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By caching popular content on edge servers closer to users to respond to users’
content requests in 6G networks, the transmission load of backhaul links can be
reduced. However, the time-varying characteristics of content prevalence leads
to the issue that the cache content may not match the user’s needs, resulting in a
decrease in cache success ratio. To solve these issues, we proposed a cache
distribution strategy based on epidemic dynamics (CDSED) for 6G edge network.
First, a 6G edge caching contentmodel (6G ECCM) is constructed to establish the
process of cache content propagation among users as an infectious disease
propagation process, analyze the distribution of users’ interest in cache content
and obtain the cache content state probability prediction equation, and use the
cache content state probability prediction equation to predict the cache content
prevalence. Second, based on the predicted prevalence results, a prevalence
predictive genetic-annealing cache content algorithm (PGAC) is proposed with
the optimization objective of maximizing the cache success ratio. The algorithm
designs the selection function of the traditional genetic algorithm as a simulated
annealing selection function based on the cache content success ratio, which
avoids the defect of the genetic algorithm that converges to the locally optimum
cache strategy too early and enhances the cache success ratio. Finally, the
optimum cache content decision is solved by iterative alternation. Simulation
results demonstrate that CDSED strategy can enhance cache success ratio than
the LRU strategy, the LFU strategy, and the MPC strategy.
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1 Introduction

6G mobile communication network will support a variety of applications, for
instance immersive cloud augmented reality, autonomous driving, holographic
communication, smart manufacturing and other new applications [1–3]. These new
applications bring convenience to people’s lives, but also inevitably increase mobile
data traffic. And when popular services are repeatedly requested in a short period of
time, 6G cloud server backhaul is facing tremendous pressure [4–6]. In order to fulfill
the application requirements and reduce the pressure on the cloud server, the edge
caching technology allows for service content caching on edge servers, enabling users to
retrieve content from these edge servers to meet their repetitive requests, so as to cope
with the swift expansion of 6G wireless service load and significantly reduce the
transmission load of 6G cloud server [7–9]. Therefore, the research of edge caching
technology is of paramount importance for 6G.
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Compared with the large-scale user request content, the cache
resources of the edge network are limited. This means that only a
small amount of popular content requested by users can be pre-
cached on the edge of the network. However, a plentiful amount of
content is generated at every moment in real life. How to find
popular content requested by users in a massive content repository is
a very challenging problem. At present, most caching strategies
adopt rule-based content caching methods, such as Least Recently
Used (LRU) [10] and Least Frequently Used (LFU) [11]. Although
these strategies achieve real-time updates of cache content at the
edge network, they do not fully exploit the content request patterns
of users at different time points, leading to an inability to accurately
perceive the prevalence patterns of different content at future
moments, making it difficult to achieve accurate prediction of
content prevalence.

The fundamental purpose of edge caching is to decide what
content to cache in edge servers [12,13], and prediction of content
prevalence is a major issue in existing caching research. Many
researchers have explored the field of content prevalence
prediction and proposed various caching strategies. Wu et al.[14]
introduced a collaborative caching strategy based on a social-aware
graph to minimize content download latency, caching the most
popular content based on weighted content prevalence. Sun
et al.[15] proposed an intelligent gateway-assisted edge caching
strategy, using a predictive algorithm based on heterogeneous
information networks to anticipate end-user preferences for new
content files. Zhu et al.[16] studied multi-layer collaborative edge
caching in integrated space-ground networks, formulating a content
placement problem based on content prevalence to minimize users’
average content retrieval delay. Wang et al.[17] proposed a vehicle-
to-vehicle collaborative caching strategy based on content request
prediction, using historical content request information and a
reinforcement learning method to obtain optimum caching
decisions. Ayenew et al.[18] proposed a collaborative demand-
aware caching strategy based on the separable allocation
problem, solving the cache success ratio maximization problem
using recursive enumeration. Tang et al.[19] modeled user
request behavior and user preferences using MDP and Zipf
distribution, and proposed a new reinforcement learning-based
algorithm to reveal file prevalence and user preferences. Zhu
et al.[20] developed an AoI-based time attention graph neural
network to maximize the accuracy of user interest prediction. Liu
et al.[21] designed a context-aware prevalence learning algorithm to
adapt to the changing trend of content prevalence. However, most of
the aforementioned caching strategies assume that content
prevalence follows a static distribution. In actual scenarios,
content prevalence is time-varying and usually not known in
advance, as user interest in a cache content can spread through
word-of-mouth in social networks, leading to the time-varying
nature of content prevalence in the entire network [22].
Therefore, static prevalence distribution models cannot accurately
describe the dynamic characteristics of content prevalence.

Users’ interests are constantly changing, and new content is
constantly being generated [23,24]. Thus, some researchers have
proposed learning-based caching algorithms to adapt to the
changing prevalence of content. Zhang et al.[25] designed a
learning-based edge collaborative caching scheme, using a
temporal convolutional network to predict the prevalence of

