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Adhesives can be made by patterning surfaces with discrete adhesive elements.
Nature uses this approach to provide animals with highly adaptive and robust
approaches towards gaining an effective grip on surfaces. The mechanism of
patterned surface adhesion involve many different attachment principles, adhesive
site interactions, and probabilistic effects, the interplay of which is not understood.
This limits our ability to design patterned surface adhesives for engineering
applications. In this work, we quantify how a mechanically patterned adhesive
based on passive mushroom-shaped elements performs. We explore a range of
surface design features and model the mechanical adhesion dynamics with an
approach based on the fiber bundle model (FBM). We find that the fiber bundle
model can be used to rationalize the observations after modifying it to capture the
initial non-linear force response of the adhesives. Additionally, we investigate the
behavior of the system’s elastic energy and damage energy, as it is stretched under
strain-controlled conditions. Our experimental data indicates that the elastic energy
has a maximum that appears after the macroscopic strength (σc), corresponding to
strains where a full rupture of the system can no longer be prevented. Moreover, we
observed that below the maximum of the constitutive curve σc, the elastic energy
consistently exceeds the damage energy. Finally, we found that the derivative of the
elastic energy has a maximum, which always appears before σc. Therefore, the
derivative of the elastic energy would serve as a reliable signal of upcoming
catastrophic failure in experiments under stress-controlled conditions.
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1 Introduction

Putting two seemingly flat surfaces together does not make a new solid. This proposition is a
potentially perplexing observation from the field of interface mechanics, a study of an everyday
phenomenon that is surprisingly poorly understood. Two interfaces can be made to adhere via a
number of mechanisms, among which the use of discrete adhesive sites. Such attachment styles
often usemechanical interlocking of three-dimensional (3D) protruded features and are prevalent
in Nature [1]. Inspired by such attachment systems, smart surfaces consisting of micron-
millimetric sized attachment features are being developed formany applications, such as climbing
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robots [2] and grippers [3]. The invention of Velcro® was originally
inspired by burdock seeds [4], and the related “3M dual lock” system [5]
has been successfully applied in textile industry and the medical field.

The discrete nature of these adhesive sites and the continuous
detachment dynamics that they can generate inspire us to understand
the statistical mechanics of attachment and detachment of discrete
probabilistic fasteners. Here we analyze a combination of older data [6]
and newmeasurements with precisely such statistical modeling, coming
from Fiber Bundle Models (FBM) [7–9].

The surface that we use is described in detail elsewhere [6]. Briefly,
we studied a soft surface with soft micrometric mushroom-shaped
features, providing mechanical interlocking while leaving no visible
damage on attachment features or the surface it attaches to. The pattern
of adhesive sites consists of cubic arrays of cylindrical “stems” with
hemispherical “caps” which we will refer to as “mushrooms”. We 3D-
printed the original “positive”mould and obtain an inverted “negative”
version in silicon rubber, which is coated with a perfluorosilane after
peeling from the positive mold. A final casting delivers an image, which
is peeled from the elastomeric mold. The mushroom arrays deliver
robust adhesion to textile, with a significant benefit over high-modulus
(MPa-range) Velcro-type attachment systems: the far softer elastomeric
system detaches from textile before damage occurs to either part. Thus,
the combination of 3D printing and elastomer synthesis offers new
approaches to address gaps in the property space of adhesives. However,
the difficulty of relating stress to strain inherent to the non-linear
mechanics in soft adhesive failure [10] results in a lack of analytical
routines to characterize and compare various soft adhesive systems.We,
therefore, turn to modeling to understand the adhesive performance of
these substrates.

1.1 Fiber bundle models (FBM)

Fiber Bundle Models are fundamental classes of approaches to the
fracture problem [7–9]. Despite their simple nature, FBMs exhibit the
most essential aspects of material breakdown. In a literal interpretation,
theymodel specimens loaded parallel to the fiber direction and describe
the damage evolution after one or several fibers fail. For simplicity, each
fiber has the same Young’s modulus κ. They break if the load acting on
them exceeds their threshold value, which is an independent random
variable sampled from a distribution p(ε) and cumulative distribution
P(ε) � ∫ε

0
p(x)dx. Once the fibers fail, one can choose among several

load transfer rules, usually called load-sharing types. Two limiting types
of load sharing correspond to the extreme limits of stress redistribution.
In the global load sharing (GLS) approach, the load of a failed fiber is
equally redistributed among the active fibers remaining in the system.
On the other hand, in local load sharing (LLS), the load of a failed fiber is
redistributed among the nearest neighbors’ intact fibers. Moreover,
some variable range of interactionmodels have been developed [11, 12].
The bundle may be stretched either under stress or strain control.

