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As an effective particle measurement method, laser-based particle sensors
combined with unmanned aerial vehicles (UAVs) can be used for measuring
air quality in near ground space. The Sniffer4D Mini2 features portability and real-
time acquisition of accurate spatial distribution information on air pollution.
Additionally, a new fine-grained analysis method called Co-KNN-DNN has
been proposed to assess air quality between flight trajectories, allowing for a
more detailed presentation of the continuous distribution of air quality.
Therefore, this article introduces an unmanned aerial vehicle measurement
fine-grained analysis method based on laser light scattering particle sensors.
Firstly, the overall scheme was designed, M30T UAV was selected to carry the
portable air quality monitoring equipment, with laser-based laser particulate
matter sensor and Mini2, to collect AQI and related attributes of the near-
ground layer in the selected research area, to do the necessary processing of
the collected data, to build a data set suitable for model input, etc., to train and
optimize the model, and to carry out practical application of the model. This
article is based on the Co-KNN-DNNmodel for fine-grained analysis of air quality
in spatial dimensions. Three experiments were conducted at different altitudes in
the study area to investigate the practical application of fine-grained analysis of
near-surface air quality. The experimental results show that the average R-
squared value can reach 0.99. Choose to conduct experiments using the
M30T UAV equipped with Sniffer4D Mini2 and a laser-based particulate matter
sensor. The application research validates the effectiveness and practicality of the
Co-KNN-DNN model.
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1 Introduction

With the continuous advancement of China’s industrialization process, the
concentration of various pollutants in the atmospheric environment continues to
increase, while atmospheric pollutants can also seriously affect human health, so the
effective monitoring of air pollution is necessary. Conventional methods of air pollution
monitoring, such as ground station monitoring and meteorological towers, can provide
accurate measurement results, but due to their fixed location and high cost [1], they cannot
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be used to assess pollution at different heights [2], which is crucial
for understanding the behavior of local or regional pollutants [3].

Drones are playing an increasingly important role in a variety
of industries, including safety and defense [4]. Doaa R et al. [5]
used an unmanned aircraft system (UAS) equipped with air
quality sensors to monitor fires on site before the fire spread.
Perez Rojas Yulissa T [6]. Measurement of soil CO2 emissions
using air quality sensors. Xiaofei Y et al. [7] established a plant
security UAV mixed control model with actuator failure and
uncertainty given the operation features of partial failure of spray
cans and actuators. Jian Z et al. [8] proposed a method for
detecting small targets in UAV images according to the
revised YOLOv5 algorithm.

Drones are compact aircraft which can be remotely operated
or pre-programmed for military, search, rescue, surveillance and
remote sensing applications. Currently, due to the advantages of
drones such as low cost, high sensitivity, and few restricted
conditions, various applications and services related to drones
have been brought in air pollution monitoring. For example,
Konradin et al. [9] introduced the air quality monitoring system
using drones, which carried different types of sensors to measure
pollutant concentrations in predefined areas. Gao et al [10]
proposed a vision-based UAV technique to monitor AQI,
using high-definition cameras to capture panoramic images of
the air from all directions. Lutz B et al. [11] developed a multi-
helicopter system to investigate the aerosol particle, black carbon,
ozone, NOx (nitrogen oxides) and CO concentration vertical
distributions as well as the meteorological parameters of
temperature and humidity. Mohammed Alaelddin F. Y. et al.
[12] proposed UAV Pollution Tracking based on the Deep Q
Network for guiding UAVs in multiple navigational directions in
order to discover the location of a large area of pollution plume in
a short period. Ozge Kucukkor et al. [13] designed a customized
four-rotor UAV with a metal oxide semiconductor (MOS) type
carbon monoxide (CO) sensor and data collection module for
detecting and measuring CO contamination in industrial
locations and in urban regions.