future content. Mehrizi et al.[26] developed a Bayesian dynamic
model of content requests, which can accurately predict prevalence
using spatiotemporal correlation. Nguyen et al.[27] proposed a
caching strategy based on a hierarchical deep learning
architecture to maximize cache success ratio by predicting
networks and user environments. Tao et al.[28] proposed a
prevalence prediction strategy based on a content feature-based
content request probability model, in which model parameters are
learned through Bayesian learning. Li et al.[29] proposed a
similarity-based content popularity prediction method to predict
the popularity of new content by introducing a dynamic content
directory. Jiang et al.[30] proposed a method to guarantee the
accuracy of prevalence prediction by predicting user locations
and analyzing request data of specific users in the next time
period. Gao et al.[31] designed a probability-based content
placement and replacement strategy, aiming to increase cache
success ratio under changing instantaneous content prevalence
and converge to target content cache probability under constant
instantaneous content prevalence. Fan et al.[32] proposed an
evolving learning-based content caching strategy, which can
adaptively learn the changing prevalence of content over time
and determine which content should be replaced when the cache
is full. A caching scheme based on private federated learning is proposed
[33], which uses a federated learning framework and a pseudo-rating
matrix to collect statistical features of user groups by predicting the
prevalence of content. Although the above-mentioned research
considers the time-varying characteristics of content prevalence, they
rarely consider the impact of caching strategies on user content
propagation. In the edge network with limited caching resources,
caching affects the propagation of content among users, thereby
affecting the prevalence of content. Moreover, the above-mentioned
learning-based prevalence prediction algorithms rely on large amounts
of historical data and trained models, resulting in high training
complexity and are not suitable for new popular content.

In summary, although many studies have shown that learning-
based edge caching algorithms significantly improve cache
performance in predicting content popularity, in practical
scenarios, user interests are constantly changing and new content
continues to emerge. The above-mentioned algorithms rely heavily
on a large amount of historical data, which mainly reflects past user
behaviors and interests. However, these data may not capture users’
immediate interest changes in new content, making them unsuitable
for new popular content. Additionally, the allocation of cache
resources can affect the dissemination of content among users,
thereby influencing content popularity. Therefore, optimizing
cache performance based on popularity prediction in scenarios
where content popularity is constantly changing and typically
unknown has become a critical issue that needs to be addressed.

In view of the above problems, this paper proposes a cache
distribution strategy based on epidemic dynamics for 6G edge
network. This strategy studies the influence of cache content
propagation process and content prevalence based on the
epidemic model in 6G edge network. According to the
prevalence prediction results of the content, a genetic simulated
annealing cache content algorithm is proposed to provide the
optimum cache strategy for the 6G edge caching network to
maximize the cache success ratio, thereby improving the cache
performance.
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The primary contributions of this paper can be outlined
as follows:

1) The 6G ECCM is established, and the user’s interest state
distribution of the cache content is analyzed and the user’s
cache content state probability prediction equation is
obtained, and the content prevalence prediction is realized
from the perspective of the user individual.

2) Then this study proposed a prevalence predictive genetic-
annealing cache content algorithm, which redesigned the
selection function based on the traditional genetic algorithm
and incorporated simulated annealing selection, using the
cache success ratio, into chromosome selection, thereby
improving the cache success ratio.

3) In a scenario involving a single edge service base station
network, an experiment was designed to compare the
CDSED, LFU, LRU, and MPC strategies, validating the
cache optimization effect of the CDSED strategy.

The rest of this paper is organized as follows: In Section 2, the
System Model is introduced. In Section 3, Section 4, the
optimization problem and PGAC algorithm are proposed. In
Section 5, the performance of the CDSED strategy is evaluated,
and the simulation results and analysis are given. In Section 6, the
conclusion of this paper is proposed.

2 System model

2.1 6G edge caching network

In this paper, we construct a 6G edge caching network, as shown
in Figure 1, which is composed of a 6G cloud content repository, M

edge service base stations and N users. The 6G cloud content
repository consists of cloud servers that store all the cache
contents. Assuming that there are K contents to be cached within
the edge service base stations, the set of cache contents can be
indicated as f = {f1, f2, . . . , fk, . . . , fK}, fk is expressed as the kth cache
content with size Ck bit. The set of edge service base stations is
indicated by set B = {B1, B2, . . . , Bm, . . . , BM}. Each edge service base
station has a certain storage capacity. However, it can only store
content that satisfies the needs of some users because of the
limitation of the cache capacity of the base station. The set of
cache resources of the edge service base station is represented by set
Cbase � {c1base, c2base, . . . , cmbase, . . . , cMbase}, wherein cmbase represents the
cache capacity of the edge service base station Bm. Considering the
different prevalence of content by users under the service area of
different edge service base stations, edge service base stations adopt
different caching strategies. The set of the edge service base station
caching strategies is S � S1, S2, . . . , Sm, . . . , SM{ }, Sm is the caching
strategy of the edge service base station Bm. There are a total of K
contents to be cached, which can be denoted as Sm = {sm,1, sm,2, . . .
sm,k, . . . , sm,K}, where sm,k indicates the probability that the edge
service base station Bm will cache the kth content, sm,k = 1 indicates
that the cache content fk is being cached by the edge service base
station Bm, and sm,k = 0 denotes that the edge service base station Bm
does not have the cache content fk. Therefore, the set of caching
strategies S of the edge service base station is a M × K matrix,
i.e., S � (sm,k)M×K.

Since the edge service base station has a certain service range, all
users in the 6G edge caching network are divided into M user
subsets, denoted as U = {U1, U2, . . . , Um, . . . , UM}. This means that
all users under the service range of each edge service base station are
categorized into one user set, and each user can only communicate

FIGURE 1
6G edge caching network.
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with the edge service base station within the user set in which it is
located, where Um indicates the set of users who under the service
area of the edge service base station BM,
Um � {u1m, u2m, . . . , unm, . . . , uNm

m }, and Nm is the sum total of users
under the service area of the edge service base station BM. The
locations of all users and edge service base stations obey a Poisson
distribution with distribution density coefficients λα and λβ.

All 6G edge service base stations can serve as edge servers in the
6G edge caching network. These base stations caching content from
the cloud server based on prevalence prediction. Users is curious
about the cache content, they will first expresses its demand by
sending a content request to the 6G edge service base station. If the
requested cache content is already cached, it will be transmitted
directly to the user through the wireless communication link,
completing the download process. If the 6G edge service base
station has not cache the requested content, it must
communicate with the 6G cloud content repository through the
backhaul link and download the requested content from the 6G
cloud content repository.

