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Accurately predicting landslide displacement is essential for reducing and
managing associated risks. To address the challenges of both under-
decomposition and over-decomposition in landslide displacement analysis, as
well as the low predictive accuracy of individual models, this paper proposes a
novel prediction model based on time series theory. This model integrates a
Convolutional Neural Network (CNN) with a Bidirectional Long-Short Term
Memory network (BiLSTM) and an attention mechanism to form a
comprehensive CNN-BiLSTM-Attention model. It harnesses the feature
extraction capabilities of CNN, the bidirectional data mining strength of
BiLSTM, and the focus-enhancing properties of the attention mechanism to
enhance landslide displacement predictions. Furthermore, this paper proposes
utilizing the Variational Mode Decomposition (VMD) method to decompose both
landslide displacement and its influencing factors. The VMD algorithm’s
parameters are optimized through the Sparrow Search Algorithm (SSA), which
effectively minimizes the influence of subjective bias while maintaining the
integrity of the decomposition. A fusion of the Maximal Information
Coefficient (MIC) and Grey Relational Analysis (GRA) is then employed to
identify the critical influencing factors. The selected sequence of factors that
conforms to the criteria is used as the input variable for displacement prediction
via the CNN-BiLSTM-Attentionmodel. The cumulative displacement prediction is
derived by aggregating the results from each sequence. The study reveals that the
SSA-VMD-CNN-BiLSTM-Attention model introduced herein achieves superior
predictive accuracy for both periodic and random term displacements than
individual models. This advancement provides a dependable benchmark for
forecasting displacement in similar landslide scenarios.
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1 Introduction

Landslides are frequent and destructive geological disasters in China, posing constant
threats to the safety of nearby villagers. The deformation evolution of landslides is a
complex nonlinear system influenced by both intrinsic geological conditions and external
environmental factors. [1]. Displacement serves as a direct indicator of the progression
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trends and kinematic patterns of landslides. A thorough analysis of
landslide displacement is crucial for accurately identifying the
evolutionary stages of landslides, effectively mitigating disaster
risks, and minimizing losses. [2, 3].

Currently, scholars typically decompose landslide displacement
sequences using time series theory and construct prediction models
to forecast displacement component [4]. Commonly used
displacement decomposition methods include the moving average
method [5, 6], empirical mode decomposition (EMD) [7–9],
ensemble empirical mode decomposition (EEMD) [10–12],
wavelet transform (WT) [13–15] and Variational Mode
Decomposition (VMD) [16–20]. Although the methods
mentioned above have yielded positive outcomes in decomposing
displacement sequences, they also have their limitations. For
instance, while the moving average method is clear physical
interpretation, it cannot decompose the random term
displacement. Although EMD, EEMD, and WT have addressed
the limitations of the moving average method, the number of
decomposed sequences is uncontrollable, and the physical
meaning of each component is unclear. Furthermore, it should
be noted that WT and Discrete Wavelet Transform (DWT) differ
in their approach to determining basis functions and wavelet orders.
VMD, on the other hand, addresses the issue of modal aliasing and
allows for the specification of the number of components after
decomposition, with each component having a clear physical
interpretation. However, the effectiveness of the decomposition
and the fidelity of the results depend heavily on the selection of
parameters. To fully utilize the benefits of the VMD algorithm,
which has high adaptability and clear physical meaning for each
component, this paper optimizes the penalty factor α and the rise
time step τ in the VMD model using the Sparrow Search Algorithm
(SSA). The VMD decomposition effect and fidelity are measured
using the sample entropy of the periodic term displacement or the
low frequency of the influencing factor as the root mean square error
of the original displacement and the reconstructed displacement.

The construction of a prediction model plays a pivotal role in
determining the precision of landslide displacement forecasts.
Models for predicting landslide displacement can be categorized
into three types: historical experience models, statistical models, and
machine learning models. The empirical model based on historical
experience requires a significant amount of data and
experimentation to verify its accuracy and has strict application
conditions. Although the statistical model is effective in monitoring
landslides influenced by a single factor, its ability to consider and
predict the impact of multiple factors is often limited. As computer
technology advances rapidly, machine learning models have become
increasingly prevalent for predicting landslide displacement. These
models, with their straightforward calculation procedures, accurate
prediction outcomes, and low computational requirements, are
adept at managing nonlinear relationships. Machine learning
models are increasingly popular for predicting landslide
displacement. Due to their simple calculation processes, accurate
prediction results, low computational costs, and ability to handle
nonlinear relationships [21], machine learning models are widely
employed for landslide displacement prediction. For instance, Yang
et al. [22] employed support vector machines (SVM) to predict
landslide displacement. However, the prediction error for individual
points was significant. Du et al. [23] established a neural network

model for predicting landslide displacement based on the analysis of
inducing factors. Wang et al. [24] developed a prediction model for
landslide displacement by combining the Extreme Learning
Machine (ELM) with Random Search Support Vector Regression
(RS-SVR) sub-models. Li et al. [25] proposed an ensemble-based
extreme learning approach to study landslide displacement
prediction. The results demonstrated that the integrated model
achieved higher prediction accuracy compared to a single model.
Wang et al. [26] studied and compared the predictive capabilities of
reservoir landslide displacement using various machine learning
approaches. Relying solely on individual prediction accuracy to
assess the superiority of machine learning methods may not be
reliable, whereas the combined model offers improved average
prediction accuracy and predictive stability. However, the model
does not fully consider the dynamic characteristics of landslide
evolution. This is because the evolution process of a landslide is
inherently a dynamic system, and treating it as a static regression
problem reduces the accuracy of displacement predictions [27, 28].
Accurate prediction of landslide displacement necessitates a
dynamic prediction model capable of simulating the changes in
landslide displacement. Li et al. [28] proposed a modeling and
prediction framework for landslide displacement based on a deep
belief network and the exponentially weighted moving average
(EWMA) control chart, obtaining excellent prediction results.
The Long Short-Term Memory (LSTM) model is a type of
dynamic neural network that integrates delay units and feedback
into the static network, enhancing its sensitivity to historical factors
and output. This trait renders it more suitable for predicting
landslide displacement influenced by multiple factors.