Existing research has proposed the incorporation of diverse
types of sensors to measure atmospheric contaminants. Zhi Dess
et al. [14] developed a UAV-based mobile portable monitoring
platform by combining a propulsive sensor board with a
dedicated communication module. Pochlas et al. [15] mounted
nine distinct air quality sensors in a very small device, thus
enabling a sensor device that measures several different
substances simultaneously at a very low cost and can be easily
and safely mounted on a small UAV. Adisorn L et al. [16] used
PM2.5 and CO measurement value from IoT sensors for forest fire
exploration and used the number of hot spots reported by both
satellite and human observations to determine forest fire incidents. In
[17] it is mentioned that the UAV laser monitoring platform can
measure gases in the atmospheric boundary layer. In [18] an
Unmanned Aerial Vehicle (UAV) with remote sensing methane
detectors is proposed for detecting natural gases leakages in
pipeline networks. Existing research has proposed a number of
drones that utilize laser sensors. Sniffer4D Mini2 is a professional
portable multi-gas monitoring system, which can be mounted on the
UAV to obtain accurate spatial distribution information of air
pollution in real-time. It has the characteristics of multi-parameter

simultaneous monitoring, real-timemonitoring of multiple terminals,
one-click reporting, etc. It is widely used in typical scenarios such as
air pollution source investigation and gas leakage point investigation.
It can provide timely and effective decision support for environmental
protection.

The earliest data-driven models used for air quality fine-grained
analysis include Random Forest [19, 20], K-Nearest
Neighbor(KNN) [21], Support Vector Machine(SVM) [22],
XGBoost [23], LightGBM [24, 25], Artificial neural network
(ANN) [26], etc. Zheng H et al. [27]used a series of machine
learning integration methods to explore near-future fine-grained
air quality level prediction tasks. Qin Z et al. [28] proposed a
short-term air quality prediction model with K-Nearest Neighbor
and Long Short-Term Memory. Jiaxuan Z et al. [29] presented a
convolutional neural network-long Short-term Memory (CNN-
LSTM) model to improve the accuracy of air quality prediction.
Yang, Y. Z. et al. [30]proposed the Gaussian plume model on the
basis of the neural network (GPM-NN), and design ARMS, an
airborne UAV mobile air quality monitoring system, for efficient
construction of fine-grained air quality maps in real time. Yaning
Z et al. [31] proposed Co-KNN-DNN, a semi-supervised learning
method for collaborative training integrating KNN and DNN, to
conduct air quality fine-grained analysis in the spatial dimension,
which can successfully prevent the problem of overfitting
resulting from the limited number of labelled samples caused
by the number of air quality monitoring sites, and thus improve
the prediction accuracy.

Therefore, in this study, the M30T UAV equipped with
Mini2 and laser particle sensor was selected based on the
characteristics of UAV flexibility and mobility, combination
of fixed-point and cruise, laser particle sensor’s special detection
and counting of airborne particles, and Sniffer4D Mini2’s real-
time monitoring and real-time analysis. Real-time monitoring
of air quality data at different times, places and heights. The
spatial distributions of atmosphere pollution were precisely
obtained and the Co-KNN-DNN model was confirmed.

2 Materials and methods

2.1 Experimental study area

To ensure the flight safety of UAV, after a field survey and
comprehensive judgment of the terrain and ground facilities of
the study area, the experimental site selected in this study was
between 115.791° −115.7935° East longitude and
37.19745°–37.199° north latitude. According to the pre-design,
the monitoring was carried out in the range of relative altitude
0–50 m near the surface layer and returned to the flight after the
completion of the monitoring. The experiment time was 2023/01/
23 17:00.

