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The semantic segmentation of RGB-D images involves understanding objects
appearances and spatial relationships within a scene, which necessitates careful
consideration of multiple factors. In indoor scenes, the presence of diverse and
disorderly objects, coupled with illumination variations and the influence of
adjacent objects, can easily result in misclassifications of pixels, consequently
affecting the outcome of semantic segmentation. We propose a Multi-modal
Interaction and Pooling Attention Network (MIPANet) in response to these
challenges. This network is designed to exploit the interactive synergy
between RGB and depth modalities, aiming to enhance the utilization of
complementary information and improve segmentation accuracy. Specifically,
we incorporate aMulti-modal InteractionModule (MIM) into the deepest layers of
the network. This module is engineered to facilitate the fusion of RGB and depth
information, allowing for mutual enhancement and correction. Moreover, we
introduce a Pooling Attention Module (PAM) at various stages of the encoder to
enhance the features extracted by the network. The outputs of the PAMs at
different stages are selectively integrated into the decoder through a refinement
module to improve semantic segmentation performance. Experimental results
demonstrate that MIPANet outperforms existing methods on two indoor scene
datasets, NYU-Depth V2 and SUN-RGBD, by optimizing the insufficient
information interaction between different modalities in RGB-D semantic
segmentation. The source codes are available at https://github.com/
2295104718/MIPANet.
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1 Introduction

In recent years, Convolutional Neural Networks (CNN) have been widely used in image
semantic segmentation, and more and more high-performance models have gradually
replaced the traditional semantic segmentation methods. With the introduction of Fully
Convolutional Neural Networks (FCN) [1, 2], which has shown great potential in semantic
segmentation tasks, many researchers have proposed improved semantic segmentation
models based on this way.

The advent of depth sensors and cameras [3] has expanded image research from RGB
colour images to RGB-Depth (RGB-D) images, which include depth information. RGB
images provide details of object appearance, such as colour and texture, while depth images
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contribute essential three-dimensional geometry information absent
in RGB images, which is particularly valuable for indoor scene
analysis. The fusion of these two modalities of image information
would contribute to enhancing the accuracy of indoor scene
semantic segmentations. [4, 5] directly concatenated RGB and
depth features to create a four-channel input, resulting in
improved semantic segmentation accuracy. [6] converted depth
images into three channels to an HHA image which consisted of
the horizontal disparity, height above ground, and angle of surface
normals. Subsequently, RGB features and HHA features are fed into
parallel CNNs to predict probability maps for two separate semantic
segmentation. These feature maps were then fused in the final layer
of the network to produce the ultimate segmentation result. Park
et al. [7] and Lee et al.[8] fused the RGB features and depth features
through a concatenation process. Eigen et al. [9] andWang et al. [10]
merged the RGB and depth features through directly summation.
These methods fail to fully utilize the complementary information
between modalities by simply summing or concatenating RGB and
depth features. Shu, Li and Bai et al. [11-15] mapped text and image
data to a common hash space and facilitated the interaction of
information between text and images, which enhanced the
performance of cross-modal retrieval. Yang et al. [16] adopted
different enhancement mechanisms for RGB data and depth data,
including pixel difference convolution techniques, to more
effectively handle depth information. Zhao et al. [17] proposed to
coordinate attention and cross-modal attention mechanisms,
achieving efficient fusion of RGB and depth features and
enhancing cross-modal information exchange. Yang et al. [18]
developed a dual-stage refinement network (DRNet). In the
initial stage, the network focuses on rough localization and
feature extraction, while in the advanced stage, it concentrates on
feature refinement and precise segmentation. This architecture
enables more effective object boundary recovery and definition in

complex scenes, thereby improving the accuracy of semantic
segmentation. These methods are more effective. However, they
use similar or identical operations for extracting RGB and depth
features, which does not fully consider the modal differences
between RGB and depth images. Moreover, they overlook the
interaction between modalities, failing to maximize the
complementary nature of the information from different modalities.

To solve the above problems, we propose a Multi-modal
Interaction and Pooling Attention Network (MIPANet) for RGB-
D semantic segmentation of indoor scenes, as illustrated in Figure 1.
The proposed network adopts an encoder-decoder architecture,
including two innovative modules: the Multi-modal Interaction
Module (MIM) and the Pooling Attention Module (PAM). The
encoder is composed of two identical CNN branches, used for
extracting RGB features and depth features, respectively. In this
study, RGB and depth features are incrementally extracted and fused
across various network levels, utilizing spatial disparities and
semantic correlations between multimodal features to optimize
semantic segmentation results. In the PAM, we employ different
feature enhancement strategies for RGB features and depth features.
For RGB features, we use global average pooling to make the
network focus on the spatial location information of RGB
features. For depth features, we employ a two-step pooling
operation to replace the global average pooling, aiming to guide
the network during depth feature extraction to focus on the most
salient parts in each channel. This allows the network to emphasize
feature channels containing contours, edge information, and others,
thereby enhancing feature representation. Meanwhile, it enables
flexible adjustment of the output size and mitigates the impact of
large outliers on the results. In the MIM, through cross-modal
attention, we enable the RGB features and depth features to learn
different information from each other, thereby reducing the
disparity between the two modalities and enhancing their