2.2 6G edge caching content model

An edge service base station caching a particular piece of content
may affect other users in the neighboring area, leading them to
download the same content. This content download can spread
among the user community, creating a process similar to the spread
of an epidemic over time [34,35]. Therefore, the process of spreading
cache content among users can be modeled by the process of
spreading epidemics.

Considering that users who receive content do not immediately
forward it to other users, but rather need some time to contemplate,
understand, or decide whether to forward it, which is closer to the
actual propagation process among users, this paper uses the SEIRD
model to simulate the content propagation process among users and
defines the user’s propagation state about the cache content fk
as follows:

S: the user does not have access to information about the
cache content fk.

E: Users are influenced by cache content commended by other
users and may be curious about that cache content fk. At the same
time, users send requests to the edge service base station and wait to
obtain the cache content. Users may also choose to ignore
commendations from other users regarding cache content.

I: users are curious about cache content fk and have successfully
obtained content fk from the service base station.

D: the user downloads the cache content fk from the edge service
base station BM and commends it to the neighboring users.

R: the user are not curious about cache content fk or users lose
interest in cache content fk after acquiring it. They can neither
influence nor be influenced by others, and they do not actively
commend the cache content fk to other users.

This study supposed that the user is in state S at the initial
moment, and they reaches out to the user in state D through the
social network, it becomes in state E. State E user does next with the
cache content fk is divided into two scenarios: one is that he is not
curious about the cache content fk and transitions directly from the E
state to the R state, and the other scenario is that it is curious about

the cache content fk and stays in the E state. The state is transformed
from E to I when the user acquires fk. Considering the selfishness of
the user, after acquiring the cache content fk, the user may choose
not to commend the content to other users, or it may transform to D
state to give the cache content to other users by word-of-mouth. Finally,
the user may lose their interest in the cache content after acquiring it,
and the user state is transformed from I or D state R state.

By analogizing this state transfer process with the infectious
disease process, a 6G ECCM is established, as shown in Figure 2. In
this paper, we use Skm(t),Ek

m(t), Ikm(t),Dk
m(t), andRk

m(t) to denote the
count of users in the above five states in the service area of edge service
base station Bm at time t Assuming that the sum total of users in the
entire edge network and the sum total of users in the service area of each
edge service base station are kept stable, and the users can only
transition from one state to another in each unit of time, the
propagation state transfer equation for content fk can be established as:

dSkm t( )
dt

� −γm,kS
k
m t( ) I

k
m t( )
Nm

(1)

dEk
m t( )
dt

� γm,kS
k
m t( ) I

k
m t( )
Nm

− χm,k + ηm,k( )Ek
m t( ) (2)

dIkm t( )
dt

� ηm,kE
k
m t( ) − δm,k + ωm,k( )Ikm t( ) (3)

dDk
m t( )
dt

� δm,kI
k
m t( ) − ξm,kD

k
m t( ) (4)

dRk
m t( )
dt

� ξm,kD
k
m t( ) + χm,kE

k
m t( ) + ωm,kI

k
m t( ) (5)

γm,k is the influence rate, the probability that user unm successfully
receives commendations from other users for cache content fk
through the social network, which can be formulated as:

γm,k � ςϕm (6)

where ς is the probability of establishing a social relationship
between user unm and other users under the range of the same

edge service base station; ϕm � ∑Nm

n�1
ϕnm, ϕ

n
m is the probability of the

existence of other users in the neighboring area of user unm,

ϕnm � 1 − e−λαπR2
m,n , Rm,n indicates the physical distance between

user unm and other users to establish communication.
ηm,k is the service rate, the probability that a user in state E can

successfully acquire the cache content fk from the edge service base
station. The channel capacity [36] between edge serving base station
Bm and user unm is calculated as:

Cn
m � Wm log2 1 + Pmh

n
m

N0
( ) (7)

where Wm is the channel bandwidth, Pm is the transmission power
of the edge service base station Bm, and hnm is defined as the channel
gain of the wireless link between the edge service base station Bm and
the user. hnm � σ0R−λ

m,n, σ0 is the path loss when the distance is 1 m; λ
is the path loss index; and N0 is the Gaussian channel noise power.

The ability of a user to access the cache content from the edge
service base station is affected by the backhaul link capacity between
the edge service base station and the cloud content repository, the
channel capacity between the user and the edge service base station,
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and the magnitude of the cache content, and the total count of users
able to access the content from the edge service base station needs to
satisfy a certain requirement, and thus the service rate can be
calculated as:

ηnm,k � p τnm,k ≤ τm,n,k′( ) (8)

where τnm,k is the magnitude of the content that can be transmitted
over the wireless communication link between the user and the base
station. It can be expressed as:

τnm,k �
Cn

m

Ck
� Wm log2 1 + pmh

n
m

N0
( )
Ck

(9)

Then we substitute Eq. 9 into Eq. 8 can be derived:

p τnm,k < τm,n,k′( ) � p Rm,n ≥
N0 2

τm,k′ Ck
Wm − 1( )

Pmσ0

⎛⎜⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎟⎠
−1
λ⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ (10)

The location of the user obeys the Poisson distribution, and
according to the probability calculation formula of Poisson
distribution, Eq. 10 can be formulated as:

ηm,k � p τm,k < τm,k′( ) � e−λαF (11)

F �
N0

−1
λ 2

τm,k′ Ck
Wm − 1( )−1

λ

Pmσ0( )−1λ (12)

τm,k′ is the maximum amount of content that can be supported for
transmission from the user to the base station. This value takes into
account the transmission limitations from the user to the base
station as well as the limitations of the backhaul link from the
base station to the cloud content repository, τm,n,k′ � Cn

m,max+Cm
core

Ck
,

where Cn
m,max denotes the maximum channel capacity for

transmission between user unm and edge service base station Bm;
Cm
core is the upper limit of the backhaul link capacity from the edge

service base station to the cloud content repository.
Substituting τm,k′ into Eqs 11, 12, we get:

F �
N0

−1
λ 2

Cnm,max+Cmcore
Wm − 1( )−1

λ

Pmσ0( )−1λ (13)

δm,k is the commendation rate, the probability that a user will
commend the cache content fk to other users.