When a collection of N elastic fibers are stretched between two
rigid supports, as in a strain-controlled experiment up to stress ε, we
can relate the work required ET to the fiber failure distribution p(ε).
Following [13], we write,

ET ε( ) � Ee ε( ) + Ed ε( ) (1)

ET ε( ) � 1 − P ε( )( ) κε
2

2
+ κ

2
∫ε

0
x2p x( )dx (2)

The first term in Eqs 1, 2 denotes the elastic (or potential) energy Ee

accumulated by the survivingN(1 − P(ε)) elements, and the second
the sum of all dissipated elastic energy due to Np(ε) broken fibers,
denoted Ed.

Similarly, the constitutive law that relates the stress σ(ε) to the
applied strain ε is

σ ε( ) � 1 − P ε( )( )κε. (3)

The maximum of the constitutive curve εc, σc indicates the
system’s stress σc at its corresponding critical deformation εc. It can
be obtained from the maximization of Eq. 3,

dσ ε( )
dε

� 1 − P ε( ) − ε
dP ε( )
dε

� 0. (4)

In particular, for a Weibull cumulative distribution
P(ε) � 1 − exp[−(κεσ0)ρ], where σ0 is a stress parameter that dictates
the onset of fracture, the maximum of Eq. 4 lies at εc � (σo/κ)ρ1/ρ and
σc � σ0(ρe)1/ρ. Figure 1 shows the constitutive curves Eq. 3, the elastic
energy Ee and its dEe/dε as function of the deformation ε, for a
Weibull cumulative distribution with ρ � 1 and σ0 � 1 N

m2. In this
work, we apply and extend the FBM’s theoretical framework to
examine the statistical detachment process of adhesive surfaces
composed of soft micrometre-scale mushroom-shaped features.

2 Experimental methods

The experiments have been described in detail elsewhere [6]. Briefly,
we studied the adhesive interactions of mushroom-studded surfaces
made from poly (dimethyl siloxane) (silicone rubber) with a nylon fabric
with the help of a rheometer (Figure 2). A schematic of the mushroom-
studded surfaces is given in Figure 3, including the relevant dimensions.
In particular, we determined the cross-section of the mushrooms by
image analysis with ImageJ, which amounted to Ae � 152 μm2.

Fabric samples were obtained from a pantyhose using scissors. First,
a fabric sample was attached to the base plate of the rheometer by
applying scotch tape over its four sides. The silicone mushroom devices
were attached to a glass plate using plasma bonding. For testing, we used
a five-step protocol, also illustrated in Figure 2: i) mushroom-studded
surfaces were pressed onto a fabric up to a given normal force Fn and a
constant approach rate of v � 500 μm s−1, ii) the systemwas allowed to
relax for 10 s, iii) the probe to which the mushrooms are attached was
rotationally oscillated with θ � 10° for 50 cycles, iv) 10 s relaxation, and,
(v) the probe was retracted under strain control conditions at a rate
equal to that of the approach. While pulling off the adhered surface, the
fabric was monitored from below to record the number N0 of
mushroom features that had penetrated the surface. We recorded
force-distance curves until full detachment of surface to fabric.

3 Results and discussion

3.1 Macroscopic constitutive response:
strain hardening

Figure 4 gives the force-strain curves obtained for systems with
systematic variations of feature densities and preload intensities Fn.
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The reproducibility of the experimental procedure enable us to use
the average of four experimental realizations. The flexibility of the
backing layer and variation in feature densities preclude an analysis
in terms of global load sharing with strain identical to a stretch value
valid across the fibre bundle and between experiments at different

feature densities. To avoid introducing a free parameter, we opt to
define the strain values based on the experimental conditions, as
ε � l/l0. l is the gap size, and we introduce the characteristic length
l0 � 10 mm using l0 � v × tmax, with v the retraction velocity and
tmax � 20 s, the typical timescale of the experiment. Indeed, the three

FIGURE 1
As a bundle of linearly elastic fibers is stretched, the system first accumulates elastic energy Ee at the rate of N times κ, the per-bond modulus. As
bonds start failing, this accumulation slows down. Eventually, Ee peaks and then decreases as more and more bonds fail. Here, we give the stress, elastic
energies, and the derivative of the elastic energy as a function of the strain for a fiber bundle model with a Weibull distribution of thresholds and bond
failure threshold distribution parameter ρ � 1.

