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Thermal action is a crucial process in laser processing. The classical Fourier heat
conduction theory, which assumes an infinite speed of heat propagation, is
commonly applied to describe steady-state and mild transient thermal
processes. However, under the influence of ultra-short pulse lasers, such as
those with picosecond and femtosecond durations, the heat propagation speed
within the material is finite and deviates from Fourier’s law. This article addresses
the unique characteristics of heat conduction in materials subjected to ultra-
short pulse laser exposure by integrating Fourier’s law with the Gaussian
distribution of the actual pulse laser output power density and the material’s
optical absorption properties. It introduces a time variable to establish a time-
dependent heat conduction equation. This equation is numerically analyzed
using a difference algorithm. Based on this, simulation and experimental
studies on the processing of dental hard tissues with a 1064 nm ps laser were
conducted. The results show that the experimental processing depths were
slightly larger than the simulation results, which may be due to damage to the
dental hard tissues and the thermomechanical effects during processing. The
results offer a technical reference for adjusting laser parameters in the ultra-short
pulse laser processing technique.
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1 Introduction

Laser processing is a non-contact method utilizing thermal energy, requiring neither
processing tools nor a special environment. It boasts high processing efficiency and exerts
no mechanical force or thermal deformation on the workpiece [1, 2]. In practical laser
processing applications, it is often necessary to modify laser irradiation conditions,
specifically, the power density applied to the material. Achieving higher power density
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in-volves focusing the laser beam to concentrate energy within the
focal area. Moreover, when operating in pulse mode, the laser
releases energy instantaneously, and compressing the pulse width
further increases power density [3]. The continual advancement of
ultra-short pulse lasers, including picosecond and femtosecond
lasers, has significantly enhanced laser power density and
broadened their application in the laser processing field [4–7].

Upon irradiation onto a material, a portion of the light energy is
absorbed and converted into heat energy. This heat then diffuses
through the material via heat con-duction, inducing a specific
temperature field distribution that alters the material’s properties
within a certain range, ultimately resulting in the processed
structure. The thermal action process is the most critical aspect
of laser processing [8]. In engineering, the classical Fourier equation
is commonly utilized to analyze and address heat conduction issues
in materials under continuous laser exposure. Fourier’s law,
predicated on the idealized assumption of infinitely fast heat
propagation, neglects the effect of the heat transfer time variable
[9, 10]. For lasers with nanosecond or longer pulse widths acting on
materials, it is approximated that they conform to Fourier’s law.
However, for ultra-short pulse lasers with pulse widths in the
picosecond and femtosecond range, the material is heated super
rapidly, the thermal action time is exceedingly short, the
instantaneous heat flow density is incredibly high, and the heat
exhibits fluctuations, i.e., finite speed propagation of wave heat flow,
contradicting the assumptions of Fourier’s law [11–13]. The non-
Fourier effect in heat conduction was first observed in supercooled
nitrogen II, where heat conduction exhibited thermal wave behavior
[14, 15], unexplainable by classical Fourier heat conduction theory.
Subsequent experiments involving short-pulse laser heating of metal
thin films revealed significant discrepancies be-tween the classical
Fourier model predictions and measured results, with trends even
appearing contradictory [16]. Additionally, the non-Fourier heat
conduction effect has been observed in porous materials and
biological tissues [17]. These findings indicate that the classical
Fourier heat conduction model severely underestimates the
instantaneous thermal elastic response level in unconventional
heat conduction scenarios.

Non-Fourier heat conduction theory refines the classical model
by introducing the concept of heat relaxation time or phase delay
time based on Fourier’s law. Cattaneo and Vernottee proposed a
non-Fourier constitutive equation based on the non-Fourier effect
and local energy balance, respectively [18, 19]. Tzou highlighted the
finite speed of heat propagation and the ensuing time delay,
introducing the heat relaxation time τ, and developed models for
both single-phase and double phase delay heat conduction [20, 21].
Wang and Tzou introduced a dual-phase lag heat conduction model
to explore the non-Fourier heat transfer phenomena [22, 23]. In the
realm of biological research, examining the non-Fourier
mathematical models of heat transfer in biological tissues under
laser exposure holds significant implications for laser thermotherapy
[24, 25]. In essence, contemporary research emphasizes material
specific characteristics, leading to the formulation of multiple non-
Fourier equations for materials with varying properties under ultra-
short pulse laser influence, thus challenging the development of a
universal equation. Experimentally observing the non-Fourier effect
in heat conduction proves exceedingly difficult, necessitating
stringent experimental conditions, such as ultra-low

temperatures, or highly sensitive instrument resolutions, like
femtosecond-level laser heating processes. The experimental
exploration of the non-Fourier heat conduction model remains
limited due to these conditions, and the measurement of related
model parameters is challenging, which hampers the broader
application of non-Fourier heat conduction theory [26, 27].