χm,k is refusal rate, the probability that user is not favor of fk.

ωm,k and ξm,k are loss rate, the probability that user loses interest
in fk after acquiring it.

It is difficult to directly solve the specific expressions for Skm(t),
Ek
m(t), Ikm(t), Dk

m(t), and Rk
m(t) in the state transfer differential

equations obtained by bringing Eqs 6–13 into Eqs 1–5. Therefore, we
defined pS

m,n,k(t), pE
m,n,k(t), pD

m,n,k(t), pI
m,n,k(t), and pR

m,n,k(t) as the
probabilities that user unm is in the states S, E, I,D, R at moment t. We
can get the probability that the unm is in each propagation state at the
moment t + 1 based on the Markov chain method as follow:

pS
m,n,k t + 1( ) � 1 − γnm,kp

I
m,n,k t( )( )pS

m,n,k t( ) (14)
pE
m,n,k t + 1( ) � γnm,kp

I
m,n,k t( )pS

m,n,k t( ) + 1 − ηnm,k − χnm,k( )pE
m,n,k t( )

(15)
pI
m,n,k t + 1( ) � ηnm,kp

E
m,n,k t( ) + 1 − δnm,k − ωn

m,k( )pI
m,n,k t( ) (16)

pD
m,n,k t + 1( ) � δm,kp

I
m,n,k t( ) + 1 − ξm,k( )pD

m,n,k t( ) (17)
pR
m,n,k t + 1( ) � χnm,kp

E
m,n,k t( ) + ξnm,kp

D
m,n,k t( ) + ωn

m,kp
I
m,n,k t( )

+ pR
m,n,k t( ) (18)

The right side of Eq. 14 represents the probability that unm will
remain in state S at time t + 1.

The first part of the right-hand side in Eq. 15 indicates the
probability that the user is in the state E at the moment t + 1 after
accessing the cache content; The second part signifies the probability
of the user remaining in state E from moment t to the moment t + 1.

Similarly, the first part of Eq. 16 denotes the probability that
the user unm is in the state E at the moment t and succeeds in
obtaining the content and thus transitions to the state I at the
moment t + 1; the second term indicates the probability that the
user unm exists at the moment t with the probability of pI

m,n,k, and
then remains in this state up to the moment t + 1 with the
probability (1 − δnm,k − ωn

m,k).
The first part of Eq. 17 is the probability that the user turns

into D state with the probability of δm,k and commend the content
to the neighboring users; the second term represents that the user
keeps the original state unchanged with probability 1 − ξm,k at the
moment t + 1.

The first three parts on the right-hand side of Eq. 18 are the
probabilities that the user is known at moment t to turn into state R
by moment t + 1; and the fourth term represents the probability that
the user keeps the state R unchanged from moment t to moment t +
1. χnm,k denotes the probability that the user u

n
m will not be interested

by the commendation of any of its other users (neighbors or friends)
the cache content fk, which can be articulated as:

FIGURE 2
6G edge caching content model.
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χnm,k � ∏Nm

j�1
1 − γm,kp

D
m,j,k t( ) 1 − 1 − ϖjn∑

j
ϖjn

⎛⎜⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎟⎠
κj⎛⎜⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎟⎠⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ (19)

where ϖjn denotes the closeness between user unm and ujm, κj denotes
the total count of times user ujm forwarded the commended cache
content of interest.

Eqs 14–19 are organized into matrix form, which leads to the
form of the equation expressed as follows:

pS
m,n,k t + 1( )

pE
m,n,k t + 1( )

pI
m,n,k t + 1( )

pD
m,n,k t + 1( )

pR
m,n,k t + 1( )

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ �

1 − γnm,kp
I
n,k t( ) 0 0 0 0

γnm,kp
I
n,k t( ) 1 − ηnm,k − χnm,k 0 0 0
0 ηnm,k 1 − δnm,k − ωn

m,k 0 0
0 0 δnm,k 1 − ξnm,k 0
0 χnm,k ωn

m,k ξnm,k 1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

×

pS
m,n,k t( )

pE
m,n,k t( )

pI
m,n,k t( )

pD
m,n,k t( )

pR
m,n,k t( )

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(20)

The propagation state probability transition matrix Pn
m,k(t) in

this paper is defined as:

Pn
m,k t( ) �

1 − γnm,kp
I
n,k t( ) 0 0 0 0

γnm,kp
I
n,k t( ) 1 − ηnm,k − χnm,k 0 0 0
0 ηnm,k 1 − δnm,k − ωn

m,k 0 0
0 0 δnm,k 1 − ξnm,k 0
0 χnm,k ωn

m,k ξnm,k 1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(21)