2.2 Data preprocessing

2.2.1 Normalization of data
Whether it is air quality data or meteorological data,

there will be a large difference of orders of magnitude. If
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such raw data are directly fed into the neural network, small
input data may be ignored and directly recorded as 0, which will
inevitably lead to violent oscillation of the training data flow,
thus affecting the parameter adjustment during
backpropagation. However, large input data make the
computation complicated, resulting in the network not
converging easily. Therefore, the Z-score method [32] was
adopted in this paper to normalize the original data to
balance the data dimensions and speed up the model’s search
for the global optimal hyperparameter location. The specific
formulas are shown in formulas (1, 2):

zi � xi − μ

δ
(1)

xi � zi × δ + μ (2)

Where Zi represents the i normalized value of feature x, xi

represents the i original data value of feature x, μ represents the
average value of feature x in the data set, and δ represents the
standard deviation of feature x in the data set.

After normalization, all attribute features in the original data set
are mapped from the original interval to the interval [-1,1], that is, all
attribute features are on the same order of magnitude and fluctuate
around 0. If the normalized value is greater than 0, the original data
value is higher than the average, otherwise, it is lower than
the average.

2.2.2 Fourier filtering
To extract the time dependence of air quality changes,

feature extraction, and modelling analysis should be carried
out on the time series of the recorded air quality data.
However, noise elements in the time series may lead to
serious problems, so the noise in the data must be removed
before feature extraction, that is, to find outliers in the data set
and remove them.

The Fourier transform can shift the temporal sequence data
to the frequency domain, filter out the noisy frequencies to
remove the noise, and then apply the inverse Fourier
transform and convert it to the time domain to get the filtered

time series. The Fourier transform and inverse transform
formulas are shown in formulas (3, 4):

F w( ) � ∫∞

−∞
f t( )e−jwtdt (3)

f t( ) � 1
2π

∫∞

−∞
F w( )e jwtdw (4)

For example, the comparison of the air quality data of the air
quality monitoring site “Material Bureau (National control point)"
before and after filtering is shown in Figure 1.

2.3 Co-KNN-DNN

K-Nearest Neighbors (KNN) algorithm is a frequently used
supervised learning algorithm for regression and classification
jobs. The principle is very simple, the basic idea is to classify or
predict data by gauging the distance between distinct traits. The
central idea of the KNN method of algorithm in dealing with
regression problems is: if the distance between the sample to be
tested and the K samples is the smallest in the feature space, the
predicted value of this sample is the arithmetic average of the
labeled values of these K samples.

DNN is composed of multiple neural network layers, each of which
contains multiple neurons, which is suitable for network models
handling intricate nonlinear relationships with outstanding
regression capabilities. Forward propagation and backward
propagation of deep neural networks are two key steps in the
training process. Forward propagation refers to the process of input
data passing through the input layer of the network, passing through
multiple hidden layers, and finally reaching the output layer. As the
input data passes through the network, each neuron weights it and
passes the results to the next layer. Such a process is repeated continually
till the output layer is achieved, which produces the predictions of the
network. Backward propagation refers to adjusting the weight of each
connection in the network by calculating discrepancy between the
output of the network and the real result, thereby minimizing the error
and improving the prediction accuracy of the network. This process is
usually implemented using a backpropagation algorithm.

FIGURE 1
Comparison of AQI raw data and filtered data.
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FIGURE 2
Design of Co-KNN-DNN model.

FIGURE 3
Co-KNN-DNN algorithm flow chart.
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The cooperative training algorithm is a semi-supervised learning
method based on multi-perspective learning [31]. In the training
process, a few labelled samples with a lot of unlabeled samples can be
integrated to significantly enhance the learning properties of the
learner. Labeled samples refer to samples that have both features as
well as labels, whereas unlabeled samples refer to data that have only
features and without labels.

Co-KNN-DNN is a co-trained semi-supervised learning method
integrating KNN as well as DNN to study the air quality in the near
ground layer at a fine-grained level [31]. KNN andDNN as two distinct
kinds of learners are fused using a one-view collaborative training
policy, and during each of the iterations, each learner chooses a highest-
confidence sample among the unlabeled samples for another learner to
continuously extend its training set, which achieves the goal of
improving the prediction performance using the unlabeled data. The
Co-KNN-DNN model design is shown in Figure 2.