FIGURE 1
Overall architecture of the proposed network is outlined as follows: Each PAM-R or PAM-D across various levels of the network shares an identical
configuration but implements distinct operations on two separate branches, yielding RGB and depth features. There are represented as ~F

n

RGB and ~F
n

Dep .
After performing an element-wise sum, we obtain ~F

n

Con , where n indicating the network level. The MIM processes RGB and depth features
obtained from the ResNetLayer4 and integrates the fusion result ~F

4

Con into the decoder.
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interaction. In the upsampling stage, we design a refinement module
(RM) to refine the output of the PAM. This operation enriches the
information of the fused features, thereby improving the accuracy of
segmentation. The main contributions of this work can be
summarized as follows:

(1) We propose an end-to-end multi-modal fusion network,
MIPANet, incorporating multi-modal interaction and
pooling attention. This method significantly enhances the
feature representation of RGB and depth features, effectively
focusing on regions with adjacent objects and object overlap
regions in the image. Moreover, the proposed method
enhances the interaction between RGB and depth features,
reduces the feature disparity between modalities, enriches the
fused features, and improves semantic segmentation
performance.

(2) We design the MIM and PAM. Within the MIM, a cross-
modal feature interaction and fusion mechanism is
developed. RGB and depth features are collaboratively
optimized using attention maps to extract partially detailed
features. In addition, the PAM augments the extraction of
RGB and depth features through distinct operations, acting as
an essential supplement of information in the decoder. It
facilitates feature upsampling and restoration via the RM
module, ensuring a comprehensive enhancement and
integration of critical details for accurate segmentation.

(3) Experimental results confirm the effectiveness of our
proposed RGB-D semantic segmentation network in
accurately handling indoor images in complex scenarios.
The proposed model demonstrates superior semantic
segmentation performance compared to other methods on
the publicly available NYU-Depth V2 and SUN RGB-D
datasets. The visualization results demonstrate that our
method focuses more effectively on regions of the image
where neighbouring objects may be similar and overlap
between objects, resulting in more accurate segmentation
outcomes in these regions.

2 Related works

2.1 RGB-D semantic segmentation

With the widespread application of depth sensors and depth
cameras in the field of depth estimation [19-21], people can obtain
the depth information of the scene more conveniently, and the
research on the image is no longer limited to a single RGB image.
The RGB-D semantic segmentation task is to effectively integrate
RGB features and depth features to improve segmentation accuracy,
especially in some indoor scenes. He et al. [4] proposed an early
fusion approach, which simply concatenates an image’s RGB and
depth channels as a four-channel input to the convolutional neural
network. Gupta et al. [6] separately input RGB features and HHA
features into two CNNs for prediction and perform fusion in the
final stage of the network, and Hazirbas et al. [22] introduced an
encoding-decoding network, employing a dual-branch RGB encoder
to extract features separately from RGB images and depth images.
The studies mentioned above employed equal-weight concatenation

or summation operations to fuse RGB and depth features without
fully leveraging the complementary information between different
modalities. In recent years, some research has proposed more
effective strategies for RGB-D feature fusion. Hu et al. [23]
utilized a three-branch encoder that includes RGB, Depth, and
Fusion branches, efficiently collecting features without breaking
the original RGB and deep inference branches. Seichter et al. [24]
have presented an efficient RGB-D segmentation approach,
characterised by two enhanced ResNet-based encoders utilising
an attention-based fusion for incorporating depth information.
Fu et al. [25] proposed a joint learning module that learns
simultaneously from RGB and depth maps through a shared
network, enhancing the model’s generalization ability. Fu et al.
[25] proposed a joint learning module that learns simultaneously
from RGB and depth maps through a shared network, enhancing the
model’s generalization ability. Zhang et al. [26] proposed a multi-
task shared tube structure that aggregates multi-task features into
the decoder, improving the learning results for each task. Chen et al.
[27] proposed the S-Conv operator, which introduces spatial
information to guide the weights of the convolution kernel,
thereby adjusting the receptive field, enhancing geometric
perception capabilities, and improving segmentation results. Our
MIPANet implements a dual-branch convolutional network that
performs distinct operations in the middle and final layers of the
network to fully utilize the complementary information of different
modalities.

2.2 Attention mechanism

In recent years, attention [28-34] has been widely used in
computer vision and other fields. Vaswani et al. [28] proposed
the self-attention mechanism, which has had a profound impact on
the design of the deep learning model. Fu et al. [30] proposed
DANet, which can adaptively integrate local features and their global
dependencies. Wang et al. [35] utilized spatial attention in an image
classification model. Through the backpropagation of a
convolutional neural network, they adaptively learned spatial
attention masks, allowing the model to focus on the significant
regions of the image. Hu et al. [36] proposed channel attention,
which adaptively learns the importance of each feature channel
through a neural network. Woo et al. [33] incorporated two
attention modules that concurrently capture channel-wise and
spatial relationships. Wang et al. [37] introduced a
straightforward and efficient “local” channel attention mechanism
to minimize computational overhead. Qiao et al. [38] introduced a
multi-frequency domain attention module to capture information
across different frequency domains. Similarly, Ding et al. [39]
proposed a contrastive attention module designed to amplify
local saliency. Building upon this foundation, Huang et al. [40]
proposed a cross-attention module that consolidates contextual
information both horizontally and vertically, which can gather
contextual information from all pixels. These methods have
demonstrated significant potential in single-modality feature
extraction. To effectively leverage the complementary information
between different modalities, this paper introduces a pooling
attention module that learns the differential information between
two distinct modalities and fully exploits the intermediate-level
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features in the convolutional network and the semantic
dependencies between modalities.