In this paper, we aim to merge Fourier’s law with the Gaussian
distribution of actual pulse laser output power density and the
material’s optical absorption characteristics, intending to establish
a time-dependent heat conduction model applicable under ultra-
short pulse laser action. Building on this foundation, we theoretically
simulated the processing depth of dental hard tissues with
picosecond laser and conducted experimental verification. An
analysis was performed on the discrepancies between the
experimental results and theoretical simulation outcomes.

2 Materials and methods

TheMATLAB R2018a version was used for the simulation study
of picosecond laser preparation of dental hard tissues.

A human molar, which was extracted for orthodontic reasons
from the Department of Oral and Maxillofacial Surgery at Tianjin
Medical University Dental Hospital and found to have intact dental
hard tissues upon examination, was selected for the study. A micro-
cutter was used to section the root, retaining only the crown for
sample preparation. The crown was then cleaned in ultrasonic
physiological saline for 20 min and soaked in saline for later use.
The experimental laser (PICOPOWER-G1, Alphalas) was set to the
following parameters: pulse width 20 ps, wavelength 1064 nm,
repetition frequency 10 kHz, and average power 1 W, with a
focus spot radius of 5 μm. The processing time was preset
through CNC software, and the dimensions of the processed
structure were measured using a confocal scanning microscope
(Axio CSM700). After a laser action time of 0.02 s, the overall
surface morphology of the processed area. The Scanning Electron
Microscope (JSM-6700F) was opted to examine the microstructure
of dental hard tissues.

3 Construction and numerical analysis
of time-dependent heat conduction
equation

For the entire laser processing process, the distribution of the
temperature field in the material directly determines the change in
material properties within a certain range, and ultimately
determines the formation of the processing structure. Currently,
most of the temperature field calculations in laser processing are
based on the classic Fourier heat conduction model.

The mathematical expression of Fourier’s law is [36]:

�q � −k.gradT (1)

In which, q is the heat flux density, k is the thermal conductivity,
and grad T is the temperature gradient. q represents the heat flux per
unit time on the unit area isothermal surface in the direction of
decreasing temperature, and k characterizes the size of the thermal
conductivity of the material, which is a positive scalar. Fourier’s law
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applies to steady and non-steady temperature fields in homogeneous
and isotropic media. It reveals the relationship between the non-
uniformity of temperature distribution and the heat conduction
amount. However, Fourier’s law also has limitations. It cannot
derive the connection between the temperature of a point and
the temperature of its neighboring points, i.e., the intrinsic
connection between the temperatures of neighboring points in a
continuous temperature field, and it cannot derive the relationship
between temperature and time changes. Fourier’s law can obtain the
heat flux density corresponding to the determined temperature field
in the object, but if the heat flux density is given, Fourier’s law cannot
uniquely determine the temperature field. Therefore, the Fourier law
is usually combined with the law of energy conservation to analyze
and solve specific heat conduction problems.

From Eq. 1, we can see that as soon as the temperature
distribution in an object becomes non-uniform due to a thermal
disturbance somewhere, heat transfer will immediately occur. The
speed of transfer is infinite. Even if infinitely far from the source of
the thermal disturbance, it can be immediately affected by the
disturbance source. This conclusion not only contradicts
common physical sense but also cannot stand in a strictly
theoretical sense. As known from the theory of statistical
thermodynamics, an object usually shows certain inertia and
damping characteristics for thermal disturbances, so the speed of
thermal disturbance propagation in an object must be finite. For
steady-state heat conduction problems, Fourier’s law can be
accurately established. However, in a very short time, or under
extremely high thermal load conditions, the impact of finite thermal
propagation speed on heat conduction issues cannot be ignored [11].