FIGURE 2
Illustrated rheometry protocol for characterization of the adhesive interaction between nylon fabric and our adhesive devices: i) Approach at
constant v until ii) pre-set normal force Fn , followed by iii) oscillation at angular frequency ω and iv) relaxation for tw. Finally, v) the probe holding the
adhesive device is retracted with constant v while the normal force F is recorded as function of the gap size d.
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panels of Figure 4 show that the fabric-device attachments fail
around unity, 0.9< ε< 1.2.

All the macroscopic constitutive responses in Figure 4 display
the two regimes introduced in Ref. [13]. One stable regime for
0≤ ε≤ εc, and an unstable regime, for ε> εc (see also Figure 1),
which lies after the stress peak. At the end of the process, the
macroscopic stiffness decreases discontinuously before complete
detachment from the elastic fabric substrate occurs. The
observability of the unstable regime is in line with the choice of
strain-controlled retraction: the detachment process runs
continuously, the stress reaches a maximum value σc at εc, and
the full detachment of surface to fabric occurs at strain values
notably greater than εc. In our experiment, we attribute the
macroscopic stiffness changes solely to detachment of fabric-
mushroom bonds, rather than to fracture of features or in the
fabric, given its reproducibility over five cycles.

Interestingly, for our experimental data, Eq. 3 does not
adequately capture the behaviour in the stable regime. Non-
linearity in the macroscopic response is apparent in the raw
force-strain curves presented in Figure 4. The earlier stage of the
curves indicates that the stretching of the textile fibers against our
mushroom arrays does not follow a linear force-strain relationship
that is characterized by a per mushroom elastic modulus κ. Instead,
the macroscopic stiffness gradually increases, denoting the absence
of internal damage (detaching). Only for very low preload intensities

and feature densities (see Figure 4C), a single slope characterizes the
constitutive curves in the earlier stage.

In all cases, the maximum force indicates the system strength σc
and the corresponding stretch value εc, highlighted with vertical
lines in the panels of Figure 4. The values εc are the critical stretch
beyond which the system would collapse under an analogous stress-
controlled experiment. In our previous work [6] we have observed
that σc saturates with increasing FN, which we interpreted as a
saturation of the available surface “adhooking” of the features on the
fabric. Beyond σc, features start to unhook from the fabric.
Importantly, the mushrooms do not break; a surface is reusable
and this also means that there is only one typical “unhooking”
stress scale.

FBMs have been used to rationalise the random damage
evolution of fracturing systems, even beyond disordered solids
[14–19]. However, the non-linearity of the initial loading regime
represents a fundamental challenge to the validity of fiber bundle
models, which attempt to capture the microscopic features of the
feature-fabric interaction. In a basic form, such a model would
feature a linear loading regime σ � κε, followed by a failure regime,
governed by the survival probability (1 − P(ε)) of features at strain
ε. Our curves disobey linearity at low ε, and therefore we propose to
use a modified non-linear FBM.[20].

Interestingly, the fabric-mushroom stretching seems to impose a
power law on the force-strain curves. Following the theoretical and
experimental results [21–24] on other (crosslinked) fibrous
networks as present in the fabric, we propose a stress-distance
curve, using a strain-hardening ansatz σ ~ Eεα followed by a
probabilistic decay factor:

σ ε( ) � 1 − P ε( )( )Aεα, (5)
with σ(ε) the stress acting on the surviving (1 − P(ε)) element
fraction. We also introduce a modified Weibull failure distribution
which reads P(ε) � 1 − exp[−(Aεασ0

)ρ], Eq. 5 and gives the following
strain-stiffening constitutive equation:

σ ε( ) � Aεα exp − Aεα

σ0
( )

ρ

[ ], (6)

where A is a non-linear stiffness coefficient, α the strain stiffening
exponent at low ε, σ0 a stress coefficient that positions the onset of

FIGURE 3
Drawing of a mushroom-covered silicone adhesive surface. The
stem and cap diameter are labeled in the figure and identical for all
surfaces in the study. Wemade surfaces with 114, 361 and 441 features
by varying the inter-mushroom distance D, respectively, 2.3, 1.3,
and 1.1 mm. All surfaces measured 25·25 mm2.