2.3 Cross-modal interaction

With the development of sensor technology, different types of
sensors can provide a variety of modal information for semantic
segmentation tasks. The information interaction between RGB and
other modalities can improve the performance of multimodal tasks
[21, 41–48]. Specifically, Li et al. [21, 41, 42], and Xiao et al. [44]
improved the quality of infrared and visible image fusion through
cross-modal interaction between RGB image and infrared image.
Xiang et al. [45] used a single-shot polarization sensor to build the
first RGB-P dataset, incorporated polarization sensing to obtain
supplementary information, and improved the accuracy of
segmentation for many categories, especially those with
polarization characteristics, such as glass. Shen et al. [46]
proposed a novel pyramid graph network targeting features,
which is closely connected behind the backbone network to
explore multi-scale spatial structural features. Shen et al. [47]
proposed a structure where graphs and transformers interact
constantly, enabling close collaboration between global and local
features for vehicle re-identification. Zhuang et al. [48] proposed a
network consisting of a two-streams (LiDAR stream and camera
stream), which extract features from two modes respectively to
realize information interaction between RGB and LIDAR modes.
In the task of brain tumor image segmentation, Zhu et al. [49]
proposed a new architecture that included an improved Swin
Transformer semantic segmentation module, an edge detection
module, and a feature fusion module. This design effectively
merged deep semantic and edge features, leveraging multi-modal
information to integrate global spatial data. Furthermore, Zhu et al.
[50] introduced the SDV-TUNet, a model that enriched the
network’s capacity to handle information by utilizing multi-
modal MRI data. They also introduced a multi-level edge feature
fusion (MEFF) module, emphasizing the importance of edge
information at different levels, which significantly enhanced the
precision and efficiency of 3D brain tumor segmentation. Liu et al.
[51, 52], fused multi-modal magnetic resonance imaging (MRI)
using an adversarial learning framework, treating image fusion as an
additional regularization method to aid feature learning, effectively
integrating multi-modal features to enhance the model’s
segmentation performance. Therefore, to fully exploit the features
of RGB and Depth images, we advocate for information exchange
between these two modalities to leverage their complementary
information, thereby enhancing the performance of RGB-D
semantic segmentation models.

3 Methods

3.1 Overview

Figure 1 depicts the overall structure of the proposed network.
The architecture follows an encoder-decoder design, employing skip
connections to facilitate information flow between encoding and
decoding layers. The encoder comprises a dual-branch

convolutional network, which is used to extract RGB features
and depth features. We utilize two pre-trained
ResNet50 networks as the backbone, which exclude the final
global average pooling layer and fully connected layers.
Subsequently, a decoder is employed to upsample the features
and integrate them, progressively restoring image resolution.

3.2 Network structure

Given a RGB image IRGB ∈ Rh×w×3, and a Depth image
IDep ∈ Rh×w×1, 3 × 3 convolution is used to extract them shallow
features F0

RGB and F0
Dep, which can be expressed as Eqs 1 and 2:

F0
RGB � Conv3×3 IRGB( ), (1)

F0
Dep � Conv3×3 IDep( ), (2)

where Conv3 × 3 denotes 3 × 3 convolution.
The network mainly consists of a four-layer encoder-decoder

and introduces two designed modules: MIM and PAM. PAM
implements different operations on RGB and depth branches,
named PAM-R and PAM-D, respectively. PAM-R refers to PAM
in the RGB branch, while PAM-D refers to the PAM in the depth
branch. Each layer of the encoder is a ResNetLayer. After F0

i passing
through the ResNetLayer, Fn

i is obtained, the nth layer of the encoder
can be expressed as Eq. 3:

Fn
i � Hn

i Fn−1
i( ), (3)

whereHn
i (n = 1, 2, 3, 4) represents the nth ResNetLayer, i ∈ {RGB,

Dep} denotes the RGB feature or Depth feature. Specifically, the
RGB features and depth features of the first three layers in the
ResNet encoder are fed into the PAM. PAM enhances features by
performing different operations on RGB features and depth
features, resulting in ~F

n
RGB and ~F

n
Dep, where n = 1, 2, 3.

Subsequently, the two features are combined by element-wise
addition to obtain ~F

n
Con, containing rich spatial location

information. Furthermore, the final RGB and depth features
from the ResNetLayer4 encoder are fed into the MIM to
capture complementary information within these two
modalities. The output features of the MIM are then fed into
the decoder, where each upsampling layer consists of two 3 × 3
convolutional layers. These layers are followed by batch
normalization (BN) and ReLU activation, with each upsampling
layer doubling the feature spatial dimensions while halving the
number of channels.