The LSTM model is a dynamic modelling method commonly
used to predict landslide displacement [29, 30]. Previous studies
have demonstrated that the prediction accuracy of LSTM is superior
to that of backpropagation neural network, ELM or SVM [31].
However, the LSTM model relies exclusively on past state
information, which qualifies it as a unidirectional network. The
bidirectional LSTM (BiLSTM) network is an enhancement and
expansion of the traditional LSTM. It can increase its predictive
accuracy by learning input time series data from both forward and
backward directions, as noted in references [32–34]. More recently,
the progression of deep neural networks has given rise to stable and
highly accurate models for data processing and industrial
predictions, such as the convolutional neural network (CNN) and
BiLSTM. The combined CNN-BiLSTM model merges CNN’s
feature learning capabilities with BiLSTM’s time series memory
function, resulting in further improvements in prediction
accuracy and operational efficiency [35,36].. Nava et al. [37] used
seven different machine learning models to predict four types of
landslide displacement, taking into account various geographic
locations, geological settings, time intervals, and measurement
instruments. The results indicated that deep learning ensemble
models surpassed others in performance, especially for the
seasonal Baishuihe landslide. Lin et al. [38] proposed a combined
model based on the CNN-BiLSTM framework. This model
demonstrated higher prediction accuracy when compared to both
the traditional LSTM model and the CNN-LSTM combined model.
Wang et al. [39] applied the CNN-LSTM model to dynamically
predict landslide displacement, finding that the CNN-BiLSTM
model’s prediction accuracy exceeded that of BP, LSTM, and
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GRU models. However, the deep learning methods mentioned
previously fall short when handling multi-dimensional feature
data, such as in predicting landslide displacement, due to the
absence of an effective weighted input feature mechanism. Not
all input features equally influence landslide deformation; certain
factors may contribute minimally to the prediction of landslide
displacement. An excessively large proportion of feature weights
could compromise the prediction model’s accuracy.

In recent years, attention mechanisms have become increasingly
prominent in image recognition and machine translation. These
mechanisms function as an effective resource allocation system by
assigning differential weights to input features in order to emphasize
the most significant information [40]. Tang et al. [41] applied a
BiLSTM model with an attention mechanism to predict landslide
displacement, and it was found that this combination yielded better
results than using the traditional LSTM model alone. Furthermore,
it’s common for researchers to rely on correlation evaluation
methods to select input variables for prediction models. However,
this method may result in one-sided evaluations and the inclusion of
irrelevant data, which can increase computational complexity and
reduce prediction accuracy.

To summarize, this article uses the BaiShuihe landslide in the
Three Gorges Reservoir area as an example. It first applies the SSA-
VMD model to deconstruct the landslide displacement sequence
into trend term displacement, periodic term displacement, and
random term displacement, while simultaneously decomposing
the triggering factors into high-frequency and low-frequency
parts. Next, it employs a fusion technique that combines the
Maximal Information Coefficient and Grey Relation Analysis
(MIC-GRA) to filter the influencing factors of landslide
displacement from different angles. Finally, the CNN-BiLSTM-
Attention composite model is utilized to predict the various
displacement components. The predicted trend, periodic term,
and random term displacements are then aggregated and
reconstructed, with an evaluation and analysis of the results
following. The forecasting performance has been confirmed, and
the insights from this study establish a robust foundation for the
future development of landslide displacement prediction and early
warning systems.

2 Methodology

2.1 Displacement time series additive model

Predicting time series data presents a significant challenge in the
field of statistical analysis, especially when employing time series
analysis methods. Previous studies [5, 10, 17, 19, 30] have
documented that the cumulative displacement of landslides is a
complex, nonlinear sequence. Time series analysis facilitates the
decomposition of cumulative displacement into three distinct
segments. Predominantly, landslide deformation is influenced by
trend term displacement, which arises from internal geological
conditions such as the topography, geological structure, and
strata lithology. The trend term displacement, which is
influenced by internal factors, can be represented as an
approximately monotonic increasing function over time [5, 11,
16]. This paper explores the impact of time on the trend term,

along with the periodic and random term displacements. The
periodic term displacement arises through the collective effects of
external factors such as rainfall and reservoir water levels, resulting
in displacement that typically exhibits an approximate periodic
pattern, as identified in earlier studies [17, 19, 21]. Meanwhile,
the random term displacement is attributed to stochastic factors
including wind load, vehicular load, and seismic activity, as
documented in the literature [22, 29]. The cumulative
displacement of landslides, according to the findings from time
series additive model research, can be expressed as Eq. 1:

X t( ) � T t( ) + P t( ) + R t( ) (1)
where X(t) is the displacement value of the time series, T(t) is a
trend term function, P(t) is a periodic term function, and R(t) is an
random term function with uncertainty.

2.2 Specific steps of variational mode
decomposition

In 2014, K. Dragomiretskiy and D. Zosso proposed the
variational mode decomposition (VMD) as an adaptive, non-
recursive method for signal processing based on the EMD model
[42]. The VMD decomposes a real input signal into multiple
Intrinsic Mode Function (IMF) components with specific sparse
characteristics. This approach determines the number of modal
components in advance, overcoming the endpoint effects and
modal component aliasing problems of EMD methods.
Furthermore, it can decrease the non-stationary nature of time
series data with high complexity and strong nonlinearity, leading
to subsequences with distinct sparse features. The equation for
the IMF in VMD is a form of amplitude modulation frequency
modulation signal uk(t), which is expressed as Eq. 2:

uk t( ) � Ak t( ) cos ϕk t( )( ) (2)
where ϕk(t) is the phase,Ak(t) is the instantaneous amplitude, ϕk(t)
is the non decreasing function, and Ak(t) is consistent with the
mean positive number.

The sum of the input signal sequence and modes is used as the
constrained variational expression. The constrained variational
expression is written as Eqs 3 and 4:

min
uk{ }, wk( )

∑
k

∂t δ t( ) + j/πt( )puk e−jωkt( )[ ]���� ����22⎧⎨⎩ ⎫⎬⎭ (3)

∑K
k

uk � xt (4)

where K is the required number of modal components, which is an
integer between one and K. uk{ } � u1, · · ·, uk{ } is the modal
component obtained from the final decomposition. ωk{ } �
ω1, · · ·,ωk{ } is the actual center frequency of each modal
component. ∂t is a partial derivative symbol. δ(t) is the Dirac
function. * is a convolution operator.