In accordance with the state transition matrix in Eq. 21, the user
cache content state probability prediction equation of content fk can
be obtained as follows:

pS
m,k t + 1( ) � ∑Nm

n�1
Pn
m,k t( ) × pS

m,n,k t( ) (22)

pE
m,k t + 1( ) � ∑Nm

n�1
Pn
m,k t( ) × pE

m,n,k t( ) (23)

pI
m,k t + 1( ) � ∑Nm

n�1
Pn
m,k t( ) × pI

m,n,k t( ) (24)

pD
m,k t + 1( ) � ∑Nm

n�1
Pn
m,k t( ) × pD

m,n,k t( ) (25)

pR
m,k t + 1( ) � ∑Nm

n�1
Pn
m,k t( ) × pR

m,n,k t( ) (26)

Therefore, the total count of users in the S, E, I,D, and R states at
time t:

Skm t( ) � Nm ∑Nm

n�1
pS
m,n,k t( ) (27)

Ek
m t( ) � Nm ∑Nm

n�1
pE
m,n,k t( ) (28)

Ikm t( ) � Nm ∑Nm

n�1
pI
m,n,k t( ) (29)

Dk
m t( ) � Nm ∑Nm

n�1
pD
m,n,k t( ) (30)

Rk
m t( ) � Nm ∑Nm

n�1
pR
m,n,k t( ) (31)

unm in state E and I can request to download cache content fk
from the edge service base station, i.e., the caching strategy at the
edge service base station is influenced by Ek

m(t), ηm,k, Ikm(t) and δm,k.
Therefore the prevalence for cache content fk at moment t can be
described as:

Jm,k t( ) � Ek
m t( ) × ηm,k + Ikm t( ) × δm,k (32)

3 Optimization objective

In this paper, we concentrate on caching decisions for edge
service base stations, without considering the case where the user
acquires the cache content directly from the cloud server. The
caching strategy needs to maximize the user’s demand,
i.e., maximize the cache success ratio. However, with the
increasing demand for cache content in the 6G edge caching
network, the edge service base station faces the challenge that the
limited cache capacity cannot meet all users’ demand, so this paper
takes maximizing the cache success ratio as the optimization
objective. Define cache success ratio Pk

cache,hit as the probability
that the demand for content fk by all users in the entire edge
caching network is satisfied, and Pk

cache,hit can be articulated as:

Pk
cache,hit �

∑M
m�1

Ek
m t( ) × ηm,k + Ikm t( ) × δm,k( ) × sm,k

∑M
m�1

1 − χm,k( ) × Ek
m t( )

(33)

where ∑M
m�1(1 − χm,k) × Ek

m(t) indicates the total amount of user
demand for cache content fk in the entire 6G edge caching network,
i.e., the sum total of times all users are curious about cache content fk

and issued access requests; ∑M
m�1

(Ek
m(t) × ηm,k + Ikm(t) × δm,k) × sm,k

denotes the caching scheme for content fk. According to the cache
success ratio definition in Eq. 33, the specific optimization problem
expression is:

max
S

∑K
k�1

Pk
cache,hit

s.t.C1: cmbase ≤ ∑K
k�1

Ck, ∀m ∈ M

C2: ∑K
k�1

sm,kCk ≤ cmbase, ∀m ∈ M

C3: sm,k ∈ 0, 1{ }, ∀m ∈ M

(34)

where constraint C1 indicates that it is not possible to cache all the
cache content in the 6G cloud content repository on the edge service
base station; C2 satisfies the cache capacity limitation of the edge
service base station, and the total magnitude of the cache content
cached in the edge service base station must not exceed the
magnitude of the caching capacity of the edge service base
station; C3 represents the caching decision of the cache content
by the edge service base station, and sm,k is a Boolean variable taking
the value of 0 or 1.
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4 Prevalence predictive genetic-
annealing cache content algorithm

The search space in the cache optimization problem in Eq. 34
contains discrete variables and it is an integer linear programming
(ILP) problem. This type of problem is also an NP-hard problem,
which is difficult to solve directly in general. Heuristic algorithms
such as genetic algorithms and simulated annealing algorithms have
convenient properties in solving optimization problems containing
discrete variables [37,38]. Therefore, this paper proposes a PGAC
algorithm, which combines the genetic algorithm and simulated
annealing algorithm to solve the optimum caching scheme.

4.1 Chromosomal gene coding

Chromosome: a chromosome corresponds to an individual object
in a solution in an optimization problem, i.e., a possible solution. In this
paper, a chromosome is represented as a possible caching solution. Each
chromosome is a solution consisting of genes. In this problem, the
length of the chromosome is usually M, because there are M edge
service base stations in this paper, and each gene represents the caching
decision state of the corresponding edge service base station.

Genes: Each gene in the chromosome represents the caching
status of the corresponding edge service base station, i.e., whether or
not the content is cached. Each gene is encoded in binary.
0 represents that the edge service base station has not cached the
content; 1 represents that the edge service base station has cached
the content. In the proposed 6G edge cache propagation model,
there are a total of K cache contents, and each edge service base
station needs to make a decision on these K cache contents. That is
each content can choose whether to be cached within the edge
service base station or not.

The chromosomes and genes are expressed in a matrix form,
where each row represents a chromosome and each column
represents a gene. In the problem of cache allocation using
genetic algorithm in edge caching network, define a matrix of
M × K, where M is the total count of edge service base stations
and K is the total count of cache contents as represented below:

I �
s1,1 s1,2, . . . , s1,k, . . . , s1,K
s2,1 s2,2, . . . , s2,k, . . . , s2,K
..
. ..

. ..
. ..

.

sM,1 sM,2, . . . , sM,k, . . . , sM,K

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ (35)

Each element of the matrix Eq. 35 may be 0 or 1 indicating
whether the corresponding edge service base station caches the
corresponding cache content. Through this matrix representation, a
chromosome corresponds to a row of the matrix and each gene
corresponds to an element of the matrix. A genetic algorithm is used
to generate a new chromosome by performing crossover, mutation,
and other operations on this matrix.

