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1 Introduction

The variational iteration method [1] is considered the most powerful tool after Newton’s
iteration method for solving a wide range of physical problems [2–6]. It has been employed in
solving seepage flows with fractional derivatives and nonlinear oscillators, making it a widely
used primary mathematical tool for various nonlinear equations. Given its significance, many
scholars, including J.H. He [7], S. Momani [8], and Z.M. Odibat [9], have extensively researched
this method. A key advantage of VIM over other analytical methods is that it does not require
linearization or manipulation of nonlinear terms. By using a suitable initial guess and
incorporating a Lagrange multiplier, one can obtain exact or highly accurate solutions for
various physical problems. However, the identification of themultiplier can be difficult without a
solid understanding of the intricate theory of variational calculus [10–12], which can be
challenging for some practitioners. In recent years, the integral transform has been extensively
used in numerical simulation due to its rapid convergence and ease of use. It has significant
practical implications in addressing various real-world engineering challenges, including
electrical, industrial, mechanical, and civil engineering. In many instances, the choice of an
appropriate integration transform can simplify the analysis. The choice of transformation
becomes very important when we investigate different problems. This short opinion proposes a
more accessible and comprehensive method for easily and effectively identifying the multiplier:
the introduction of a generalized integral transform. This transform generalizes Fourier series,
Laplace transforms, and other transformations, such as the Sumudu transform [13] and the
Aboodh transform [14, 15]. This approach is highly appealing and promising and it does not
require specialized knowledge of variational calculus. Furthermore, the procedure can be used in
all mathematics textbooks.

2 The determination of the lagrange multiplier by the
He-transform

Considering a general nonlinear oscillator equation in the following form:

€x t( ) + f x( ) � 0 (1)
with initial conditions

x 0( ) � A, _x 0( ) � 0 (2)
We represent Eq. 1 as

€x t( ) + ω2x + g x( ) � 0 (3)
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where ω is unknown frequency, g(x) � f (x) − ω2x
According to the variational iteration method (VIM) [1], the

correction functional which is essentially a convolution for Eq. 3 can
be expressed as

xn+1 t( ) � xn t( ) + ∫t

0
λ t,ψ( ) €xn ψ( ) + ω2xn ψ( ) + ~g xn( )[ ]dψ

n � 0, 1, 2/
(4)

where λ is a Lagrange multiplier, and its value can be selectively
determined by stationary conditions of Eq. 4 with respect to xn using
variation theory [10–12]. xn is the n th approximate solution and ~g is
a restricted variation, i.e., δ~g � 0.

Next, we present an alternative method for determining the
multiplier. Based on the seminal contributions of Abassy [16],
Mokhtari [17], and Hesameddini [18], the Laplace transform was
initially incorporated into the variational iteration method [19].
It is worth considering whether or not there is a more
representative integral transform than the Laplace transform
in the context of VIM. J.H. He proposed in 2023 [20] a new
generalized integral transform, which not only includes various
integral transforms falling under the category of the Laplace
transform, but also retains the properties of the Fourier
transform as a special case, such as existence and linearity.
This new transform offers a new perspective for the
identification of Lagrange multipliers with extreme ease
[21–23]. In the following, we will use this new generalized
integral transform to identify the Lagrange multiplier.

He’s integral transform [20] of an integrable function f (t) has
the following definition

H f t( ){ } � H s( ) � p s( )∫
∞

0

e−s
nt f t( )dt

HereH(s) is the image of f (t),H is the integral transformation
operator, and s denotes the transformation variable. The superscript
n is from the integer range.

The Lagrange multiplier can usually be expressed as [1].

λ � λ t − ψ( ) (5)

The correction function given in Eq. 4 is essentially the
convolution, so we can easily use the He-transform. By
substituting Eq. 5 into Eq. 4 and applying the He-transform to
both sides of the resulting equation, we obtain the final
transformation of the correction function by employing the
linearity theorem and the differentiation theorem [20],
as follows:

H xn+1 t( )[ ] � H xn t( )[ ] +H[∫
t

0

λ t − ψ( ) €xn ψ( )[
+ω2xn ψ( ) + ~g xn( )]dψ]

� H xn t( )[ ] +H λ t( )* €xn t( ) + ω2xn t( ) + ~g xn( )[ ][ ]
� H xn t( )[ ] + 1

p s( )H λ t( )[ ]H €xn ψ( ) + ω2xn ψ( ) + ~g xn( )[ ]
� H xn t( )[ ] + 1

p s( )H λ t( )[ ] s2n + ω2( )H xn t( )[ ][
−snp s( )x 0( ) − p s( ) _x 0( ) +H ~g xn( )[ ]] (6)

The optimal value of λ can be determined by taking
Eq. 6 to be stationary with respect to xn, assuming that.
δ
δxn

H[g(xn)] � 0, δ
δxn

H[xn+1(t)] � 0

δ

δxn
H xn+1 t( )[ ] � δ

δxn
H xn t( )[ ]

+ δ

δxn

1
p s( )H λ t( )[ ] s2n + ω2( )H xn t( )[ ][

−snp s( )x 0( ) − p s( ) _x 0( ) +H ~g xn( )[ ]]
� δ

δxn
H xn t( )[ ]

+ 1
p s( )H λ t( )[ ][ s2n + ω2( ) δ

δxn
H xn t( )[ ]

� 1 + s2n + ω2( )
p s( ) H λ t( )[ ]{ } δ

δxn
H xn t( )[ ] � 0

(7)
Eq. 7 leads to the following result

H λ t( )[ ] � −p s( )
s2n + ω2

(8)

Applying the inverse He-transform to Eq. 8 yields the
following result

λ � −1
ω
sinωt

This is the same as that in Ref. [24], showing that the He-
transform works more easily and more effectively.

3 Conclusion remark

In this opinion, we elucidate that the He-transform
facilitates the identification of the Lagrange multiplier,
making the variational iteration method more promising for
solving physical problems. We hope that this short opinion
can attract a wide audience from various fields, such as
mathematics, physics, mechanics, and engineering. As current
studies primarily concentrate on solving nonlinear oscillators
with an initial value of zero, we will apply the method to
solve nonlinear oscillators with generalized initial values in
the future.
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