For many heat conduction problems where the thermal action
time is extremely short and the instantaneous heat flux density is
extremely high, such as short pulse laser processing, when the pulse
width of the laser is at the picosecond or femtosecond level, the heat
propagation speed cannot be approximated as infinite. This leads to
a sharp increase in temperature in a small area, and after the laser
pulse action, the heat then diverges in all directions. To address this
issue, a speed, or time variable, is introduced into the traditional
Fourier equation to obtain a new heat conduction model. The
introduction of this additional variable makes the temperature
gradient in the medium related not only to the heat flow but also
to the rate of change of heat flow with time. By applying the first-
order Taylor series expansion to Eq. 1 with respect to time and
ignoring the second and higher-order derivatives.

q + τ
∂q
∂t

� −k · gradT (2)

In this formula, q represents heat flux density, τ is the relaxation
time, k stands for thermal conductivity, and grad T is the
temperature gradient. The additional term introduced into this
equation allows the propagation speed of the thermal disturbance
to be finite.

Assuming that all thermal properties of the material in question
do not vary with temperature, and that the laser beam used in
processing is a fundamental mode Gaussian distribution, during the
processing, the laser beam is perpendicular to the material surface,
and convective and radiative heat transfer effects during the heating
process are ignored. We establish the cylindrical coordinate system
shown in Figure 1A, with selecting the center of the laser spot as the

origin of the coordinates. As we assume that the laser beam is
perpendicular to the material surface throughout the entire
processing procedure, we can ignore the angular dimension,
choosing the x-axis to be parallel to the material surface, and the
z-axis to be perpendicular to the surface pointing towards the
interior of the material.

When building the model, we consider that the actual laser beam
intensity has a certain spatial distribution. Generally, the laser
propagates in the resonator in the basic transverse mode, and its
spatial intensity distribution is Gaussian, approximately satisfying
the Gaussian function. As known from laser principles, the field
amplitude distribution of the basic transverse mode Gaussian beam
is [28]:

ψ00 x, y, z( ) � c

ω z( )e
− r2
ω z( ) e−i k z+ r2

2R( )− arctan z
f[ ] (3)

Since the light intensity is directly proportional to the square of
the amplitude, in Eq. 3, the intensity of the Gaussian beam can be
represented as follows [29]:

I r( ) � I0e
− r2

ω2 (4)
In Eq. 4, is the light intensity at the light axis (r = 0), and is the

beam radius.
For convenience in later numerical solutions, we use the concept

of integration commonly used in advanced mathematics to derive
the relationship between the central beam intensity with Gaussian
distribution and the power density. Project the Gaussian beam onto
the x-plane, and its light intensity lateral distribution is shown in
Figure 1B. With point O as the center, it is divided into n circular
rings with a radius of dx, the in-tensity of the ith circular ring is
approximately taken as the intensity at the center point (i-1) dx
(when 1 < i ≤ n), and the intensity of the first circular ring is taken as
normalized intensity 1 (when i = 1).

Since light intensity is directly proportional to power density, the
power density is also Gaussian distributed. Assuming the center
power density is P0, then the light power Pi absorbed by each circular
ring is related to the central power density P0 as follows:

P1 � ρ0 · π · dx

2
( )2

� 1
8
ρ0 · 2π · dx( )2 (5)

P2 � ρ0 · π · 3
2
dx( )2

− dx

2
( )2[ ] · exp −dx

2

x0
2

( )
� ρ0 · 2π · dx( )2 · exp −dx

2

x0
2

( ) (6)

P3 � ρ0 · π · 5
2
dx( )2

− 3
2
dx( )2[ ] · exp − 2dx( )2

x0
2

[ ]
� 2ρ0 · 2πdx2 · exp − 2dx( )2

x0
2

( ) (7)

P4 � ρ0 · π · 7
2
dx( )2

− 5
2
dx( )2[ ] · exp − 3dx( )2

x0
2

[ ]
� 3ρ0 · 2πdx2 · exp − 3dx( )2

x0
2

( ) (8)

Therefore, according to Eqs 5-8 the total absorbed light power is:

P1 + P2 + P3 + P4 + · · · � Pabs (9)
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We know that the relationship between peak power P and
average power is:

P � �p

fre · dur (10)

In Eq. 10, the fre is the repetition rate, and is the pulse width.
The light energy irradiated on the material surface will not all be
absorbed, and the absorbed light power can also be
represented as:

Pabs � αP � α · �P
fre · dur (11)

In the formula, α is the absorption coefficient. Substitute Eq. 8
into Eq. 9 and combine it with Eq. 11 to get:

ρ0 · 2π · dx( )2 1
8
+ exp −dx

2

x0
2

( ) + 2 · exp − 2dx( )2
x0

2
( )[

+3 · exp − 3dx( )2
x0

2
( ) + · · ·] � α · �P

fre · dur (12)

For lasers that are emitted in the TEM00 basic mode and have a
Gaussian profile, the intensity and energy density values of the
central beam need to be considered in the calculation. This central
beam radius is defined as the aperture that can receive 93.61% of the
incident power, at which point the beam radius is 0.6 ω. At this
point, Eq. 12 can be rewritten as Eqs 13 and 14:

ρ0 · 2π · dx( )2⎧⎨⎩1
8
+ exp − dx2

0.6ω( )2[ ] + 2 · exp − 2dx( )2
0.6ω( )2[ ]

+3 · exp − 3dx( )2
0.6ω( )2[ ] + · · ·⎫⎬⎭ � α · 0.9361 · �P

fre · dur (13)

ρ0 �
α · 0.9361 · �P

fre · dur · 2π · dx( )2 1
8
+ exp − dx2

0.6ω( )2[ ] + 2 · exp − 2dx( )2
0.6ω( )2[ ] + 3 · exp − 3dx( )2

0.6ω( )2[ ] + · · ·{ }
� α · 0.9361 · �P
fre · dur · 2π · dx( )2 1

8
+∑n

i�2
i − 1( ) exp − i − 1( )2dx2

0.6ω( )2( )⎡⎣ ⎤⎦ (14)

The standard unit of heat flux density is Wm-2, and the initial
heat flux density caused by the light source is q0, as shown in Eq. 15.
The piecewise function indicates that there is no heat flux
distribution outside the range of the spot area.

q0 x( ) � ρ0 exp − x2

0.6ω( )2( ) 0< x| |≤ω

0 x| |>ω

⎧⎪⎪⎨⎪⎪⎩ (15)

For materials with a volume V, density ρ, and specific heat
capacity C, the temperature rise caused by the absorbed energy ΔE
can be expressed as:

ΔE � CρVΔT (16)
Here, C refers to the specific heat capacity at constant pressure.

All the thermal energy obtained by the material system is converted
into an increase in its energy, so:

ΔE � Pin · Δt − Pout · Δt � qin · Sin · Δt − qout · Sout · Δt (17)

Substitute Eq. 17 into Eq. 16 to get:

qin · Sin · Δt − qout · Sout · Δt � CρVΔT (18)
Combining Eq. 18 with Eq. 2 gives:

qx + τ
∂qx
∂t

� −k · ∂T
∂x

qz + τ
∂qz
∂t

� −k · ∂T
∂z

qin · Sin · Δt − qout · Sout · Δt � CρVΔT

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
(19)

The initial conditions and boundary conditions are:

T x, 0( ) � T xw, t( ) � T0

T z, 0( ) � T zw, t( ) � T0
{ (20)

In Eq. 20, the thermal relaxation time τ, thermal conductivity k,
specific heat capacity C, and material density ρ are all determined by
the material. T0 is the ambient temperature, and xw and zw are the
boundaries. Sin, Sout, and the volume V are determined by the

FIGURE 1
Schematic diagram of (A) laser processing; (B) lateral distribution of light intensity.
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specific numerical calculation, and the initial heat flux density q0 is
given by Eqs 14, 15.

In solving heat conduction problems, analytical and numerical
methods emerge as the primary approaches. The analytical method,
known for its exact solutions, offers clear physical concepts and
logical reasoning throughout the solution process. Its foundation is
relatively rigorous, yielding accurate and reliable solutions expressed
in function form. This method effectively demonstrates how
material properties, boundary conditions, and initial conditions
influence temperature distribution. However, its application is
limited to relatively simple heat conduction problems, and the
precision of approximate analytical solutions may not match that
achieved by numerical solutions [30].