4.2 The design of the fitness function

The optimization problem Eq. 34 is a maximization problem.
Therefore, for the chromosome in this paper, a larger fitness value

indicates a better solution, suggesting that the solution represented
by this chromosome is closer to the optimum solution. The fitness
function is represented as follows:

fit � ∑K
k�1

Pk
cache,hit (36)

A higher fitness value corresponds to a greater cache success
ratio, indicating that the corresponding caching strategy is
more optimum.

4.3 Selection, crossover and mutation

Crossover: A single point crossover is used to combine two
separate chromosomes to generate a new chromosome in this paper,
and the new chromosome is generated by exchanging some genes of
the selected chromosome based on randomly generated crossover
sites, with an adaptive crossover probability pc:

pc �
k1 fitmax − fit( )
fitmax − fitmin

, fit<fitavg

pc′ fit≥fitavg

⎧⎪⎪⎨⎪⎪⎩ (37)

where fitmax, fitmin and fitavg are defined as the maximum fitness
value, the minimum fitness value and the average fitness value of all
chromosomes in the population, respectively; k1 is a constant in the
interval [0,1]; pc′ takes the value of a fixed constant in general.

Mutation: The chromosomes in the population are mutated with
an adaptive mutation probability pe, where pe can be represented as:

pe �
k2 fitmax − fit( )
fitmax − fitmin

, fit<fitavg

pe′ fit≥fitavg

⎧⎪⎪⎨⎪⎪⎩ (38)

where k2 is a constant in the interval [0,1]; pe′ takes the value of a
fixed constant in general.

In order to enhance the local search capability of the genetic
algorithm, this paper introduces a simulated annealing selection
method instead of the roulette algorithm for chromosome selection.
The simulated annealing selection algorithm utilizes the Metrospolis
criterion [39] to select chromosomes by first randomly selecting
chromosome I1 from the initialized chromosome population P1
generated after the chromosome correction step, which has a fitness
value of fit (I1). Then chromosome I2 is randomly selected from the
newly generated chromosome population P2 generated after the
crossover and mutation step, which has a fitness value of fit (I2).
Setting the temperature of the simulated annealing method as T, the
probability of I2 being selected into the new chromosome result set
P3 with probability P:

P � e
fit I1( )−fit I2( )

T , fit I1( )≥fit I2( )
1 fit I1( )<fit I2( )

⎧⎪⎨⎪⎩ (39)

If the fitness of chromosome I2 in population P2 is greater than
that of chromosome I1 in population P1, I2 will definitely be selected
to be placed in the new result set P3; However, if the fitness of
chromosome I1 is greater than that of chromosome I2, I2 still has a
probability e

fit(I1 )−fit(I2 )
T of being selected to be placed in result set P3.
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Chromosomes that are not placed in P3 will be returned to their
original chromosome population.

4.4 The Chromosome Check method

The Chromosome Check method is used to check if all the
chromosomes are within the constraints and if there are gene points
that are not within the constraints, this check method will correct all
the relevant chromosome gene points based on the cached
parameters of the service base station. This step will be used after
all the steps where new chromosomes need to be generated to ensure
that the newly generated chromosomes meet the constraints.
Chromosome correction is the core of the chromosome test method.

Chromosome correction: the correction of chromosomes that do
notmeet the constraints. The content of sm,k = 1 is sorted from largest to

smallest according to the cache value cacvaluem,k while ∑K
k�1sm,kCk > cmbase.

Then the content is cached sequentially according to the sorting order,
and the corresponding chromosome gene is 1, until it approaches but
does not exceed the cache capacity cmbase of the edge service base station.

The remaining content is then changed from state sm,k � 1 to sm,k � 0,
corresponding to the chromosome gene being changed to 0. The cache
value is expressed by the following equation:

cachevaluem,k � Jm,k t( ) (40)

Figure 3 shows the general flowchart of the genetic simulated
annealing algorithm. First the entire population is generated based
on the total count of chromosomes in the population. Then new
chromosomes are generated using single-point crossover and
mutation, and the chromosome fitness in the population is
calculated separately, and finally the simulated annealing
selection method is used to select chromosomes for the new
population based on the ordering of fitness. In this case, genetic
adjustment of all chromosomes is required after the initialization of
the population and crossover mutation steps to ensure that they do
not fall outside the constraints.

The PGAC algorithm comprises two parts: first, the prevalence
of cache content is predicted based on the probabilistic prediction
equation of cache content state in Eqs 22–26. Then, the genetic
simulated annealing algorithm is used to acquire the optimum
caching scheme based on the predicted prevalence results. In
summary, the specific flow of the genetic simulated annealing
cache content algorithm is shown in Algorithm 1 below.

INPUT: At initial moment t = 0, calculate the influence

rate, service rate, initialize the population size, the

total count of genetic algorithm iterations, initial

temperature of simulated annealing, Cooling

coefficient, adaptive crossover probabilityand

adaptive mutation probability.

Calculate the proportion of users in each state

according to Eqs 20–26, predict the number of users

in each state using Eqs 27–31, and obtain the content

popularity from Eq. 32.

Use the chromosome correction method to correct the

chromosomes in the initial population;

for i = 1 to nGA do:

Mutate and cross all chromosomes in population P1
according to Eqs 37, 38, generating a new population P2
Use the chromosome correction method to correct the

chromosomes in population P2
Calculate the fitness of each chromosome in the initial

population P1 and the newly generated population P2
according to Eq. 36.

Calculate the probability of chromosomes being

selected according to Eq. 39 and place the selected

chromosomes into population P3;

Until the total count of chromosomes in P3 is

equal to num;

P3 = P1, T = θT;

end for;

Calculate the fitness for each chromosome in

population P1;

I* = the chromosome with the highest fitness;

return I*

t = t + 1

end

content cache finished.