To solve the equation above, we introduce the Lagrange operator
λ to transform the constrained variational problem into an
unconstrained one. The extended Lagrange expression is obtained
as Eq. 5:
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L uk{ }, ωk{ }, λ( ) � ε∑
k

∂t δ t( ) + j/πt( )puk e−jωkt( )[ ]���� ����22
+ x t( ) −∑

k

uk t( )
���������

���������2
2

+ 〈λ t( ), x t( ) −∑
k

uk t( )〉

(5)
where ε is used to decompose and reduce the interference of
Gaussian noise. The optimal solution of the constrained model
can be obtained by using the alternating directionmultiplier iterative
algorithm to optimize the modal components and center
frequencies, and searching for the saddle points of the
unconstrained model, thereby obtaining K modal components.
The aim of this study was to decompose landslide displacement
and influencing factors using VMD. The time series additive model
of landslide displacement was used to set the number of modal
components K = 3. The influence factor time series K = 2 modal
components. The low frequency component of the influence factor
mainly affected the periodic displacement of the landslide, while the
high-frequency component contributed to the random displacement
[19]. Utilizing the VMD algorithm to dissect landslide displacement
into three components, it is pivotal to recognize that the outcomes
might not carry practical or tangible physical relevance. The
parameters α and K have been determined, and they will affect
the decomposition effect and fidelity. Efficient and accurate selection
of parameters in the VMD algorithm will be crucial for the
decomposition of displacement time series. The SSA was chosen
to optimize the penalty function α and rise time step τ in the VMD
model. This approach effectively avoids the influence of
subjective factors.

2.3 Variational modal decomposition for the
sparrow optimization algorithm

2.3.1 Sample entropy
Sample entropy is a complexity metric for time series analysis,

proposed by Richman [43] in response to the limitations
encountered with approximate entropy. This measure effectively
mitigates deviations arising from template matching issues, by
considering the probability and complexity of emergent patterns
within a time series. Contrary to approximate entropy, Sample
entropy maintains independence from the length of the sequence,
yielding higher consistency across analyses. This attribute renders it
an essential tool for researchers and practitioners seeking to
accurately gauge the intricacies of time series data.

For a given time series x(t){ }, t � 1, 2,/, N with length N, the
sample entropy calculation steps of the time series are as follows:

(1) The m-dimensional vector xm(t){ }, t � 1, 2,/, N −m + 1 is
constructed at time t, where m is the embedding dimension of the
vector. The distance between the time series is defined as the
absolute value of the maximum difference between the elements
of the two sub-sequences is dmij , and the calculation formula is as
Eq. 6:

dm
ij � d xm

i , x
m
j[ ]

� max
k�0,1/m−1

x i + k( ) − x i − k( )| |, i, j,/, N −m + 1,且i ≠ j( )
(6)

(2) Setting the similarity tolerance r(r> 0), and calculating the
number ratio of the distance between xm

i and xmj less than r, denoted
as Bm

i (r), and the calculation formula is as Eq. 7:

Bm
i r( ) � num dm

ij < r{ }
N −m + 1

(7)

where num ·{ } is the counting function. By calculating the number
of vectors whose distance between xm

i and xm
j is less than r, the

formula for calculating the average template match probability
Br(r) is as Eq. 8:

Bm r( ) � 1
N −m

∑N−m

i�1
Bm
i r( ) (8)

(3) The m + 1 dimensional sequence is constructed, and the
average template match probability Bm+1(r) with a distance less
than r between xm

i and xm
j is calculated by repeating the Eqs 7

and 8, where Bm(r) and Bm+1(r) are the probabilities of m and
m + 1 points respectively under the condition of similar
tolerance r, respectively. The sampling entropy of x(i){ } is
defined as Eq. 9:

SampEn m, r( ) � lim
N ����→ ∝

− ln
Bm+1 r( )
Bm r( )[ ]{ } (9)

When the length of the time series is finite, the sample entropy
can be calculated as Eq. 10:

SampEn m, r,N( ) � − ln
Bm+1 r( )
Bm r( )[ ] (10)

where m is the embedding dimension, generally taken as one or 2. r
is the similarity tolerance, generally taken as 0.1 ~ 0.25σx, and σx is
the standard deviation of the sequence. The sample entropy value
increases with the complexity of the time series and decreases with
its simplicity. This paper uses the sample entropy of the decomposed
periodic term displacement sequence as an indicator to evaluate the
decomposition effect of the VMD algorithm. A smaller entropy
value of periodic term displacement indicates a better
decomposition effect.

2.3.2 Basic principles of sparrow
optimization algorithm

The Sparrow Search Algorithm (SSA) is a population-based
intelligent optimization algorithm introduced by Xue et al. [44].
The algorithm derives its optimization strategy from the
foraging and anti-predation behavior observed in sparrows.
As a swarm intelligence algorithm, it outperforms many
others in terms of search precision, convergence speed,
stability, and resilience. Its successful applications span a
range of problems in diverse domains, including workshop
scheduling, parameter optimization, image classification, and
graphical optimization tasks. Building on this success, the
present article employs SSA to autonomously determine the
optimal parameters for the penalty factor and the rise time step
within the VMD algorithm.

The SSA categorizes sparrows into three roles during the search
process: the discoverer, the follower, and the sentinel. Their
positional updates are as Eqs 11-13:
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Xt+1
i,j � Xt

i,j exp −i/αitermax[ ], R2 < ST
Xt

i,j + QL, R2 ≥ ST
{ (11)

Xt+1
i,j � Q exp Xworst −Xt

i,j( )/i2[ ], i> n/2
Xt+1

p + Xt
i,j −Xt+1

p

∣∣∣∣∣ ∣∣∣∣∣A+L, i≤ n/2
⎧⎨⎩ (12)

Xt+1
i,j �

Xt
best + β Xt

i,j −Xt
best

∣∣∣∣∣ ∣∣∣∣∣, fi >fg

Xt
i,j +K

Xt
i,j −Xt

worst

∣∣∣∣∣ ∣∣∣∣∣
fi − fw( ) + ε

⎛⎝ ⎞⎠, fi � fg

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩ (13)

where t is the current number of iterations, iter max is the
maximum number of iterations, α is a uniform random
number of (0, 1], Q is a standard normal distribution random
number, Xi,j is the position information of i sparrow in j
dimension, L is a matrix with all elements one, R2 ∈ [0, 1] is
the warning value, ST ∈ [0.5, 1] is the warning threshold. Xworst

is the worst position in the global, Xt
p is the optimal

position occupied by the discoverer, A is a multidimensional
matrix of one or -1, n is the number of sparrows. Xbest is the
current global best position, β is the control parameter for
the step size, K is a uniform random number between [−1, 1],
K represents the direction of movement of the sparrow, fi is
the fitness of the current sparrow, fg is the best fitness
value of the global, fw is the worst fitness value, ε is a
small constant.