3.3 Pooling attention module

Within the low-level features extracted by the convolutional
neural network, we capture the fundamental attributes of the input
image. These low-level features are critical in modelling the image’s
foundational characteristics. However, they lack semantic
information from the deep-level neural network, such as object
shapes and categories. At the same time, during the upsampling
process in the decoding layer, there is a risk of losing certain
semantic information as the image resolution increases. To
address this issue, we introduce the Pooling Attention Module
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(PAM). For RGB features, we utilize average pooling to average the
information across all channels at each spatial location. This method
highlights the importance of each position, aiding in the better
capture of key spatial features such as edges and textures. For depth
features, we opt for max pooling, which accentuates the most
significant signals within each channel. This effectively enhances
the model’s response to crucial depth information while suppressing
less important channels. This approach allows us to more precisely
identify and emphasize important features in the depth map, thus
improving the overall segmentation accuracy. In the decoding layer,
the output from the PAM is first processed by the Refinement
Module (RM), effectively compensating for information loss during
the upsampling process, and increasing the network’s attention to
specific areas. This strategy improves the accuracy of segmentation
results and efficiently maintains the integrity of semantic
information. The structure of the PAM in RGB and depth
branches are shown in Figures 2, 3, respectively.

The input feature Fn
RGB ∈ Rh×w×c denotes the RGB feature passes

through average pooling to reduce the number of channels in the
feature map, which can be expressed as Eq. 4:

P � Havg Fn
RGB( ), (4)

where P ∈ Rh×w×1 represents the feature map that has aggregated the
information across all channels at each position. Havg denotes the
global average pooling operation. h, w represent the height and
width of the feature map. Then we get the weight vector P′ ∈ Rh×w×1

by sigmoid activation, which can be expressed as Eq. 5:

P′ � Sigmoid P( ), (5)

Then, we perform an Element-wise product for Fn
RGB and P′, and

the result ~F
n
RGB can be expressed as Eq. 6:

~F
n

RGB � Fn
RGB + Fn

RGB ⊗ P′( ), (6)

where ⊗ denotes the Element-wise product. Through the PAM in the
RGB branch, the original feature map, after being weighted by
spatial attention, is enhanced at important spatial locations, while
less important locations are relatively suppressed, thus enabling the
network to focus more on spatial regions that are useful for semantic
segmentation.

FIGURE 2
Structure of PAM in the RGB branch, referred to as PAM-R. Given an input feature Fn

RGB, it is first processed through an average pooling operation to
obtain P. Subsequently, P undergoes a sigmoid activation to produce P′. The activated feature P′ is then element-wise product with the original input
feature Fn

RGB to yield a preliminary result, which is further added to the initial feature Fn
RGB to generate the final output ~F

n

RGB.

FIGURE 3
Structure of PAM in the depth branch, referred to as PAM-D. The input feature Fn

Dep first passes through an adaptive pooling operation, resulting in A.
This is followed by a max pooling operation to produce A′. The output A′ then goes through a 1 × 1 convolution and a sigmoid activation to yield the
weight vector V (e.g., yellow) between 0 and 1. This V is element-wise product with the original feature Fn

Dep, and the product is subsequently added to
Fn
Dep to produce the final output ~F

n

Dep.
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The input feature Fn
Dep ∈ Rh×w×c denotes the Depth feature

passes through adaptive average pooling to reduce the feature
map to a smaller dimension, which can be expressed as Eq. 7:

A � Hada Fn
Dep( ), (7)

where A ∈ Rh′×w′×c represents the feature map that has been resized
by adaptive averaging pooling, Hada denotes the adaptive average
pooling operation. h′, w′ represent the height and width of the
output feature map, which we set h′ = 2 and w′ = 2. Then, we get the
output features A′ by max pooling the features after dimensionality
reduction, which can be expressed as Eq. 8:

A′ � Hmax A( ), (8)
where A′ ∈ R1×1×c represents the pooling result and then A′
undergoes a 1 × 1 convolution and then activation with the
sigmoid function, getting a weight vector V ∈ R1×1×c value
between 0 and 1. Hmax denotes the max pooling operation.
Finally, we perform an Element-wise product for Fn

Dep and V,
and the result ~F

n
Dep can be expressed as Eqs 9, 10:

V � Sigmoid Φ A′( )( ), (9)
~F
n

Dep � Fn
Dep + Fn

Dep ⊗ V( ), (10)

where ⊗ denotes the Element-wise product, Φ denotes 1 × 1
convolution. The PAM in the depth branch makes the network
pay more attention to local regions in the image, such as objects near
the background in the scene. Meanwhile, adaptive average pooling
can enhance the module’s flexibility, accommodating diverse input
feature map dimensions and fully retaining spatial position
information in depth features. ~F

n
Con in Figure 1 can be expressed

as Eq. 11:

~F
n

Con � ~F
n

RGB + ~F
n

Dep, (11)

During the upsampling process, ~F
n
Con (n = 1, 2, 3) is fed into

the decoder.

