are related to the local structure of
the network. The clustering coefficient focuses on connections
between neighboring nodes, while assortativity focuses on
connections between similar nodes. In some cases, large
clustering coefficient may be associated with large assortativity
because a high probability of connections between neighboring
nodes may imply that these nodes are similar in some attribute.

FIGURE 2
The resilience dimension reduction performance of different network sizes.

FIGURE 3
The resilience dimension reduction performance of networks with different structures. The subplots (A–C) show the correlations between the
assortativity coefficient ρ ∈ [−0.4,0.4], average clustering coefficient C ∈ [0.1,0.7], modularityQ ∈ [0.1,1.0], and resilience dimension reduction error Err of
the network. The network size is all 200. We obtain each data value by averaging 10 independent runs of each network.
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This indicates that the more homogeneous the local structure of the
network, the better the performance of resilience dimension
reduction. In summary, for networks with large assortativity,
large average clustering coefficient, and large modularity, the
resilience dimension reduction can result in smaller errors. In
other words, large assortativity indicates the presence of similar
nodes in the network, large average clustering coefficient indicate
high local connectivity between neighboring nodes, and large
modularity indicates the presence of closely related subnetworks
in the network. In such network structures, resilience dimension
reduction can better preserve information about these similar nodes,
closely related subnetworks, and connections between neighboring
nodes, thereby improving the accuracy of resilience
dimension reduction.

Secondly, we investigate the accuracy of resilience dimension
reduction on small-world networks with different structures. The

small-world network is a network structure that lies between regular
networks and random networks, characterized by short average
paths, high clustering coefficients, and community structure. We
generate three sets of small-world networks with 200 nodes and
800 edges, with assortativity coefficient ρ ∈ [0.05,0.45], average
clustering coefficient C ∈ [0.05,0.50], and modularity Q ∈
[0.65,1.0]. As shown in Figure 4, with the increase of ρ, C, and Q
increase, the Err values decrease. The experimental results show that
the larger the assortativity coefficient, average clustering coefficient,
and modularity of the network, the better the accuracy of resilience
dimension reduction.

Social networks have characteristics such as small world
phenomena, node degree distributions that follow power-law
distributions, high clustering coefficients, assortativity that nodes
are more inclined to connect with similar nodes, and community
structures. The above results indicate that the network structure

FIGURE 4
The resilience dimension reduction performance of small-world networks with different structures. The subplots (A–C) show the correlations
between the assortativity coefficient ρ ∈ [0.05,0.45], average clustering coefficient C ∈ [0.05,0.50], modularity Q ∈ [0.65,1.0], and resilience dimension
reduction error Err of the network. The network size is all 200. We obtain each data value by averaging 10 independent runs of each network.

FIGURE 5
The resilience dimension reduction performance of social networks. The subplots (A–C) show the correlations between the assortativity coefficient
ρ, average clustering coefficient C, modularity Q, and resilience dimension reduction error Err of the social network, respectively.
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with positive assortativity, large average clustering coefficient, and
significant community can enhance the accuracy of resilience
dimension reduction.

Finally, we reconstruct the network structures to generate
social networks with different assortativity coefficients, average
clustering coefficients and modularities. As shown in Figure 5,
the error analysis of dimension reduction on social networks
indicates that as ρ, C and Q increase, the accuracy of resilience
dimension reduction on social networks increases. The empirical
results show that the network structure with positive
assortativity, large average clustering coefficient, and
significant community can enhance the accuracy of resilience
dimension reduction.

4 Conclusion and discussions

In this paper, we investigated the effect of network structure on the
accuracy of resilience dimension reduction. First, we introduce the
resilience dimension reduction method and define the resilience
measurement error. Then, by adjusting node connections,
preferential connection mechanisms, and connection probabilities,
we construct TAC model, HK model and TQ model, respectively.
Based on the TAC model, HK model, and TQ model, we generated
artificial networks, small-world networks and social networks with
tunable assortativity coefficients, average clustering coefficients, and
modularities, respectively. We conducted dimension reduction analysis
experiments on gene regulatory dynamics using the generated
networks, and analyzed the effect of tunable parameters on the
accuracy of resilience dimension reduction based on the error
analysis. We found that the error Err of resilience dimension
reduction for social networks is small. The larger the assortativity
coefficient ρ( > 0), the smaller the error Err. The larger the average
clustering coefficient C, the smaller the error Err. As the modularity Q
increases, the error Err decreases. The error values Err of resilience
dimension reduction on small-world networks with large assortativity
coefficient, high average clustering coefficient, and high modularity are
small, which indicates that the resilience dimension reduction method
has remarkable performance for networks with positive assortativity,
large average clustering coefficient, and significant community.

In summary, network structure has a significant impact on the
accuracy of the resilience dimension reduction, which is of great
research importance on practical applications. In this paper, when
the HK model generated a tunable clustering coefficient network,
due to the limitations of structural properties such as sparsity and
average assortativity coefficient, we did not further analyze the
accuracy of the dimension reduction for networks with the
average clustering coefficient C > 0.7. According to preliminary
speculation, if the number of nodes, sparsity, and average
assortativity coefficient of the network remains unchanged, the
average clustering coefficient C will continue to increase from
0.7, and the number of triangles in the network will increase
accordingly. When the total number of edges in the network
remains constant, an increase in the number of triangles should
cause most of the edges of dense nodes to transfer to the adjacency
relationships of other non-dense nodes. The accuracy of the
resilience dimension reduction should increase with the increase
of the average clustering coefficient. In the process of resilience

analysis of artificial networks, although we applied it to gene
regulation dynamics, we can obtain corresponding results by
applying it to SIS propagation dynamics. For example, when
Polbooks, Jazz, E. coli, and S. cerevisiae networks are all applied
in gene regulation dynamics, we found that the error values of
resilience dimension reduction on Polbooks and Jazz networks are
smaller than that of E. coli and S. cerevisiae networks. In addition,
we only studied the effects of assortativity coefficient, average
clustering coefficient, and modularity on the accuracy of the
resilience dimension reduction. However, in real networks, there
often exist motifs [43, 44] or hypernetworks that describe rich and
complex multivariate relationships [45]. So further research is
needed to investigate the accuracy of resilience dimension
reduction for motifs and hypernetworks.
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