To optimize SSA, determining the fitness function is a crucial
step. The fidelity of the decomposed VMD algorithm is evaluated by

accumulating and reconstructing the decomposed subsequences
into m. To measure the integrity of the decomposed sequence,
the root mean square error (RMSE) between the reconstructed
sequence and the original sequence M is calculated using the
following formula:

RMSE �
!!!!!!!!!!!
1
n
∑n
i�1

xt − x̂t( )
√

(14)

where xt is the value of the original sequence at time t, x̂t is the value
of the reconstructed sequence at time t, and n is the length of
the sequence.

Eq 14 demonstrates that a smaller RMSE value implies a smaller
error between the reconstructed sequence m and the original
sequence M, indicating a reduced loss of the original sequence.
This paper combines sample entropy and root mean square error to
effectively reflect the completeness of the decomposed sequence and
the success of the decomposition. The function expression is as
Eq. 15:

fitness � RMSE m,M( ) · SampEn IMF2( ) (15)
where RMSE(m,M) is the root mean square error between the
reconstructed sequence and the original sequence. SampEn(IMF2)
is the sample entropy value of the low-frequency part of the periodic
term displacement sequence or influencing factor after
decomposition. The fitness value of the SSA algorithm is
determined using the calculated value of Equation 15. To find

FIGURE 1
Two-layer one-dimensional CNN convolution structure.

FIGURE 2
BiLSTM network structure diagram [53].
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the optimal fitness, the penalty factor α and rise time step τ are
optimized. The process is outlined in the following steps:

(1) Input displacement time series signal.
(2) Initialize the parameter input of the sparrow optimization

algorithm, and randomly generate a series of α and τ as the
initial position of the sparrow population.

(3) Perform VMD decomposition on the displacement sequence
of the current sparrow position. Calculate the sample entropy
of the decomposed periodic term sequence or low-frequency
part of the influencing factors with confidence.

(4) The acclimatization value for each sparrow was calculated
according to Eq 10, identify the optimal and worst fitness
individuals, and update the positions of discoverers, followers,
and early warning individuals according to Eqs 11–13.

(5) Repeat (3) and (4) until the maximum number of iterations is
reached, and output the sparrow position and fitness values at
this time as the optimal solution.

2.4 Maximal information coefficient

Mutual information (MI) [45] developed from Shannon entropy
theory, is a method for analyzing the statistical correlation between
two random variables. It is adept at detecting both linear and non-
linear relationships among variables. Despite its utility, mutual
information is not a normalized metric, which limits its capacity
to provide a quantitative assessment of correlation strength. To
address this limitation, this article introduces the Maximal
Information Coefficient (MIC). Proposed by Reshef et al. in
2011 in the journal Science [46], MIC builds upon MI to
evaluate the degree of dependency between variables
comprehensively. It is competent in quantifying not only linear
but also non-linear and non-functional correlations
among variables.

The principle of the MIC is for a given two random variables
X,Y and a finite ordered data setD(X,Y) � (xi, yi), i � 1, 2,/, n{ },
theX and Y regions inD are divided respectively into grids x × y of
G. Then, the probability distribution of the data set D on the grid G

is D|G, and the mutual information value I(D | G) under this
segmentation mode is calculated. Finally, the maximum mutual
information value under all possible grid segmentations G is
obtained as Eq. 16:

I* D, x, y( ) � max I D|G( ) (16)

By normalizing I*(D, x, y) function, the characteristic matrix
element I*(D, x, y) of the variable can be obtained by Eq. 17:

M D( )x,y � I* D, x, y( )
log min x, y{ }( ) (17)

Different x × y values divide the grid to get different
M(D)x,y values, and the maximum M(D)x,y is called the MIC
of variable Y, and the maximum M(D)x,y is expressed as Eq. 18:

MIC D( ) � max
xy<B n( )

M D( )x,y (18)

where B(n) is the maximum number of meshes, n is the capacity of
the data sample and usually set to B � n0.6 [47, 48], This paper also
adopts this value.

2.5 Construction of CNN-BiLSTM-attention
combination model

2.5.1 CNN principle structure
A Convolutional Neural Network (CNN) is the neural network

model most frequently employed in deep learning [49]. Its potent
feature-learning capability substantially diminishes the model’s
parameter count, which has led to its extensive application in
image recognition and computer vision domains. Over recent
years, a growing number of researchers have effectively utilized
CNN for time series analysis. The model’s distinct features, such as
weight-sharing and localized connections, can significantly diminish
the parameter quantity needed for training. These attributes
facilitate faster model training velocities and allow for the more
proficient extraction of features from the input data [50].

The CNN consists of a convolution layer, pooling layer, fully
connected layer, and output layer. The convolution layer applies the
activation function to perform non-linear operations on the input
time series data and extract local feature information. The pooling
layer uses a pooling function to decrease the dimensionality of the
convolution output, and improve the model’s robustness and
generalization ability. The fully connected layer then maps the
data output from the pooling layer to a fixed-length column
vector. This paper uses a two-layer one-dimensional CNN
convolution structure to extract feature information, as shown
in Figure 1.

2.5.2 BiLSTM model
In 1997, Sepp Hochreiter et al. proposed long short-term

memory networks (LSTM). The gate structure and internal
memory unit effectively solve the problem of gradient
disappearance and explosion in long sequence training of the
RNN model [51]. The model’s control unit consists of a forget
gate, an input gate, and an output gate. The respective calculation
formulas for these components are as Eqs 19-24:

FIGURE 3
Attention mechanism structure diagram [53].
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ft � σ Wf ht−1, xt[ ] + bf( ) (19)
it � σ Wi ht−1, xt[ ] + bi( ) (20)

C̃t � tanh Wc ht−1, xt[ ] + bc( ) (21)
Ct � it ×C̃t + ft × Ct−1 (22)

Ot � sigmoid Wo ht−1, xt[ ] + bo( ) (23)
ht � Ot × tanh Ct( ) (24)

where ft、it、Ot denote the forgetting gate, the input gate and the
output gate, respectively, Wf、Wc、Wo denote the weights of the
corresponding gates, bf、bc、bo denote the corresponding bias, xt

denote the input time series data, t denote the sigmoid activation
function, and σ is the hyperbolic tangent activation function, Ct and
C̃t denote the cell state and temporary state of the cell, respectively.