OUTPUT: optimum caching scheme

Algorithm 1. PGAC.

FIGURE 3
Flowchart of the genetic simulated annealing algorithm.
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5 Simulation and results

In this paper, the CDSED strategy is simulated and verified
based on Matlab platform. To simplify the processing, the whole 6G
edge caching network consists of a single edge service base station
with several users, the service area of the edge service base station is a
circular area with a radius of 50 m, the users obey a Poisson
distribution with a density of 0.2. The generation and
propagation of all contents are randomized for easy comparison,
with ξk, ωk and χk between 0.01 ~ 0.05 for each cache content [40],
and γk uniformly distributed between 0.1 ~ 0.5 [41]. The primary
simulation parameters are displayed in Table 1:

In the simulation process, the caching performance of CDSED
strategy is compared with LRU strategy [10], LFU strategy [11] and
MPC strategy [42] respectively.

1. Least Recently Used (LRU) caching strategy: if cache content
has been requested in the recent period, then there is a high
chance that the cache content will be requested in the future
period. When the cache space of the base station is full, the
content that has not been requested for the longest time in the
recent period is deleted.

2. Least Frequently Used (LFU): The edge service base station
records the total count of requests for each cache content.
When the total count of requests for an edge service base
station’s uncache content is greater than the total count of
requests for the least cache content, the edge service base
station removes the least requested content and caches it.

3. Most Popular Caching (MPC): The edge service base station
caches the most popular content within the service area until
the cache capacity limit of the edge service base station
is reached.

This paper describes the change in the total count of users in
each interest propagation state during content dissemination when
the sum total of users is 200. The black solid line, pink dotted line,

red dashed line, cyan dotted line and blue dotted line shown in
Figure 4 represent the changes in the total count of S, E, I, D, and R
state users, respectively. From the figure, it can be seen that there are
a large amount of S state users in the 6G edge caching network at the
initial moment, and they are easily influenced by the
commendations of other users to change their state and become
E state users.With the passage of time, the total count of E state users
increases rapidly, and they become I state users after acquiring the
cache content, and the corresponding amount of E state users
decreases. I state users commend the interest of cache content on
their own terms. However, with the increase of time and the
propagation of the cache content, the interest of the user may
gradually weaken, resulting in the user changing from the I state
and the D state to the R state. The total count of the I state and the D
state users are decreasing, and the state of the user remaining
unchanged in the R state. Therefore, the trends of S, E, I, D, and
R curves are consistent with the results in the theoretical analysis.

Figure 5 illustrates the results of content prevalence for
different amount of users. In the figure, the horizontal
coordinate is time and the vertical coordinate is the content
prevalence. In addition, the curves with blue crosses, red
triangles and yellow circles in the figure represent the change in
content prevalence for user numbers of 100, 200 and 300,
respectively. From the figure, it can be seen that the trend of
the curves for all three cases of amount of users is increasing and
then decreasing to zero, which is in line with the pattern of cache
content in 6G edge caching networks. This is because newly
released cache content quickly arouses the interest of
neighboring users, leading to a rapid increase in the total count
of users curious about the cache content across the 6G edge
caching network, and accordingly triggering a significant rise in
requests for that cache content as well as an increase in the
prevalence of the content. After a period of time, the user
interest in the cache content in the 6G edge caching network
gradually becomes saturated and users are no longer curious about
the cache content. This ultimately leads to a gradual decrease in
user interest in the cache content and a corresponding decrease in

TABLE 1 Simulation parameters

Parameters Numerical
values

User density, λα 0.2 m2

Physical distance for communication between
users, Rm,n

10 m

Cache content size, C [50,200]bits

Loss rate, ξk, ωk [0.01, 0.05]

Refusal rate, χk [0.01, 0.05]

Channel bandwidth, Wm 1 MHz

Transmission power of the edge service base station, pm 1.3 W

Channel gain, hnm 10–5

Gaussian white noise,N0 10–13 dm

Population size, num 20

amount of iterations, nGA 200

Initial temperature, T 1000

Cooling coefficient, θ 0.98

FIGURE 4
Amount of users in each state during content distribution.
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the prevalence of the content. As a result, the total count of new
interested users tends to decrease in the next time period and
eventually stabilizes until it reaches zero.

The variation of cache success ratio at different times when
simulating different caching strategies is shown in Figure 6. In the
figure, the horizontal axis represents the time and the vertical axis
represents the cache success ratio. In addition, the graph with circle,
triangle, rectangle and diamond curves represent CDSED strategy,
MPC strategy, LFU strategy and LRU strategy respectively. From the
figure, it is evident that average cache success ratio of CDSED
strategy is 0.645, while the average cache success ratios of LFU,
MPC, and LRU strategies are 0.579, 0.517, and 0.482, indicating that
the cache hit rate of the CDSED strategy is higher than the other
three strategies. This is because, the LFU, MPC and LRU strategies
mainly rely on the user’s previous content requests, which

consequently leads to the challenge of capturing real-time
content prevalence. Specifically, the LFU, MPC and LRU
strategies’ responses to content requests are limited by the total
count of users’ previous access history, making it difficult to adapt to
dynamically changing content prevalence. In contrast, the CDSED
strategy is more flexible in meeting new user interests and needs
through a real-time content update mechanism by comprehensively
considering the real-time nature of user interests and needs. In
addition, the MPC strategy is prone to fall into local optimum
solutions, and the introduction of the simulated annealing selection
algorithm provides the CDSED strategy with a more global search
capability, which enables it to make caching decisions more flexibly
in the face of complex dynamic environments, thus improving the
overall caching success ratio. Therefore, compared with the other
three caching strategies, the CDSED strategy achieves a higher cache
success ratio.