FIGURE 4
Raw force-distance curves of mushroom-patterned silicone rubber adhesive pads detaching from a textile substrate consisting of nylon fibers. Each
of the panels gives data corresponding to devices having (A) 441, (B) 361, and (C) 114 features per 25·25 mm2. Keeping the density constant, we provide
data for a systematic variation of preload intensity Fn .
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element failure, and ρ the Weibull exponent, which is related to the
width of the failure probability distribution.

Subsequently, we fit all curves in Figure 4 to equation Eq. 6.
Good fits to the data were accomplished with least squares
optimization. We used the powers and pre-factors from Figure 5
to initialize the fits, and σ0 and ρ were initialized with linear
regression on one representative curve using a linearised version
of Eq. 6 with α � 1 (Figure A1 in the Appendix includes the fits).

Figure 5 illustrates the validity of the used strain-hardening
ansatz, showing good fits for all strain-stress curves for specimens
with 441, 361, and 114 features per 25·25 mm2, respectively, and a
range of preload intensities. A summary of the fitting parameters α,
ρ, and A are included in Figure 6. In each case, the interlocking
characteristic strength σ0 of the individual features, was analytically
obtained in terms of the macroscopic strength σc, i.e., σ0 � σc(ρe)1/ρ.
The Appendix includes details of the fitting executed in each case.

A surprising result of the present analysis is that the power law
exponent α varies between 1 and 3

2, as seen in Figure 6. We analyze
the emergence of a power law with strength 3

2 as strain hardening
caused by the presence of entanglements between the fibers in the
cloth substrate (“crosslinks”). Presumably, stretching of the fibers

causes a concomitant tensing-up at the intersection points, resulting
in a progressively stiffening of the fiber network as more strain is
applied. The dependence of the power on preload can be seen as the
presence of a critical active fiber density beneath which intersections
do not form. At low densities, we simply measure the (linear, at all
low strains) elasticity of the nylon strands. We note that strain
hardening should originate in the fabric itself [25] and is more likely
as more mushrooms are activated. Finally, we note that strain
hardening with a power law of strength 3

2 is a common feature
seen on a completely different length scale, in cross-linked polymer
networks of semi-flexible polymers [23]. It is worth mentioning, that
the existence of the initial non-linear response does not allow to
quantify the effective element stiffness of a single element for
comparing to the Young modulus of PDMS, which is about
1.8 MPa. However, the non-linear stiffness A plays a similar role,
and we obtain values of A in the order of 6.4 − 20 MPa as visible in
Figure 6B, in terms of the characteristic length l0 � 10 mm.
Surprisingly, for samples with high density of features the
parameter A saturates at large FN. We also found that the value
of σ0 is proportional A and also saturate at large FN – their ratio
remains close to unity for all curves treated here.

FIGURE 6
Resulting fitting parameters as a function of the preload intensity Fn , in (A) strain hardening α in (B) non-linear stiffness A and (C) theWeibull exponent
ρ. Details of the self-consistent Weibull fitting appears in the Appendix. Each of the panel includes data corresponding to 441, 361 and 114 features per
25·25 mm2.

FIGURE 5
Scaled stress-distance curves σ/A � F/(N0AeA) (-), where N0 is the initial number of connected mushrooms and Ae is the cross-section of a
mushroomneck, and A is the non-linear stiffness (see Figure 6; Eq. 5). The panels present processed force-distance data from detachment of nylon fabric
against devices numbering (A) 441, (B) 361 and (C) 114 features per 25·25 mm2, respectively. Data are colour-coded for the preload intensity after which
they were recorded, as listed in the legends.
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For a Weibull distribution of bond breaking thresholds, the
strength disorder is set by the parameter ρ. Regardless of the density
of features or the applied preload, the estimation of the Weibull
parameter ρ resulted in a narrow domain, 5< ρ< 10 (see Figure 6B).
This indicates that neither the density of features nor the applied
preload significantly impacts the system local strength disorder.