3.4 Multi-modal interaction module

When adjacent objects in an image share similar appearances,
distinguishing their categories becomes challenging. Factors such as
lighting variations and object overlap, especially in the corners, can lead
to their blending with the background. This complexity makes it
difficult to precisely identify object edges, leading to misclassification
of the object as part of the background. Depth information remains
unaffected by lighting conditions and can accurately differentiate
between objects and the background based on depth values.
Therefore, we design the MIM to supplement RGB information with
Depth features. Meanwhile, it utilizes RGB features to strengthen the
correlation between RGB and depth features. Depth features excel in
capturing object contours and edge information, compensating for the
spatial depth information that RGB features lack. Conversely, RGB
features play a crucial role in compensating for the deficiencies in depth
features, particularly in aspects such as color and texture, thereby
enriching the information content of depth features.

MIM achieves dual-mode feature fusion, as depicted in Figure 4.
Here, F4

RGB ∈ Rh×w×c and F4
Dep ∈ Rh×w×c correspond to the RGB

feature and depth feature from the ResNetLayer4. The feature
channels are denoted as “c”, and their spatial dimensions are h ×
w. First, the two feature maps are linearly mapped to generate multi-
head query(Q), key(K), and value(V) vectors. Here, “rgb” and “dep”
represent the RGB and depth features. These linear mappings are
accomplished via fully connected layers, where each attention head
possesses its unique weight matrix. For each attention head, we
calculate the dot product between two sets of Q and K and then
normalize the results to a range between 0 and 1 using the softmax
function to get the attention maps Wrgb and Wdep, which can be
expressed as Eqs 12, 13:

Wrgb � Softmax
QrgbK

T
dep��

d
√

k
( ) (12)

Wdep � Softmax
QdepK

T
rgb��

d
√

k
( ) (13)

FIGURE 4
Structure of the MIM. The RGB feature and the depth feature undergo linear transformations to generate two sets of Q, K, V (e.g., blue line) for multi-
head attention, where h denotes the number of attention heads set to 8. The weighted summation of input features F4

RGB and F4
Dep yields ~F

4

RGB and ~F
4

Dep ,
which are then element-wise added to obtain the output result ~F

4

Con.
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where dk represents the dimensionality of the K vector. Then, we
calculate the RGB weighted feature ~FRGB and the depth weighted
feature ~FDep, and the final output features ~F

4
RGB and ~F

4
Dep are

obtained through a residual connection, which can be expressed
as Eqs 14, 15:

~FRGB � Wrgb ⊗ V rgb (14)
~F
4

RGB � ~FRGB + F4
RGB (15)

where ~FRGB represents the RGB weighted feature,Vrgb represents the
value vector from the RGB feature, multiplying with weight matrix
Wrgb. ~F

4
RGB represents the RGB feature after the fusion with depth

feature. Likewise, we get the Eqs 16, 17:

~FDep � Wdep ⊗ Vdep (16)
~F
4

Dep � ~FDep + F4
Dep (17)

where ~FDep represents the depth weighted feature, Vdep represents
the value vector from the Depth feature, multiplying with weight
matrixWdep. ~F

4
Dep represents the depth feature after the fusion with

RGB feature, ⊗ represents the Element-wise product. Finally, we can
obtain the MIM output through Element-wise sum, which can be
expressed as Eq. 18:

~F
4

Con � ~F
4

RGB + ~F
4

Dep (18)

3.5 Refinement module

RGB features provide rich colour and texture information, while
depth features provide spatial and shape information. The fusion of
these two types of features can help the network to understand the
scene more comprehensively. However, due to the differences
between the two modalities, simple addition might introduce
some noise, affecting the segmentation results. To address this
issue, we propose a Refinement Module (RM) that, through a

CBR structure (Convolution; Batch Normalization; ReLU), allows
the network to adaptively re-extract and optimize the fused features,
filtering out unnecessary information and retaining features that are
more useful for semantic segmentation. Moreover, by utilizing self-
attention, the global information of the features is enhanced,
enabling a better understanding of the global structure of the
input features, thereby improving performance. The structure of
the RM is shown in Figure 5.

As shown in Figure 5, ~F
n
Con is processed by the CBR operation to

generate F′nCon, which can be expressed as Eq. 19:

F′nCon � CBR ~F
n

Con( ) (19)

where n = 1, 2, 3. CBR represents a 1 × 1 convolution followed by
Batch Normalization and ReLU activate function. Then, F′nCon is
linearly mapped to generate query(Q), key(K), and value(V) vectors.
Through a self-attention module, the final output result is generated,
which can be expressed as Eq. 20:

F̂
n

Con � Softmax
QKT��
d

√
k

( ) ⊗ V + ~F
n

Con (20)

RM further extracts and refines the fused features to enhance the
feature representation, and F̂

n
Con is fed into the decoder.