Numerical methods, based on discrete mathematics, include the
finite difference and finite element methods as the main techniques
for addressing heat conduction issues. The finite element method
provides greater convenience and flexibility in handling complex
shapes compared to the finite difference method. However, for
discrete representations of heat conduction problems, the finite
difference formulation is simpler than that of the finite element
method. Additionally, considering the development maturity and
wide-spread application of these methods, the finite difference
method holds a significant advantage [31–33].

In the cylindrical coordinate system established in Figure 1A, we
assume that the origin is the first point of processing. Due to the
symmetry of the cylinder, we can select 1/4 of the cylinder and
discretize its cross section into a grid with step lengths of dx and dz.
The intersection points between grid lines are called “nodes”,
represented by (i, j), as shown in Figure 2A. Considering heat
propagation as a unit cell, set the coordinates of the first cell in
the upper left corner to (1,1), and the coordinates of the farthest
point to (xN, zN). The coordinates of other cells are inferred
in order.

Eq. 15 can be discretized as Eq. 21:

q0 i( ) � P0 exp − i − 1( )2dx2

0.6ω0( )2( ) (21)

Substituting the difference equation for the differential equation
of Eq. 2, Eq. 21 can be expressed as

qx i, j( ) + τ
qx i, j( ) − qx0 i, j( )

dt
� −k T i + 1, j( ) − T i, j( )

dx
(22)

qz i, j( ) + τ
qz i, j( ) − qz0 i, j( )

dt
� −kT i, j + 1( ) − T i, j( )

dz
(23)

After simplifying the above Eqs 22 and 23, the following formula
can be obtained as Eqs 24 and 25:

qx i, j( ) � τqx0 i, j( )
τ + dt

− k
T i + 1, j( ) − T i, j( )[ ]dt

τ + dt( )dx (24)

qz i, j( ) � τqz0 i, j( )
τ + dt

− k
T i, j + 1( ) − T i, j( )[ ]dt

τ + dt( )dz (25)

In the context of a discretized grid with coordinates (i, j), we
define the temperature of a given grid cell as T (i, j). T (i, j) represents
the temperature of the entire cell. Given the physical meaning of heat
flux, the discretized heat flux is only meaningful at the interface
between two adjacent cells. We define the heat flux flowing into the
left boundary in the X-direction, x (i, j), combined with the heat flux
flowing into the upper boundary in the Z-direction, z (i, j), as qin.
This is the total heat flux in the X-direction at the grid point defined
by the grid cell.

Similarly, in Figure 2B, the sum of the heat flux flowing out of the
right boundary in the X-direction, qx (i+1, j), and the heat flux
flowing out of the lower boundary in the Z-direction, qz (i, j+1), is
defined as qout. Here, qx (i+1, j) represents the heat flux in the
X-direction flowing into the next cell, and similarly, qz (i, j+1)
represents the heat flux in the Z-direction flowing into the next cell.

The definition of the areas of each boundary of a grid cell is
shown in Figure 2C. The area of the top surface is that of an annulus
with an outer radius of idx and an inner ra-dius of (i-1)dx; the area of
the bottom surface is the same as the top surface. The area of the left
boundary is defined as the lateral surface area of a right circular
cylinder with a base radius of (i-1)dx, and the area of the right
boundary is defined as the lateral surface area of a right circular
cylinder with a base radius of idx.

The formula for the area of each boundary surface is as follows:

Sup � π i · dx( )2 − π i − 1( ) · dx( )2 � π 2i − 1( )dx2

Sdown � Sup
Sleft � 2π i − 1( ) · dxdz
Sright � 2πi · dxdz

⎧⎪⎪⎪⎨⎪⎪⎪⎩ (26)

For each cell, the input power is the sum of the upper boundary
input power and the left boundary input power, and its expression is

Pin � Pup + Pleft � Sup · qz i, j( ) + Sleft · qx i, j( ) (27)

The output power is the sum of the output power of the lower
boundary and the output power of the right boundary, and its
expression is

Pout � Pright + Pdown � Sright · qx i + 1, j( ) + Sdown · qz i, j + 1( ) (28)

Substituting Eqs 26, 27 into Eq. 17, the temperature change after
dt time can be obtained as

FIGURE 2
Schematic diagram of (A) differential grid division; (B) grid heat
flow; (C) Heat conduction.
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ΔT i, j( ) � Pin − Pout( )dt/ρc (29)

The initial temperature of all grid cells is T0. Based on the heat
flow in and out of the grid cells, Told can be gradually updated to
Tnew. According to the above equation, the temperature T (i,j) of the
grid cell at coordinates (i,j) after time dt can be derived. After the
temperatures of all grid cells have been calculated, all qz and qx can
be updated based on Eqs 28, 29.