Co-KNN-DNN is realized as follows:

(1) Enter tag sample set L � (x1, y1), (x2, y2), . . . , (xL, yL){ } and
the unlabeled sample set XU � x1, x2, . . . , xU{ }, The
characteristics and labels in L are employed for the training
of the original learners KNN as well as DNN, and the samples in
XU will be pseudo-labeled in subsequent iterations.

(2) The u randomly selected samples Xu �
x1
′, x2

′, . . . , x′
u|x′

i ∈ U{ } in XU are predicted using KNN
and DNN, respectively, and for each learner, the
confidence Δx of each of these samples is computed, and
the one with the maximum confidence is used as a pseudo-
labeled sample, that is, the predictive values are regarded as
a pseudo-label of the original feature, and the features are
moved to other learner’s training set together with
the features.

(3) With constant iterative training, a great number of unlabeled
samples were labeled, moved into the training set, and
therefore fully utilized, and end up with two high
performing and differentiated learners. The prediction
results of two learners are not the same, if they are
integrated into a model, the output result of the
combination of two prediction results will be more
reasonable, and can reduce the overall error, and obtain
stronger performance than a single learner. Therefore,
according to the idea of ensemble learning, the two
learners KNN and DNN obtained by cooperative training
are integrated into the whole model Co-KNN-DNN. Below is
given the flowchart of the Co-KNN-DNN algorithm as shown
in Figure 3.

FIGURE 4
HPM sensor application circuit.

FIGURE 5
Application steps of near-ground air quality fine-grained analysis method.
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2.4 Laser particulate matter sensor

Honeywell HPM Particulate Matter Sensor, which is a high-
performance laser-based particle sensor specifically designed to
detect and count particles in the air, with a detection
concentration range of 0 μ g/m3 to 1,000 μ g/m3. This sensor
adopts advanced laser scattering technology and can accurately
measure various particulate matter in the air, including PM2.5

and PM10. A laser light source irradiates the particles pulled into
the detection chamber. The particles pass through the laser beam,
reflect light, and record in the photo detector. Then the beam of
light is analyzed and converted into an electronic signal, and
finally the measurement results are converted into the
concentration value of particulate matter in real time through
built-in algorithms and processors.

HPM sensor uses the UART communication protocol to
interact with micro-controller for data exchange, data
acquisition, processing, and display. UART is a commonly
used serial communication protocol, which has a fast data
transmission rate, a simple protocol, and is easy to implement.
Only two lines (except for the power line) are needed to achieve
full duplex data transmission, making it suitable for applications
with high real-time requirements. Figure 4 shows a simple
application circuit. TXD and RXD are used for data exchange.
VCC and GND provide power supply. Laser particle sensor have
accurate and stable measurement performance, which is
combined with drone M30T for air quality monitoring in
this paper.

2.5 Evaluation indicators

To better evaluate the models, this paper adopted the three
indexes of RMSE (root mean square error), MAE (mean absolute
error) and R2 (R-squared) to assess the predictive effectiveness of
each model. The calculation methods are shown in formulas (5–7).

The lower the RMSE and MAE, and the more closely the R-squared
is to 1, indicating that the model is more effective.

RMSE �
�����������
1
n
∑n
i�1

yi − ŷi( )2√
(5)

MAE � 1
n
∑n
i�1

∣∣∣∣∣∣∣∣∣ yi − ŷi

∣∣∣∣∣∣∣∣∣ (6)

R2 � 1 −
∑n
i�1

yi − ŷi( )2
∑n
i�1

yi − �y( )2 (7)

Where ŷ _i is the prediction of the i sample, yi is the
corresponding true value, �x is the average of the sample attribute
features, and �y is the average of the true values.