3.6 Loss function

In this paper, the network performs supervised learning on four
different levels of decoding features. We employ nearest-neighbor
interpolation to reduce the resolution of semantic labels.
Additionally, 1 × 1 convolutions and Softmax functions are
utilized to compute the classification probability for each pixel
within the output features from the four upsample layers,
respectively. The loss function Li of layer i is the pixel-level cross
entropy loss, which can be expressed as Eq. 21:

Li � − 1
Ni

∑
∀p,q

Y p, q( )log Y′ p, q( )( ) (21)

FIGURE 5
Design of the RefinementModule: following a 1 × 1 convolution, BatchNorm, and ReLU activation function, the featuremap F′nCon is produced. Then,
utilizing a self-attention operation, the weighted feature F̂

n

Con is derived, enhancing the module’s ability to focus on salient aspects of the input.
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where Ni denotes the number of pixels in layer i. p, q represent the
coordinate positions of each pixel in the image. Specifically, p refers
to the row coordinate of the pixel, while q refers to the column
coordinate. Y′ is the classification probability of the output, and Y is
the label category. The final loss function L of the network is
obtained by summing the pixel-level loss functions of the four
decoding layers, which can be expressed as Eq. 22:

L � ∑4
i�1

Li (22)

By optimizing the above loss function, the network can get the
final segmentation result.

4 Experimental results and analysis

4.1 Experimental setup

NYU-Depth V2 dataset [53] and SUN RGB-D dataset [54] are
used to evaluate the proposed method. NYU-Depth V2 dataset is a
widely used indoor scene understanding dataset for computer vision
and deep learning research. It is an aggregation of video sequences
from various indoor scenes recorded by RGB-D cameras from the
Microsoft Kinect and is an updated version of the NYU-Depth
dataset published by Nathan Silberman and Rob Fergus in 2011. It
contains 1,449 RGB-D images, depth images, and semantic tags in
the indoor environment. The dataset includes different indoor
scenes, scene types, and unlabeled frames, and each object can be
represented by a class and an instance number. SUN RGB-D dataset
contains image samples from multiple scenes, covering various
indoor scenes such as offices, bedrooms, and living rooms. It has
37 categories and contains 10,335 RGB-D images with pixel-level
annotations, of which 5,285 are used as training images and
5,050 are used as test images. This special dataset is captured by
four different sensors: Intel RealSence, Asus Xtion, Kinect v1, and
v2. Besides, this densely annotated dataset includes 146,617 2D
polygons, 64,595 3D bounding boxes with accurate object
orientations, and a 3D room layout as well as an imaged-based
scene category.

We evaluate the results using two standard metrics, Pixel
Accuracy (Pix. Acc) and Mean Intersection Over Union (mIoU).
Pix. Acc refers to pixel accuracy, which is the simplest metric that
represents the proportion of correctly labelled pixels to the total
number of pixels, which can be expressed as Eq. 23:

Pix.Acc � ∑k
i�0pii

∑k
i�0∑k

j�0pij

. (23)

where piimeans to predict the correct value, and pijmeans to predict
i to j. k represents the number of categories. In addition, Intersection
over Union (IoU) is a measure of semantic segmentation, where the
IoU ratio of a class is the ratio of the IoU of its true labels and
predicted values, while mIoU is the average IoU ratio of each class in
the dataset, which can be expressed as Eq. 24:

mIoU � 1
k + 1

∑k
i�0

pii

∑k
j�0pij + ∑k

j�0pji − pii

. (24)

where pij represents the predict i as j, and pji represents the predict j
as i, piimeans to predict the correct value, k represents the number of
categories.

We implement and train our proposed network using the
PyTorch framework. To enhance the diversity of the training
data, we apply random scaling and mirroring. Subsequently, all

TABLE 1 MIPANet compared to the state-of-the-art methods on the NYU-
Depth V2 dataset.

Method Backbone mIoU (%) Pix.Acc (%)

ESANet ResNet18 48.2 —

IEMNet Res34NBt1D 51.3 76.8

SGACNet 2 × Res34NBt1D 49.4 75.6

Z-ACN ResNet50 50.0 —

DynMM ResNet50 51.0 —

RDFNet 2 × ResNet50 47.7 74.8

RAFNet 2 × ResNet50 47.5 73.8

SA-Gate 2 × ResNet50 50.4 —

ESANet 2 × ResNet50 50.5 —

RedNet 2 × ResNet50 47.2 —

ACNet 3 × ResNet50 48.3 —

SGNet ResNet101 49.6 75.6

RDFNet 2 × ResNet101 49.1 75.6

ShapeConv ResNet101 51.3 76.4

Baseline 2 × ResNet50 47.4 75.1

Ours (MIPANet) 2 × ResNet50 52.3 77.6

The bold values mean the highest results.

TABLE 2 MIPANet compared to the state-of-the-art methods on the SUN
RGB-D dataset.