T i, j( )new � T i, j( )old + ΔT (30)

According to Eq. 30, the analysis of boundary conditions is
as follows:

When j = 1, it is the upper surface where the part irradiated by
the laser has qz (i,1) given by the laser parameters, and the rest is 0.
qz (i,1) is determined by the input and does not need to be updated.
In addition, considering that T (i, j-1) is meaningless when j = 1 (it
is agreed that the coordinates start from (1,1), skipping qz (i,1) and
starting the update from j = 2 avoids this situation.

When i = 1, the area of the left surface of the cell is 0, so whether
or not qx (1, j) is up-dated does not affect the correctness of the
results. Thus, although qx (1, j) needs to be updated, starting the
update from j = 2 does not affect the calculation results.

When j = zN, this corresponds to reaching the edge of the material.
Assume the ma-terial edge interfaces with a constant-temperature
environment. Now, the cell coordinates are (i, zN), and the heat flux
at the lower boundary of the cell is qz (i, zN+1). Initially, qz (i, zN+1) is 0,
but the update of heat flux necessitates Δqz (x, zN+1). Because
calculating Δqz (x, zN+1) requires the temperature T (i, zN+1),
which is undefined, we maintain uniformity by appending a
constant temperature T (i, N+1) = T0 at the end of the temperature
T array, substituting the environment’s temperature T0 for T (i, zN+1).
This lets us continue using the original formula to calculate Δqz
(i, zN+1), ensuring the program’s consistency. Moreover, T (i,
zN+1) is not updated in the program, which is aligned with the
constant temperature of the interfacing environment. Similarly,
the processing method of i = xN is consistent with that of j = zN,
so for a material with xN*zN cells, the temperature coordi-nates
need to be increased to (xN+1, zN+1), and the outermost layer
represents the temperature of the external environment.

4 Simulation and experimental study of
dental hard tissue processing with a
1064nm picosecond laser

Lasers have been widely used in dental surgery, where the thermal
effects generated during laser ablation can not only remove tooth
material but may also cause damage to the soft tissues of the dental
pulp. Therefore, simulating the internal temperature field of teeth
during the laser preparation process and comparing it with
experimental results can explore the related photothermal action
mechanisms and improve the design and optimization of clinical
treatment strategies. Based on Eq. 19 and the aforementioned
theoretical results, we utilize MATLAB for the simulation study of
picosecond laser preparation of dental hard tissues and conducts a
comparative analysis with experimental results.

When the laser irradiates the tooth surface, the following three
processes primarily occur: 1) The water and inorganic substances in

the dental hard tissues absorb the laser energy and heat up. 2) The
water and inorganic substances within the tooth evaporate. 3) The
organic substances in the tooth hard tissues chemically decompose,
along with the decomposition of hydroxyapatite. Hydroxyapatite,
which makes up more than 70% of dental hard tissues, has a melting
point and boiling point of 1100°C and 1500°C, respectively [34].
Hard tissue ablation is generally applied in cases where the depth of
caries has reached the dentin, hence the selection of dentin’s
parameters as the material parameters for the simulation. The
thermal conductivity of dentin is found to be 0.88 (W/(m·K))
from literature [35]. Dentin’s thermal conductivity is already in
the range of insulators, and its thermal relaxation time is chosen at
the insulator scale of 1 × 10−13 s [36]. At a wavelength of 1064 nm,
the optical absorption ratio is about 0.58, and the specific heat

FIGURE 3
Horizontal temperature field distribution and vertical
temperature field distribution within the tooth. (A) 1e−14 s; (B) 1e−13 s;
(C) 2e−12 s; (D) 4e−12 s; (E) 1e−11 s.
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capacity is 1.17 (J/(g·K)) [35]. The laser parameters for theoretical
simulation are pulse width 20 ps, wavelength 1064 nm, repetition
frequency 10 kHz, and average power 1 W.

Figure 3 illustrates the temperature field distribution within
dental hard tissues under the influence of a single pulse, where the
white line marked areas denote the corresponding damage range. It

FIGURE 4
(A) Overall surface morphology post-processing observed under a confocal microscope; (B) Measurement of processed structure dimensions
under a confocal microscope.