4 Signal of upcoming catastrophic
failure

In the past, several authors have proposed a thermodynamic
frameworks of the statistical failure of elastic fiber bundles, using a
variety of threshold distributions P(ϵ) [26, 13, 27]. Recently,
Pradhan and collaborators showed that the variation of the
elastic energy,

Ee � 1 − P ε( )( ) ε
2

2
(7)

indicates the upcoming stretching-induced failure [13, 27]. They
found that the elastic energy in Eq. 7 has a maximum at a particular
value, which we define as εm (with m for maximum of the elastic

energy), distinct from the critical value of strain εc (see the example
displayed in Figure 1). However, as Figure 1 indicates, the elastic
energy typically reaches its maximum in the unstable region of the
loading process, i.e., εm > εc. Consequently, Ee per se is not useful to
forecast catastrophic failure [27].

However, the authors obtained analytically that dEe/dε reaches a
maximum at a strain value defined as εI (I for inflection) in the stable
region of the loading curve, thus εI < εc (see Figure 1). The
forecasting potential of dEe/dε is confirmed for several failure
threshold distributions P(ϵ), including uniform, power law, and
Weibull [27]. The authors have even proposed a prediction window
for the ratio between the critical strain εc and εI, suggesting that
[1.2< εc/εI < 1.5]. So far, the prediction has been validated
exclusively with numerical results. Following the same procedure,
we now confront this theoretical analysis with our
experimental outcomes.

We used a strain-hardening ansatz (vide supra) to describe
the non-linearity of the initial loading regime. Similarly,
we interpret our results by introducing a generalized
elastic energy:

Ee � 1 − P ε( )( ) εα+1

α + 1
� σ ε( ) ε

α + 1
. (8)

FIGURE 7
Elastic energy as a function of the system deformation, each of the panels presents data collectedwith adhesive pads numbering (A) 441, (B) 361, and
(C) 114 features per 25·25 mm2. Elastic energies were calculated for force-distance curves using Eq. 8. We performed retractions after reaching the
indicated preload intensity.

FIGURE 8
Ratio between the damage and the elastic energy as a function of the system deformation, with systems of (A) 441, (B) 361, and (C) 114 features per
25·25 mm2. The elastic and damage energies were calculated on the basis of measured force-distance curves using Eqs 8, 9, respectively.
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The average damage energy that is lost when each fiber breaks
reads as

Ed ε( ) � ∫ε

0
σ ε( )dε − Ee ε( ), (9)

where the first term in Eq. 9 accounts for the total average work
required to stretch the system.

Figure 7 shows Ee(ε) for specimens with feature densities of,
respectively, 441, 361 and 114 mushrooms per 25·25 mm2. Each
panel presents data color-coded for the preload intensity after which
it was recorded. We mark the stress maxima εc with vertical lines,
also color-coded for preload intensity. In all cases, the data show that
the maxima of the elastic energy appear at strains superior to εc.
Thus, elastic energy maxima indeed appear in the unstable region,
εm > εc.

Can the damage energy then be used to forecast failure? We
analyze the evolution of the ratio between the damage and the elastic
energy Ed/Ee as a function of the system deformation. Figure 8
presents the energy ratios, with arranged and color-coded
analogously to Figure 7. The outcomes are very similar,
regardless of the area fraction of features or preload intensity. In
general, at strains ε< εc, the damage energy Ed is significantly lower
than its elastic counterpart. Only after reaching the stress maximum
Ed increases significantly. Thus, neither Ee nor Ed are reliable signals
of upcoming catastrophic failure in experiments under stress-
controlled conditions.

Finally, we examine the change in elastic energy dEe/dε. Figure 9
shows dEe/dε graphed against the deformation ε, presented
analogously to Figure 7, and maximum strain εc indicated with
vertical lines color-coded for preload. The result is robust: for all

FIGURE 9
We plotted the numerical derivative of the elastic energy dEe

dε as a function of the system deformation for all averaged force-distance curves. The
panels correspond to (A) 441, (B) 361 and (C) 114 features per 25·25 mm2, respectively. The preload after which the data were recorded are indicated as
given in the legend.