Method Backbone mIoU (%) Pix.Acc (%)

IEMNet Res34NBt1D 48.3 81.9

EMSANet 2 × Res34NBt1D 48.5 —

RAFNet 2 × ResNet50 47.2 81.3

ESANet 2 × ResNet50 48.3 —

RedNet 2 × ResNet50 47.8 81.3

ACNet 3 × ResNet50 48.1 —

SGNet ResNet101 47.1 81.0

CANet ResNet101 48.3 82.0

RDFNet ResNet101 48.2 82.3

ShapeConv ResNet101 48.6 82.2

RDFNet 2 × ResNet152 47.7 81.5

Baseline 2 × ResNet50 45.5 81.1

Ours (MIPANet) 2 × ResNet50 49.1 82.5

The bold values mean the highest results.
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RGB and depth images are resized to 480 × 480 for network inputs,
and semantic labels are adjusted to sizes of 480 × 480, 240 × 240,
120 × 120, and 60 × 60 for deep supervision training. As the
backbone for our encoder, we utilize the ResNet50 pre-trained
[55] on the ImageNet dataset [56]. Our baseline model uses two
branches as encoders to extract RGB and depth features,
respectively, while excluding the PAM during the extraction
process. Each branch is composed of four ResNet50 layers. In the
final layer of the network, RGB and depth features are merged by
element-wise addition, without employing the MIM. The output of
element-wise addition is then used as input to the encoder for
upsampling operations, resulting in the final segmentation result. To
refine the network structure, following [57-59], we adjust it by
replacing the 7 × 7 convolution in the input stem with three
consecutive 3 × 3 convolutions. The training is conducted on an
NVIDIA GeForce GTX 3090 GPU using stochastic gradient descent
optimization. Parameters are set with a batch size of 6, an initial
learning rate of 0.003, 500 epochs, and momentum and weight decay
values of 0.9 and 0.0005, respectively.

4.2 Quantitative experimental results on
NYU-Depth V2 and SUN RGB-D datasets

To validate the effectiveness of the proposed model in this paper,
we compare the proposed method with state-of-the-arts methods

(ESANet [24], IEMNet [60], SGACNet [61], Z-ACN [62], DynMM
[63], RDFNet [7], RAFNet [64], SA-Gate [65], RedNet [8], ACNet
[23], SGNet [27], ShapeConv [66]) on the NYU-Depth V2 dataset.
For a fair comparison, we compare our method with others using the
ResNet architecture, which employ ResNet with varying depths and
quantities.

Table 1 illustrates our superior performance regarding mIoU
and Acc metrics compared to other methods. Specifically, with
ResNet50 serving as the encoder in our network, the Pix. Acc
and mIoU for semantic segmentation on the NYU-Depth V2 test
set reached 77.6% and 52.3%. For example, our method improved
the mIoU by 4.9% compared to the baseline method. Compared to
the runner-up method DynMMXue and Marculescu (2023), which
also employs ResNet50, our method achieved a 1.3% improvement.
Similarly, compared to the suboptimal method ShapeConvCao et al.
(2021), which uses the deeper ResNet101, our method achieved a
1.0% improvement. Our method achieves better results on networks
with ResNet50 as the backbone than some methods with
ResNet101 as the backbone, showcasing the effectiveness of our
carefully designed network structure.

Then, we compare the proposed method with state-of-the-
arts methods (IEMNet [60], EMSANet [67], RAFNet [64],
ESANet [24], RedNet [8], ACNet [23], SGNet [27], CANet
[68], RDFNet [7], ShapeConv [66]) on the SUN RGB-D
dataset. As depicted in Table 2, our approach consistently
achieves a higher mIoU score on the SUN RGB-D dataset

FIGURE 6
Visual comparisons on the NYU-Depth V2 dataset.
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FIGURE 7
Visual comparisons on the SUN RGB-D dataset.

FIGURE 8
Images from left to right represent (A) the RGB image, (B) the segmentation result of Baseline, (C) CAM of Baseline, (D) the segmentation results of
MIPANet (Ours) and (E) CAM of MIPANet. The red box indicates the prominent areas of effect.
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than all other methods. For example, our method improved the
mIoU by 3.6% compared to the baseline method. Compared to
the suboptimal method ESANet [24], which also employs
ResNet50, our method achieved a 0.8% improvement.
Similarly, compared to the suboptimal method ShapeConv
[66], which uses the deeper ResNet101, our method achieved
a 0.5% improvement. This observation underscores our
module’s ability to maintain superior segmentation accuracy,
even when dealing with the extensive SUN RGB-D dataset.

4.3 Visualization results on NYU-Depth
V2 and SUN RGB-D datasets

To visually highlight the advancements made by our method, we
provide visualization results of the network on the NYU-Depth
V2 dataset and SUN RGB-D datasets, as shown in Figures 6, 7. From
left to right, the RGB image, the Depth image, the baseline model
results with ResNet50 backbone, ACNet, ESANet, MIPANet (Ours),
and Ground Truth.

As shown in Figure 6, compared to the baseline, our method
significantly improve segmentation results. Notably, the dashed box
in the figure showcases our network enrich with depth information
accurately distinguishes objects from the background. For instance,
in the visualization results of the fourth image, the baseline
erroneously categorizes the mirror on the wall as part of the
background, in the visualization results of the second image, the
ACNet and the ESANet mistook the carpet for a part of the floor. In
contrast, leveraging depth information, our network discerns the
distinct distance information of the mirror from the background,
leading to a correct classification of the mirror. The proposed
method has achieved precise segmentation outcomes in diverse
and intricate indoor scenes. Moreover, it excels in segmenting
challenging objects like “carpets” and “books” while delivering
finer-edge segmentation results.