FIGURE 5
(A)Overall tooth cross-section observed at ×25 magnification under a SEM; (B) Enamel surface observed at 2000 × magnification under a SEM;
(C) Dentin surface observed at 2000 × magnification under a SEM.
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is observed that the picosecond laser’s single pulse thermal damage
range is within the micron scale, aligning with the characteristic
of dental hard tissues as poor thermal conductors. The
simulation results also reveal that the distance between the
damage range and the structure formation range decreases
over time. The laser used in the simulation operates at a
frequency of 10 kHz, corresponding to a pulse interval of
10−4s, while the duration of pulse action is only 2 × 10−13 s.
Compared to the pulse action time, the pulse interval is
sufficiently long to allow for temperature dissipation within
this period. Based on this, it is considered safe to use picosecond
laser ablation on dental hard tissues when the ablation area is at
a micrometer level away from the dental pulp cavity. While this
may cause pain, it will not damage the dental pulp. Ultimately,
the calculations indicate that drilling to a depth of 200 μm
requires 544 pulses, with a single pulse achieving a
processing depth of 0.368 μm.

The final step involves a comparison with experimental results.
As shown in Figure 4A, observation of the surface morphology
postprocessing reveals a slight darkening around the processed hole,
indicating the presence of thermal effects within the material.
Figure 4B displays the specific measurement results of the
processed structure dimensions. A total of 200 pulses achieved a
hole depth of 90.699 μm, with a single pulse processing depth
of 0.453 μm.

Comparative analysis reveals that the theoretical calculation
of single pulse processing depth is smaller. In analyzing factors
that might influence the discrepancies, we consider that the
unique structure of dental hard tissues could affect the
experimental outcomes. Given this, we opted to examine the
microstructure of dental hard tissues using a Scanning Electron
Microscope with the overall tooth cross-section displayed in
Figure 5A, where the outer layer is the enamel, and the inner
layer is the dentin (the honeycomb structure is conductive gel).
Figures 5B, C illustrate that both the surface of the dentin and
enamel are uneven, with numerous pits and fissures present in
the dentin. From this, we hypothesize that the porous nature of
dental hard tissues is one of the crucial reasons for the larger
experimental values. Additionally, we analyze that the laser
pulses might carry kinetic energy upon reaching the material
surface, and the final structure formation could be the
cumulative effect of laser kinetic and thermal energy, with
the thermomechanical action causing an increase in the
processing depth observed experimentally. Moreover, no
inert assist gas was used in the experiments, meaning oxygen
in the air could react with the material, releasing thermal energy
as an additional heat source apart from the laser, thus enlarging
the thermal affected zone. To align simulation results more
closely with actual experimental outcomes, extensive
experimentation is necessary to derive patterns from
experimental data, refine the simulation model, and
introduce correction factors.

5 Conclusion

For heat conduction scenarios characterized by extremely
brief heat exposure durations and exceedingly high

instantaneous heat flux densities, such as those encountered
in ultra-short pulse laser processing with pulse widths on the
order of picoseconds or femtoseconds, the assumption of
infinite heat propagation speed becomes untenable. Under
these conditions, predictions made by the classical Fourier
heat conduction model significantly diverge from observed
outcomes. It is, therefore, imperative to formulate a non-
Fourier heat conduction equation that accurately
encapsulates the heat conduction behaviors of materials
subjected to ultra-short pulse lasers. This paper introduces a
time-dependent heat conduction equation tailored for ultra-
short pulses, including those in the picosecond and femtosecond
ranges. Employing the finite difference method, this equation is
numerically solved to delineate the temperature field
distribution within a material following exposure to a single
pulse. Based on the theoretical research outcomes, simulations
for processing dental hard tissues with a 1064 nm ps laser were
conducted, achieving a single pulse processing depth of
0.368 µm. Experimental verification yielded a single pulse
processing depth of 0.453 µm. We analyze that the porous
physiological structure of teeth, along with the model’s
failure to consider the thermomechanical effects during the
ultra-fast laser processing, results in theoretical simulation
outcomes being lower than the experimental data. In
subsequent work, based on extensive experimentation, the
heat conduction equation will be further revised, and
appropriate correction factors will be introduced through
experimental and theoretical simulation.
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