The Bidirectional Long Short-Term Memory (BiLSTM) model
significantly enhances the traditional LSTM model. By leveraging
both forward and reverse LSTM processes, it effectively integrates

information from both past and future contexts, enabling it to make
more accurate predictions. Consequently, it outperforms the LSTM
model in prediction accuracy [33,34,52]. The structure of the
BiLSTM model is depicted in Figure 2.

2.5.3 Attention mechanism
The Attention mechanism allocates weights to different features,

assigning greater weights to key content and smaller weights to other
content. This allocation improves the efficiency of information
processing and the prediction accuracy of the model [54]. The
Attention unit structure is displayed in the Figure 3. The formula
of attention mechanism can be referred to [53].

2.5.4 Prediction process of CNN-BiLSTM-attention
combined model

This paper presents a dynamic displacement prediction method
based on the CNN-BiLSTM-Attention model. The model utilizes a

FIGURE 4
Diagram of CNN-BiLSTM-Attention network structure.
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CNN framework comprising of a two-layer one-dimensional
convolutional layer and a pooling layer to automatically extract
the internal features of the displacement sequence. The
convolutional layer efficiently performs nonlinear local feature
extraction of the time series, while the pooling layer condenses
the extracted features using the maximum pooling method to
generate crucial feature information.

The BiLSTM hidden layer model effectively learns the internal
dynamic changes of the local features extracted by CNN and iteratively
extracts intricate global features from the local features. The BiLSTM
hidden layer generates features that are adeptly harnessed by the
Attention mechanism, which discerns the significance of temporal
information. This facilitates the extraction of profound temporal
dependencies and enhances the utilization of the displacement time
series’ temporal characteristics. By preserving historical information
and emphasizing critical historical time points, the Attention
mechanism mitigates the impact of superfluous information on the
displacement prediction outcomes. The outputs from the Attention
layer serve as the input for the fully connected layer, which then
precisely yields the final prediction of displacement. In optimizing
the network parameters for this study, the Adam optimization
algorithm is adopted to meticulously adjust the parameters across
the layers, with the mean square error (MSE) serving as the loss
function. The architecture of the combined CNN-BiLSTM-Attention
model is depicted in Figure 4.

2.5.5 Displacement prediction processTo predict
landslide displacement using the model, follow
these steps with confidence
(1) The original landslide displacement time series is divided into

three sub-sequences by using the SSA-VMD model. The
landslide’s cumulative displacement can be broken down into

three sub-sequences: trend term displacementT(t), periodic term
displacement P(t), and random term displacement R(t),
determined by the optimal fitness function value.

(2) The influence factor sequence is decomposed into two
sub-sequences using SSA-VMD. The low-frequency and
high-frequency parts of the influence factor sequence are
represented by these sub-sequences. Using the
optimal fitness function, we derived the optimal
decomposition subsequence. We then calculated the
maximum MIC and GRA values for the decomposition
subsequence of each factor and displacement
subsequence. Our comprehensive analysis allowed us
to confidently assess the correlation between the
influencing factor subsequence and the displacement
subsequence.

(3) The input data is divided into a training dataset and a
verification dataset based on the predetermined sequence
of each displacement term and influencing factor. A single-
factor CNN-BiLSTM-Attention model was constructed and
trained for predicting trend term displacement, while a multi-
factor CNN-BiLSTM-Attention model was established and
trained for predicting periodic term displacement and
random term displacement.

(4) Ultimately, the predicted values of trend displacement,
periodic displacement, and random displacement are
accumulated to form the cumulative landslide displacement
prediction results, which are then compared with the
cumulative landslide displacement monitoring results, and
the predictive performance of the newmodel is evaluated. The
process of the combined landslide displacement prediction
model, involving SSA-VMD and CNN-BiLSTM-Attention, is
confidently illustrated in Figure 5.

FIGURE 5
Flowchart of the displacement prediction. (A). Landslide displacement decomposition and data set establishment; (B). Training of CNN-BiLSTM-
Attention model; (C). Verification of CNN-BiLSTM-Attention model; (D). SSA optimize the parameters of VMD; (E). CNN-BiLSTM-Attention model
establishment.
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FIGURE 6
The geographical location of Baishuihe landslide.

FIGURE 7
The topography of Baishuihe landslide.
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3 Case study

3.1 Engineering geological survey and
displacement analysis of Baishuihe landslide

The Baishuihe landslide, located in Zigui County within the
Three Gorges Reservoir region, as illustrated in Figure 6 exhibits a
monoclinic bedding slope structure, This structure is characterized
by a gradient that is elevated in the south and decreases towards the
north, aligning in a stepwise fashion towards the Yangtze River. The
elevation measures approximately 410 m at the landslide’s trailing
edge and descends below the 135 m water level at its leading edge.
The overall inclination of the Baishuihe landslide is estimated at 30°,
with its topographical layout depicted in Figure 7. Since the
commencement of monitoring activities in 2003, the landslide has
experienced numerous significant deformation events. Geological
surveys of the Baishuihe region elucidate the landslide’s irregular ‘U-
shaped’ configuration, extending 500 m in length from north to south,
and 430 m across from east to west, covering an area of approximately
21.5 × 104 m2. The slidingmassmaintains an average thickness of about
30 m, culminating in a volume of roughly 645 × 104 m3, with the
principal direction of slide oriented at 20°.

Figure 8 demonstrates that every displacement change is linked to a
rise in rainfall and a substantial shift in reservoir water level. Rainfall has
an impact on the stability of the landslide by influencing the strength of

rock and soil, physical and mechanical parameters, and pore water
pressure [55–57]. The landslide motion state is influenced by the
reservoir water level through hydrostatic pressure, hydrodynamic
pressure, pore water pressure, and other factors [58,59]. The reservoir
area experiences a flood season from May to September each year,
resulting in increased rainfall and awiderfluctuation and influence range
of the reservoir water level. Conversely, the non-flood season occurs
from October to April of the following year, during which rainfall is
scarce and the deformation of the landslide tends to be less severe. The
periodic influence of reservoir water levels and rainfall causes the
displacement of the landslide to exhibit a step-type characteristic.