The simulation compares the variation of cache success ratio in
different caching strategies with different cache capacity sizes, as
shown in Figure 7. In the figure, the horizontal coordinate represents
the cache capacity magnitude of the edge service base station and the
vertical coordinate represents the cache success ratio. In addition,
the bar chart shows the CDSED strategy, MPC strategy, LFU
strategy, and LRU strategy from left to right, respectively. From
the figure, it is observable that when cache capacity increases from
1000 to 3000, the cache success ratio of CDSED strategy, MPC
strategy, LFU strategy and LRU strategy increased from [0.636,
0.505, 0.562, 0.482] to [0.673, 0.563, 0.602, 0.535]. This is because the
larger cache capacity provides more cache resources for the 6G edge
caching network, enabling the edge service base station to
accommodate more cache content to better satisfy the increasing
content requests from users in the edge caching network.
Meanwhile, the CDSED strategy can design the caching strategy
according to the cache capacity of the serving base station.
Therefore, the cache success ratio of CDSED is higher than that
of LFU, MPC and LFU with the same cache capacity.

Figure 8 shows the change of cache success ratio in different
cache strategies when the cache capacity of the base station is

FIGURE 5
Content prevalence prediction results.

FIGURE 6
Cache success ratio changes over time.

FIGURE 7
Variation of cache success ratio with cache capacities.
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constant and the total count of content is increasing. In the figure,
the abscissa represents the total count of content, and the ordinate
indicates the cache success ratio. The circles, triangles, rectangles are
represented by CDSED strategy, MPC strategy, LRU strategy and
LFU strategy respectively. It is clear from the figure that as the total
count of content increases, the cache success ratio decreases
accordingly. This is because when the cache content is increasing,
the types of content requested by the user will also increase, while the
cache space of the edge service base station is unchanged. The edge
service base station cannot cache all the requested cache content, so
it is necessary for the remote cloud server to respond to the user’s
content demand, resulting in a decrease in success ratio. In addition,
the average cache success ratio of CDSED strategy is 0.629, while the
average cache success ratios of MPC strategy, LRU strategy and LFU
strategy are 0.491, 0.454 and 0.551, respectively. When the amount
of content is 100, the cache success ratios of CDSED, MPC, LRU,
and LFU strategies are 0.656, 0.507, 0.483, and 0.575. This is because
LRU and LFU strategies mainly make decisions based on historical
behavior or simple frequency information, which cannot effectively
adapt to the large and diverse cache content set. Although the MPC
strategy considers the prevalence of cache content, when the total
count of cache content increases, it may not be able to accurately
select the content suitable for a specific user group due to only
focusing on the global prevalence, which affects the cache success
ratio. By simulating the propagation process of content between
users, the CDSED strategy can more comprehensively understand
the formation and propagation of user interests, and more flexibly
and selectively cache content with potential propagation trends,
thereby improving the success ratio. Therefore, when the total
content number is the same, the CDSED strategy can increase
success ratio than LRU, LFU and MPC strategies.

The simulation compares cache success ratio changes of
different caching strategies with different total count of users, as
displayed in Figure 9. In the figure, the horizontal axis is the total
count of users, and the vertical axis is the cache success ratio. In
addition, the graphs with red circles, pink rectangles, blue hexagons

and green triangular curves represent CDSED strategy, LFU
strategy, MPC strategy and LRU strategy, respectively. From the
figure, it is evident that as the total count of users increases, the cache
success ratio will increase accordingly. This is because LRU and LFU
strategies selectively replace inactive or low-frequency cache content
by monitoring user behavior, thereby effectively satisfying user
interests. The MPC strategy is based on prevalence information
to better retain popular cache content. The CDSED strategy
considers the content propagation process, makes full use of the
interest propagation relationship between users, and improves the
caching effect for popular content. In addition, the average cache
success ratios of the CDSED strategy, MPC strategy, LRU strategy,
and LFU strategy are 0.632, 0.512, 0.451, and 0.573. When the
amount of users is 500, the cache success ratios of the CDSED
strategy, MPC strategy, LRU strategy, and LFU strategy are 0.552,
0.474, 0.405, and 0.527 respectively. This is because the increase in
the total count of users means that the information propagation path
becomes more complex. The CDSED strategy captures the heat
evolution of content more accurately by simulating the propagation
process of information, and can predict future hot content more
accurately according to the influence relationship between users.
Therefore, the CDSED strategy can enhance success ratio under the
same amount of users.

6 Conclusion

This study proposed a cache distribution strategy based on
epidemic dynamics for 6G edge network. First, the strategy
constructs a 6G ECCM, which investigates the time-varying
content prevalence in edge caching networks. The user
propagation process of cache content is modeled as an
infectious disease propagation process, and the distribution of
user interest in cache content is obtained from the content
propagation state prediction matrix. In addition, the CDSED
strategy includes PGAC algorithm, which introduces a simulated

FIGURE 8
Cache success ratio under different content number.

FIGURE 9
Cache success ratio changes under different amount of users.
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annealing selection algorithm derived from GA to improve the
local search capability and maximize the cache success ratio.
Simulation results show that the CDSED can significantly
increase the cache success ratio compared with LFU, LRU and
MPC. In our future work, we will further optimize the
propagation dynamics model based on this work, and consider
more factors such as user behaviors, social relationships, etc., to
improve the accuracy of popularity prediction. We will also
research edge caching strategies based on technologies such as
6G space-air-integrated network (6G SAGIN) and integrated
sensing and computation (ISAC).
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