2.6 Overall scheme design

Air quality monitoring systems paired with data analysis
models can provide great convenience for solving air quality
problems. Therefore, based on the Co-KNN-DNN model, this
paper carried out the application research of the methodology for
analyzing air quality in the near ground layer at a fine-grained
level, selected a suitable device to collect data on the spot, and
verified the effect of the model. In the overall scheme design, it was
mainly divided into steps as illustrated in Figure 5, and the details
of each move were as follows:

(1) Selection of the area to be studied, selection of a suitable data
collection device, development of a scientific data collection
program, and debugging of the device in preparation for data
collection;

(2) After data collection, the task report and specific data information
output by the device can be read tohelp us initially understand the
air quality status of the near-ground layer in the study area;

FIGURE 6
Panoramic view of UAV flight trajectory.

FIGURE 7
Side view of UAV flight trajectory.
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(3) Selection of a suitable model for analyzing air quality in the
near ground layer at a fine-grained level and construction of
the corresponding dataset;

(4) Divide the constructed dataset and do necessary pre-
processing;

(5) The processed data is entered into the selected model for
model training and optimization and the final predictive
output is obtained.

Among them, the most important steps were data collection and
dataset construction, because this will directly relate to the effect of
subsequent model validation.

The flight trajectory design of the M30T UAV carrying
Sniffer4D Mini2 and laser-based laser particulate matter sensor
for air quality data acquisition in the selected research area is
shown in Figure 6. Specifically, the UAV flies in a spiral mode
from outside to inside at different heights, and the altitudes were
selected as 26.3 m, 36.3 m, and 46.3 m respectively. The side view
and top view of the trajectory are shown in Figures 7, 8 respectively.
At each altitude, the center point of the spiral flight was located at
115.7922908° E and 37.19793151° N.

2.7 Data analysis and dataset construction

The monitoring device Sniffer4D is equipped with a set of data
visualization and analysis software. Real-time data transmission can
be realized through mobile communication, and the original
mission data file (.s4d format) can be automatically created and
stored in the background. Task reports (.pdf format) and data tables
(.csv format) with key analysis results can be generated with one
click. For example, the report generated after the flight of 2023/01/23
17:00 is shown in Table 1.

Based on the spatial dimensional air quality fine-grained
analysis model Co-KNN-DNN, geographic information,
meteorology, pollutant concentration, and AQI distribution
data of monitoring locations in the study area were extracted.
Among them, meteorological data included temperature and
humidity; pollutant concentrations included PM2.5, PM10, SO2,
NO2, CO and O3; geographical information included longitude
and latitude; due to the small range and the same source type in
all locations, this factor was not taken into account. The actual
distribution of AQI in the collected data at each height is shown
in Figures 9–11 respectively.

3 Results and discussion

In this paper, an experiment was conducted at each height of the
data collected by the M30T UAV carrying the Mini2 and laser-based
laser particulate matter sensor. In each experiment, the experimental
settings were configured in the Co-KNN-DNN model [31]. In this
experiment, 290 samples of monitoring locations were randomly
selected in the data set to form the initial labeled sample set. The Co-
KNN-DNNmodel was trained by randomly selecting 200 samples of
monitoring locations as the sample set for testing, and the remaining
samples as unlabeled sample set. The rounds of iterations were
setting to 100. After the completion of training, the unlabeled
samples except the labeled sample set and the test sample set

FIGURE 8
Top view of UAV flight trajectory.

FIGURE 9
The AQI distribution collected by the M30T UAV carrying the
Sniffer4D Mini2 and laser-based laser particulate matter sensor
at 26.3 m.

TABLE 1 Content of task report generated after the flight of UAV.

PM2.5 concentration distribution

Monitoring equipment: [lab416] (b2455fla) Module ID: 100

Analysis method: Laser scattering

Number of sampling points: 1818

The Average mesh size of the detection area: 39.8274 m × 39.8274 m (1,586.224 m2)

Total test area grid size: 66,621.406 (m2)

Longitude and latitude of the center point of the detection area: 115.7924°E,
37.1982°N

PM2.5 detection area average concentration: 109.518 μg/m3

Maximum PM2.5 grid concentration: 160.511 μg/m³ (115.7933° E, 37.1977° N)

Minimum PM2.5 grid concentration: 39.737 μg/m³ (115.7910° E, 37.1973° N)

Highest single point concentration of PM2.5:183.000 μg/m³ (115.7930° E, 37.1979° N)
2023/01/23 17:39:56

Minimum single point concentration of PM2.5: 20.000 μg/m³ (115.7913° E, 37.1970°

N) 2023/01/23 17:23:58
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were predicted, and the distribution of AQI at each height was
obtained, thus the overall distribution of AQI in the space was
obtained. For this experiment, the model achieved the effect of
complementing the trajectory of the UAV flight.