3.2 Landslide displacement decomposition
of VMD

The SSA utilizes a population size of 50 and a maximum of
100 iterations. , The optimization ranges for the penalty factor α and
rise time step τ are [0.1,1000] and [0,1], respectively. Table 1 displays
the optimization results, while Figures 9, 10 shows the
corresponding decomposition results.

3.3 Selection of landslide displacement
influencing factors

3.3.1 Analysis of landslide displacement
influence factors

Examining the progression traits of the Baishuihe landslide, and
building upon existing domestic and international research, many
scholars have traditionally narrowed down the influencing factors of
landslide displacement to rainfall and reservoir water level changes.

FIGURE 8
Displacement and environmental data variation in the Baishuihe landslide.

TABLE 1 SSA-VMD optimization results.

Monitoring point α τ

ZG118 74.19 0.56

XD01 90.13 0.17
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However, Figure 8 illustrates a discrepancy where the peak increase
in landslide displacement occurred in 2015, despite there being
neither the highest rainfall nor the most significant variation in
reservoir water levels that year. This suggests that rainfall and
reservoir water level changes do not singularly dictate landslide
displacement. Such a dynamic may be attributed to the
deformation evolution state of the landslide at the time, with
different states responding variably to external influences. For
instance, in phases where the landslide maintains relative
stability, it is less likely to experience significant
displacements, even when subjected to intense external forces.
Conversely, in a state of instability, even moderate external
influences can induce substantial movements [60,61]. Thus, it
becomes evident that a landslide’s deformation response hinges
not only on the magnitude of the external triggers but also
intimately connects with its current evolutionary stage.
Accordingly, this study advances beyond conventional
considerations by incorporating the displacement evolution
state of the landslide as an additional input characteristic for
the prediction model.

The analysis above identifies the indicators that have the most
influence on landslide displacement. These are 1-month cumulative
rainfall (P1) and 2-month cumulative rainfall (P2). Additionally, the
monthly average reservoir water level elevation (R1), the amplitude
of reservoir water level in the previous month (R2), and the

amplitude of reservoir water level in the previous 2 months (R3)
are the influential factors for reservoir water level on landslide
displacement. This information is presented with confidence and
clarity to ensure a thorough understanding of the topic. To
characterize the evolution state of landslide displacement, we
choose the displacement (S1) from the previous month and the
displacement (S2) from the previous 2 months.

The VMD algorithm decomposes the influencing factor sequence
into high-frequency and low-frequency sequences. The high-frequency
factors, such as PU

1 , P
U
2 , R

U
1 , R

U
2 , R

U
3 , S

U
1 and SU2 , are used as the

influencing factors of the random term displacement. The low-
frequency factors, such as PL

1 , P
L
2 , R

L
1 , R

L
2 , R

L
3 , S

L
1 and SL2 , are used as

the influencing factors of the periodic term displacement. The
correlation between the decomposition sequence of the impact factor
and the periodic displacement and random term displacement
sequence is comprehensively measured using the MIC and GRA.

3.3.2 Sequence decomposition of optimal VMD
displacement influencing factors

The SSA utilizes a population size of 50 and a maximum number
of iterations set to 100, with optimization ranges for the penalty
factor α and rise time step τ being [0.01,1000] and [0,1], respectively.
The optimization results are presented in Table 2, while the
corresponding decomposition results are illustrated in
Figures 11–14.

FIGURE 9
Decomposition results of ZG118 cumulative displacement.

FIGURE 10
Decomposition results of XD01 cumulative displacement.
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3.3.3 Correlation analysis between displacement
and influence factors

In the quest to elucidate the correlation between landslide
displacement and its influencing factors, it is imperative to conduct a
detailed analysis and decomposition of these factors. Selecting highly
correlated factors is crucial for enhancing the predictive accuracy and
efficacy of the model. Nonetheless, the availability of sufficiently high-
quality data for model training is paramount. The inclusion of factors
withminimal correlation risks incorporating extraneous data, potentially
diminishing the precision and effectiveness of the landslide displacement
prediction model. Optimally selected influencing factors can markedly
elevate both the performance and accuracy of the model. In existing
research, most scholars predominantly utilize a single method to assess
the correlation between displacement components and influencing
factors. However, a sole evaluation method can only provide
perspective from a singular angle, resulting in a one-sided assessment
and the loss of significant data portions. To address this, This study
incorporates the MIC-GRA fusion method for a more comprehensive
selection. Table 3 present the computation outcomes of both methods
and, through comparative analysis in the subsequent prediction, the
supremacy of this method is affirmed.

3.4 Displacement prediction results
and analysis

3.4.1 Trend displacement prediction
The displacement of a landslide is influenced by topography,

geological structure, and rock and soil properties. The
displacement trend exhibits a monotonically increasing curve
over time. While polynomial functions are frequently used in
existing research to fit the trend displacement sequence, it may
be necessary to perform piecewise fitting due to differences in
deformation characteristics across different stages. This is because
a single function often fails to fit the entire trend displacement
curve. This paper presents a single-factor CNN-BiLSTM-
Attention model for predicting trend item displacement. The
model takes the displacement values of the previous month, the
first 2 months, the first 3 months, the displacement change value of
the previous month and the change value of the previous 2 months
as input. The prediction results are presented in Figure 15 which
show that monitoring points ZG118 and XD01 have R2 values of
0.995 and 0.999, respectively, with corresponding RMSE values of
3.195 and 6.573.

TABLE 2 SSA-VMD optimization results.