As shown in Figure 7, our method also achieve better
experimental results on the SUN RGB-D dataset. For example, in
the second row of Figure 7, the toilet and wall share a similar white
color and partially overlap in position, making it difficult for the
network to distinguish between them accurately. Compared to other
methods, our MIPA approach demonstrates superior effectiveness
in segmenting toilet. In the third row of Figure 7, our method
accurately segments the power switch on the wall, further
demonstrating its effectiveness.

Furthermore, we verify the effectiveness of our method by providing
visualization results of class activation mapping (CAM). These
visualizations demonstrate that MIPANet effectively focuses on
regions containing adjacent or overlapping objects. As shown in
Figure 8, compared to the baseline cam Figure 8C, the more
prominent red areas in image Figure 8E indicate that our method
focuses more on specific regions. For example, in the first row, the
adjacent pillow and headboard are highlighted. In the second row, the
trash can overlaps with the wall and has a similar color, the computer is
close to the tabletop. In the third row, the paper is attached to the
refrigerator and cabinet. The network’s attention to these areas increased,
compared to the baseline segmentation result in Figure 8B, our method
achievesmore accurate segmentation results, as shown in Figure 8D. The
visualization results indicate that our method better focuses on adjacent
and overlapping objects in the image.

4.4 Ablation study

To investigate the impact of different modules on segmentation
performance, we conduct ablation experiments on NYU-Depth V2 and
SUN-RGBD datasets, as depicted in Tables 3, 4. For instance, in NYU-
Depth V2, our PAMmodule exhibit a superiority of 1.5% and 0.9% over
the baseline concerning mIoU and Pix. Acc indicators. Similarly, our
MIM module demonstrate a superiority of 3.7% and 1.9% over the
baseline regarding mIoU and Pix. Acc. Additionally, the inclusion of the
RM has further improved the performance of the module. The result
suggests that each proposed module can independently enhance
segmentation accuracy. Our module surpasses the baseline in fusing
cross-modal features, yielding superior results on both datasets. Using
PAM,MIM and RMmodules, we achieve the highest mIoU of 52.3% on
the NYU-Depth V2 dataset and the highest mIoU of 49.1% on the SUN
RGB-D dataset. The result highlights that our designed modules can be
collectively optimized to enhance segmentation accuracy.

TABLE 3 Ablation studies on NYU-Depth V2 dataset for PAM, MIM and RM.

Method mIoU (%) Pix.Acc (%)

ResNet50 (Baseline) 47.4 75.1

ResNet50 + PAM 48.9 76.0

ResNet50 + PAM + RM 49.5 76.0

ResNet50 + MIM 51.1 77.0

ResNet50 + PAM + MIM 51.9 77.2

ResNet50 + PAM + MIM + RM (Ours) 52.3 77.6

TABLE 4 Ablation studies on SUN RGB-D dataset for PAM, MIM and RM.

Method mIoU (%) Pix.Acc (%)

ResNet50 (Baseline) 45.5 81.1

ResNet50 + PAM 47.9 81.3

ResNet50 + PAM + RM 48.1 81.3

ResNet50 + MIM 48.3 81.5

ResNet50 + PAM + MIM 48.8 82.3

ResNet50 + PAM + MIM + RM (Ours) 49.1 82.5

TABLE 5 Performance comparison of the different methods on the number
of model parameters, FLOPs and testing time.

Models Parameter(M) FLOPs(G) Time (ms)

ACNet 116.6 126.3 45.0

RedNet 82.0 101.8 34.7

RDFNet 443.8 648.7 71.9

SA-Gate 110.6 176.5 53.1

MIPANet 360.0 634.2 62.4
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4.5 Computational complexity analysis

In this section, we analyze the computational complexity of the
different methods from three aspects: the number of model parameters,
FLOPs, the time required for testing. The results are listed in Table 5. For
the evaluation of computational complexity, the size of the input images
is standardized to 480 × 640 pixels. The test time is the time taken to
process one pair of RGB and depth images. As shown in Table 5, the
parameter quantity and FLOPs of our model are moderate. However,
compared to the comparison methods, our approach achieves the
highest mIoU and exhibits the most visually appealing results.

5 Conclusion

In this paper, we tackle a fundamental challenge in RGB-D
semantic segmentation—efficiently fusing features from two
distinct modalities. We design an innovative multi-modal
interaction and pooling attention network, which uses a small and
flexible PAM module in the shallow layer of the network to enhance
the feature extraction capability of the network and uses a MIM
module in the last layer of the network to integrate RGB features and
depth features effectively and then we design a RM during the
upsampling stage for feature refinement. The network increases its
focus on areas with more potential adjacent objects and overlaps,
leading to improvement in the accuracy of RGB-D semantic
segmentation. However, due to the attention mechanism adopted
by our proposed network, the computational complexity of the
network is relatively high. In future research, we will further
optimize the network structure to reduce its computational
complexity. In addition, we expect to further improve the accuracy
of RGB-D segmentation by integrating multiple tasks such as depth
estimation and semantic segmentation into a unified framework.
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