Indicators of the Co-KNN-DNN model in the test set samples
are presented in Table 2. At each height, the R2 reaches 0.99. It is
evident that the Co-KNN-DNN model achieved excellent results in
every experiment.

In addition, the AQI distribution of the labeled sample set
used for model construction and optimization was shown in
Figures 12–14, and the distribution prediction results of the
trained model for the remaining unlabeled sample AQI in the
space were shown in Figures 15–17. It can be seen that no matter
at what height, the results predictions of the model were very
near to the real distribution. In other words, the Co-KNN-DNN
model can largely restore the AQI on the flight trajectory of the
UAV according to the limited and sparse samples shown in
Figures 12–14. The validity and practicability of the Co-KNN-
DNN fine-grained air quality analysis model were verified.

The Air Quality Index (AQI) is categorized into six levels
[33]: excellent (AQI: from 0 to 50, unit: μg/m3), good (from 51 to
100, unit: μg/m3), mildly polluted (AQI: from 101 to 150, unit:
μg/m3), moderately polluted (AQI: from 151 to 200, unit: μg/
m3), heavily polluted (AQI: from 201 to 300, unit: μg/m3) and
severely polluted (AQI: 300+, unit: μg/m3). In the experimental
analysis diagram, air pollution levels are distinguished by color
to facilitate the observation of the degree of air pollution in the

FIGURE 10
The AQI distribution collected by the M30T UAV carrying the
Sniffer4D Mini2 and laser-based laser particulate matter sensor
at 36.3 m.

FIGURE 11
The AQI distribution collected by the M30T UAV carrying the
Sniffer4D Mini2 and laser-based laser particulate matter sensor
at 46.3 m.

TABLE 2 Performance indicators of Co-KNN-DNN.

RMSE MAE R2

26.3 m 4.0084 2.7188 0.9919

36.3 m 2.7752 1.7158 0.9972

46.3 m 3.2910 2.0322 0.9962

Average Value 3.3582 2.1556 0.9951

FIGURE 12
The AQI distribution of 26.3 m labeled samples.

FIGURE 13
The AQI distributions of 36.3 m labeled samples.
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area. It can be seen from the figure that the air quality in the area
is poor, and the AQI value in the area is higher and higher with
the increase of altitude, and the air quality is getting worse
and worse.

4 Conclusion

In this study, the practical application of fine-grained analysis of air
quality in the near ground layer was mainly carried out based on the
spatial dimension air quality fine-grained analysis model Co-KNN-
DNN. Firstly, the overall scheme was designed, mainly including the
selection of the device, the place and time of data collection, data
processing and data set construction, model training and optimization.
Then, according to this scheme, an M30T UAV equipped with a
Sniffer4D sniffer device and laser-based particle sensors was selected to
collect data, and the flight trajectory of the UAV and the mission report
output after the completion of the device acquisition task were shown.
Finally, the data were tested on the Co-KNN-DNN model. In three
experiments with different heights, the average R2 can reach 0.99, which
verified the reliability and practical value of the model.
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FIGURE 14
The AQI distributions of 46.3 m labeled samples.

FIGURE 15
The AQI distribution of Co-KNN-DNN output at 26.3 m.

FIGURE 16
The AQI distribution of Co-KNN-DNN output at 36.3 m.

FIGURE 17
The AQI distribution of Co-KNN-DNN output at 46.3 m.
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