Influencing
factors

Precipitation Reservoir water level The landslide
state of ZG118

The landslide
state of XD01

P1 P2 R1 R2 R3 S1 S2 S1 S2

α 0.65 0.15 0.19 30.16 20.20 12.18 1.15 1.19 12.17

τ 0.57 0.57 0.27 0.46 0.24 0.19 0.21 0.11 0.26

FIGURE 11
Decomposition results of cumulative rainfall.
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3.4.2 Period displacement prediction
In this paper, the factor sequence was selected based on a MIC

value greater than 0.25 and a GRA value greater than 0.60. We
conducted multiple selections and trial calculations to ensure
complete in our final selection. The periodic term displacement
sequence and the low-frequency influencing factor sequence were

chosen and will be used as input for the prediction model. A multi-
factor CNN-BiLSTM-Attention model was constructed for training
and prediction. The predictive outputs for this model are showcased
in Figure 16, which show that monitoring points ZG118 and
XD01 have R2 values of 0.994 and 0.995, respectively, with
corresponding RMSE values of 1.670 and 1.798.

FIGURE 12
Decomposition results of displacement variation of ZG118.

FIGURE 13
Decomposition results of displacement variation of XD01.
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3.4.3 Random term displacement prediction
In this study, factors with a MIC value exceeding 0.25 and a GRA

value above 0.60 were chosen from the random term displacement

sequence and the high-frequency influencing factor sequence. These
factors served as inputs for the multi-factor CNN-BiLSTM-Attention
model, which was utilized for training and forecasting. The predictive

FIGURE 14
Decomposition results of reservoir level.

TABLE 3 Correlation coefficient between periodic term displacement and influencing factors.

Influencing factors Periodic displacement Random displacement

XD01 ZG118 XD01 ZG118

MIC GRA MIC GRA MIC GRA MIC GRA

rainfall PL
1 0.255 0.67 0.403 0.63 0.252 0.66 0.175 0.78

PL
2 0.308 0.68 0.347 0.65 0.316 0.64 0.322 0.75

Reservoir water level RL
1 0.234 0.63 0.307 0.66 0.260 0.69 0.290 0.71

RL
2 0.287 0.69 0.220 0.73 0.253 0.67 0.204 0.77

RL
3 0.373 0.67 0.303 0.72 0.192 0.66 0.253 0.75

State of landslide SL1 0.289 0.66 0.299 0.65 0.563 0.65 0.421 0.87

SL2 0.393 0.70 0.369 0.68 0.386 0.60 0.574 0.85
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FIGURE 15
Displacement prediction results of trend items.

FIGURE 16
Prediction results of periodic term displacement.
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outputs for this model are showcased in Figure 17; they demonstrate an
R2 value of 0.723 and an RMSE value of 4.296 at monitoring point
ZG118, alongside an R2 value of 0.612 and an RMSE value of 5.472 at
monitoring point XD01.

3.4.4 Cumulative displacement prediction
By summing the prediction outcomes of trend term displacement,

periodic term displacement, and random term displacement in
accordance with time series summation principles, cumulative
predictions for landslide displacement are derived. These results are
illustrated in Figure 18, exhibiting R2 values of 0.975 for monitoring
point ZG118 and 0.988 for XD01. Correspondingly, the RMSE values
are reported as 12.458 mm for ZG118 and 9.579 mm for XD01. Such
high R2 values alongside low RMSE values attest to the model’s robust
prediction accuracy, thereby reaffirming its efficacy in forecasting
landslide events.

3.5 Comparative analysis

3.5.1 Selection of impact factors
To enhance the predictive performance, this research adopts

several models CNN-BiLSTM-Attention, GRA-CNN-BiLSTM-
Attention, MIC-CNN-BiLSTM-Attention, and (MIC- GRA)-

CNN-BiLSTM-Attention for the prediction and comparative
analysis of the two components of landslide displacement under
uniform conditions. The prediction results of various influencing
factor selection methods are shown in Table 4.

From Table 4, it can be deduced that using the GRA algorithm or
MIC algorithm effectively selects influencing factors. The predictive
results indicate that the models combined with these two algorithms
exhibit higher precision, which reflects the role of both algorithms in
selecting influencing factors. Moreover, the model that utilizes the
MIC- GRA evaluation method to select related influencing factors
achieves the highest precision in prediction results, indirectly
showcasing the superiority of the MIC- GRA algorithm. This is
because when theMIC- GRA algorithm is integrated with themodel,
it can select influencing factors from two different perspectives,
eliminating data with low relevance and retaining high-relevance
influencing factors. Due to the input of effective influencing factors,
the predictive accuracy of the model combined with the MIC- GRA
algorithm is enhanced.

3.5.2 Comparative analysis of periodic
displacement prediction

The predictive results of the CNN-BiLSTM-Attention model
were compared with the static machine learning models such as the
BPNeural Network and SVMmodels, and the deep learning models’

FIGURE 17
Displacement prediction results of random terms.
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predictions such as LSTM, BiLSTM, CNN-BiLSTM, all of which are
widely used in landslide displacement prediction. The predictive
results of each model are presented in Table 5.

Table 5 details the predictive outcomes, illustrating that the
CNN-BiLSTM-Attention model achieves superior accuracy in
forecasting periodic displacement when contrasted with the
standalone BP and SVM models, which are inherently static.
This improvement is attributed to the dynamic features of the
BiLSTM model, which is adept at processing the dynamic nature
of landslide displacement sequences via its bidirectional training
capability. Concurrently, the convolutional neural networks and
attention mechanisms facilitate the distillation of pertinent

information, simplifying data complexity and thus enhancing
accuracy for periodic terms. This conclusion is further reinforced
through the comparative analysis with the LSTM, BiLSTM, and
CNN-BiLSTM models. Collectively, the evidence indicates that the
prediction accuracy of deep learning models eclipses that of
traditional machine learning models, and that combined models
deliver improved results over singular models.

3.5.3 Random term displacement predictionmodel
comparative analysis

The predictive efficacy of the CNN-BiLSTM-Attention model in
forecasting landslide displacement is assessed by comparing it with

FIGURE 18
Cumulative displacement prediction results.

TABLE 4 Comparison of prediction performances of the CNN-BiLSTM-Attention model under different inputs.

Models Periodic term displacement Random term displacement

ZG118 XD01 ZG118 XD01

RMSE/mm R2 RMSE/mm R2 RMSE/mm R2 RMSE/mm R2

CNN-BiLSTM-Attention 6.517 0.901 7.024 0.911 7.015 0.483 9.561 0.323

GRA-CNN-BiLSTM-Attention 5.646 0.928 6.854 0.930 5.258 0.585 8.404 0.332

MIC-CNN-BiLSTM-Attention 5.036 0.943 6.854 0.930 4.478 0.699 8.063 0.385

(MIC-GRA)-CNN-BiLSTM-Attention 1.670 0.994 1.798 0.995 4.296 0.723 5.472 0.612
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the LSTM, BiLSTM, and CNN-BiLSTM models. Results of this
comparative analysis are delineated in Table 6.