FIGURE 10
The relative location of the (A) elastic energy maximum εm and the (B) energy inflection point εI , as a function of εc, for convenience the inverse is
illustrated. For comparison, (A) includes the unit and (B) includes the pre-factor window 1.2< εc/εI < 1.5 suggested in Ref.Pradhan et al. [27].
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applied preload intensities, the maximum of dEe/dε appears at stresses
markedly lower than εc, and thus within the stable phase, εI < εm. Thus,
our experimental analysis fully agrees with the hypothesis that dEe/dε
gives a prior indication of upcoming catastrophic failure at [εc; σc], in
experiments under stress-controlled conditions.

The previous observations are summarized in Figure 10. On the
one hand, Figure 10A shows the stress at elastic energy maximum
εm as a function of εc, plotted as εc/εm. We include results for all area
fractions of features and preload intensities. For all cases εc/εm < 1.
Thus, the elastic energy maximum has no predictive power. On the
other hand, Figure 10B shows stress at the inflection point of the
elastic energy εI as a function of εc. In general, εc/εI results in values
notably larger than one: the inflection point of elastic energy occurs
before catastrophic failure sets in and thus reliably predicts
upcoming failure. It is worth mentioning, that carefully
monitoring the evolution of the Kolkata and Gini indexes also
serves as an indicator to imminent catastrophic failure
at σ � σc [28].

Summarising: we quantified the performance of a mechanical
adhesive based on a pattern of passive mushroom-shaped structures.
We observed that the stretching of fibers induces tension at the
intersection points, leading to a progressive stiffening of the fiber
network with the stress a power law in strain. We show that an FBM
reproduces the experimental results after incorporating adjustments
to capture the initial non-linear force response emergent at higher
feature densities, σ ~ Aεα. A dependency of the power law exponent
α on preload suggests the existence of a critical active fiber density,
below which intersections fail to form. At low densities, our
measurements reflect the linear elasticity of the nylon strands,
especially at lower strains. We emphasize that the origin of strain
hardening depends on the fabric [25], yet it becomes more
pronounced as more mushrooms are activated. Remarkably, α

spans from 1 to 3
2, which implies the emergence of a power law

with a strength of 32, indicative of strain hardening influenced by the
presence of entanglements between the fibers, often referred to as
“crosslinks”. Even so, the true mechanism behind the strain
hardening of the fabric-pattern attachment in this study remains
subject of necessary future work, as characterizing that relies on
knowledge of many physical parameters in the fabric, such as fiber
friction coefficients, density etc [21, 24].

Our work validates the approach to predicting the catastrophic
failure of Pradhan and co-authors, which has so far been supported
with numerical work [13, 27]. As per the approach, we quantified the
elastic and damage energy as the fiber-adhesive assembly is stretched
under strain-controlled conditions. Stress-strain curves revealed
that the elastic energy reaches a maximum after σc,
corresponding to the unstable region. Consequently, elastic and
damage energy are unreliable signals of upcoming catastrophic
failure in experiments under stress-controlled conditions.
However, we now confirm experimentally that the derivative of
the elastic energy exhibits a maximum before reaching σc. This
characteristic stands out as a reliable signal of imminent catastrophic
failure in experiments conducted under stress-controlled conditions.

Our results show the robustness of the theoretical results of Pradhan
and collaborators [13, 27] to the reality of finite systems, sample
variability, and, notably, non-linearity of the elastic behavior of the
fiber bundle.
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Appendix

Figure A1 shows the non-linear fitting with the power-law-
modified FBM of Eq. 6 of our experimental stress–strain data. The

obtained Weibull parameters are included as insets. ρ was used to
compare the constitutive curves using the scaling ansatz
in Figure 5.

FIGURE A1
Fits of the double-logarithmic stress versus the logarithmic strain to the Weibull distribution given in Eq. 6 with power-law onset. Each panel
represents a different feature count: (A) 441, (B) 361, and (C) 114 features per 25·25mm2. Stress-strain curves are color-coded for preload force, as given
in the legend. The insets show the parameter ρ as a function of preload force, as also given in Eq. 6. ρ is a measure of the width of the stress threshold
distribution.
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