Table 6 illustrates the superior prediction accuracy of the CNN-
BiLSTM-Attention model compared to its LSTM, BiLSTM, and
CNN-BiLSTM counterparts for random item displacement. This
heightened accuracy is ascribed to themodel’s robust handling of the
random item displacement sequence, characterized by its high
frequency and considerable volatility. The CNN-BiLSTM-
Attention model excels beyond traditional LSTM and BiLSTM
models, particularly in capturing nonlinear information
embedded within time series data. This model adeptly retains
vital information by employing the bidirectional training
capabilities of BiLSTM. In addition, the attention mechanism’s
capacity to assign differentiated weights to disparate data points
streamlines the process, culminating in the effective and precise
training of random item displacement sequences.

4 Discussion

Accurately assessing reservoir landslide deformation is vital for
averting landslide calamities, given the considerable nonlinearity
and intricacy inherent in landslide displacement and its causative
factors. This study introduces a data-driven framework comprising a
deep learning ensemble model twinned with an optimal variational
mode decomposition, designed to forecast future landslide
movements. This framework’s benefits are twofold. First, it
applies the SSA-VMD algorithm to decompose the landslide
displacement sequence and its influencing factors, thereby
improving the time series displacement prediction model’s
efficacy. Second, this trailblazing research harnesses a CNN-

BiLSTM-attention ensemble model to anticipate reservoir
landslide shifts. This deep learning ensemble model synergizes
the strengths of individual models, providing enhanced capability
in feature extraction from datasets marked by nonlinearity and
complexity.

While various displacement decomposition methods offer
substantial decomposition effects, it is essential to highlight that
the SSA-VMD model introduced in this study distinguishes itself by
its ability to accurately capture random term displacement.
Nevertheless, the current limitation in making more precise
predictions stems from the inadequate availability of monitoring
data on relevant influencing factors.

Moreover, existing landslide displacement monitoring data are
exclusively sourced from slopes already exhibiting deformation. The
inherent nonlinearity of slope characteristics complicates the task of
forecasting landslide deformation accurately using historical, static
data. Future research endeavors must focus on incorporating real-
time monitoring data into predictive models. Such integration
would not only enhance the precision and promptness of the
models’ predictions but also render them more effective for early
warning systems.

Prediction methods based on single-point displacement remain
central within the domain of landslide deformation research.
However, the inherent uncertainty in landslide systems makes
some degree of error in traditional point prediction methods
inevitable. To address this, our study applies prediction intervals
to improve the accuracy of landslide displacement forecasts [62].
Although the current focus is primarily on reservoir landslides
influenced by hydrological factors, the scope of the predictive
model should be expanded. Future developments could include
additional influencing factors such as soil mechanics and seismic

TABLE 5 Comparison of periodic term displacement prediction models.

Models ZG118 XD01

RMSE/mm R2 RMSE/mm R2

(MIC-GRA)-BP 11.476 0.796 10.932 0.848

(MIC-GRA)-SVM 12.170 0.695 11.910 0.786

(MIC-GRA)-LSTM 5.341 0.931 6.862 0.915

(MIC-GRA)-BiLSTM 3.913 0.961 3.717 0.967

(MIC-GRA)-CNN-BiLSTM 3.003 0.972 2.912 0.975

(MIC-GRA)-CNN-BiLSTM-Attention 1.670 0.994 1.798 0.995

TABLE 6 Comparison of random item displacement prediction models.

Models ZG118 XD01

RMSE/mm R2 RMSE/mm R2

(MIC-GRA)-LSTM 8.506 0.309 13.587 0.252

(MIC-GRA)-BiLSTM 8.331 0.357 12.835 0.267

(MIC-GRA)-CNN-BiLSTM 8.054 0.448 10.212 0.312

(MIC-GRA)-CNN-BiLSTM-Attention 4.296 0.723 5.472 0.612
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activity, paving the way for a more generalized displacement
prediction model.

5 Conclusion

In this study, we introduce the (SSA-VMD)-(CNN-BiLSTM-
Attention) model for predicting landslide displacement, which
synergizes the SSA-VMD technique with the CNN-BiLSTM-
Attention model applied to landslide displacement sequences and
their influencing factors. Employed in the study of Baishuihe
landslide’s displacement prediction, the research leads to the
following conclusion:

(1) In the VMD model, the SSA algorithm is utilized to
dynamically optimize parameters, reducing the influence of
subjective assumptions and avoiding the laborious process of
manual parameter tuning. When designing the innovative
fitness functions, the reliability and decomposition efficiency
of the VMDmodel are enhanced by adopting sample entropy
and root mean square error.

(2) The SSA-VMD algorithm allows for the extraction of
subsequences of landslide displacement and subsequences of
influencing factors, enabling an in-depth analysis of the
relationships between landslide displacement, rainfall,
reservoir water levels, and the state of landslide displacement.
The correlations between the displacement subsequences and
influencing factors are calculated using the MIC and GRA
methods. Furthermore, the integration of MIC-GRA as a
fusion technique is utilized for selecting significant influencing
factors for landslide displacement. The results indicate that using
influencing factors selected by the MIC-GRA method as input
data can significantly enhance prediction accuracy,
demonstrating that this method can improve the effectiveness
and efficiency of the input data. By eliminating less relevant data,
the predictive accuracy of the model is increased.

(3) The study introduces a novel integrated model, CNN-BiLSTM-
Attention, designed for training and predicting landslide
displacement. This composite model combines the strengths
of CNN, BiLSTM, and the Attention mechanism to adeptly
extract essential information from landslide displacement data.
The CNN component handles feature extraction, while BiLSTM
processes both past and future data, and the Attention
mechanism assigns variable weights to the data, thereby
optimizing the prediction process for landslide displacement.
Empirical results suggest that the proposedmodel surpasses both
single and dual combined models in prediction accuracy. The
pronounced accuracy of this model better captures the step
process of landslides and serves as a foundational study for the
prediction and early warning of similar landslide events.
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