
Information propagation
characteristic by individual
hesitant-common trend on
weighted network

Jianlin Jia1*, Yuwen Huang1, Wanting Zhang1 and Yanyan Chen2

1Key Laboratory of Civil Engineering Structure and Mechanics, Inner Mongolia University of Technology,
Hohhot, China, 2Beijing Key Laboratory of Traffic Engineering, Beijing University of Technology,
Beijing, China

Within the context of contemporary society, the propagation of information is
often subject to the influence of inter-individual connectivity, and individuals may
exhibit divergent receptive attitudes towards identical information, a
phenomenon denoted as the Hesitant-Common (HECO) trait. In light of this,
the present study initially constructs a propagation network model devoid of
correlation configurations to investigate the HECO characteristics within
weighted social networks. Subsequently, the study employs a theoretical
framework for edge partitioning, predicated on edge weights and HECO traits,
to quantitatively analyze themechanisms of individual information dissemination.
Theoretical analyses and simulation outcomes consistently demonstrate that an
augmentation in the proportion of common individuals facilitates both the
diffusion and adoption of information. Concurrently, a phase transition
crossover is observed, wherein the growth pattern of the ultimate adoption
range, denoted as R(∞), transitions from a first-order discontinuous phase
transition to a second-order continuous phase transition as the proportion of
common individuals increases. An escalation in the weight distribution exponent
is found to enhance information propagation. Furthermore, a reduction in the
heterogeneity of degree distribution is conducive to the spread of information.
Conversely, an increase in degree distribution heterogeneity and a diminution in
the collective decision-making capacity can both exert inhibitory effects on the
propagation of information.
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1 Introduction

With the rapid development of social media platforms such as TikTok, WeChat, and
Twitter, social networks have increasingly become integral to human life. These media
facilitate the swift reception and dissemination of diverse information, greatly enhancing
the convenience of people’s work and daily activities. The communication pathways within
social media constitute a vast network for information dissemination, with the world’s
largest social media platform, Facebook, boasting billions of active monthly users, and the
monthly volume of information flow is incalculable [1]. However, this complexity of
information interweaving also presents challenges: once harmful information spreads
within the network, it can cause significant damage. Beyond the challenges of
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information dissemination, social networks also play a crucial role in
various fields such as healthcare [2, 3], cultural education [4, 5], and
commercial marketing [6, 7]. They are utilized for analyzing
information, signals, and financial communication patterns,
demonstrating their multifunctionality in modern society.
Therefore, an in-depth analysis of the information dissemination
patterns within social networks is of significant importance for
understanding their impact, optimizing information management,
preventing risks, and promoting development in various sectors.

In recent years, numerous scholars have conducted research on
information propagation models, including those based on the
Internet of Things with layered structures [8], models grounded
in game theory [9], and models inspired by heat transfer [10].
Among these, game theory-based models are capable of simulating
decision-making processes of individuals aimed at maximizing their
self-interest. However, these models are predicated on the
assumption of rationality of the individuals, which may not be
applicable to all social network contexts. Meanwhile, research on
information propagation based on complex network theory and
topological structures has emerged as a significant topic within the
field of complex network studies [11–14]. There is an extensive body
of research on the spread of epidemics across complex networks, and
the modes of information propagation within social networks bear
certain similarities to the spread of diseases in physically complex
networks. Adopting and expanding the foundational models of
epidemic propagation in complex networks can facilitate a better
understanding of information dissemination in social networks. For
instance, a modified Sub-Health-Healthy-Infection- Recovery
(SHIR) model with time delays and nonlinear incidence rates has
been established for two susceptible populations across different
topological networks [15]. Guirui Liu and others developed the SIS-
UAU model to describe the dynamics of epidemic and information
propagation within overlay networks [16], by constructing a dual-
layer network consisting of an epidemic dynamic evolution layer
and an information propagation layer to study the dynamics of
information and disease spread in superimposed networks.
Furthermore, some scholars have described information
propagation in complex networks using more refined models.
Guan Gui and others formulated a SIR model with time delays,
forced silence functions, and forgetting mechanisms in both
homogeneous and heterogeneous networks to describe the
dynamic mechanisms of rumor propagation [17]. To investigate
the propagation trends of network rumors, the authors in [18]
detailed the dynamic behavior of a delayed S2IS rumor propagation
model with a saturation conversion function. Rumor propagation, as
a hot topic in information propagation research [19–21], is also a
category within social network dissemination, and such research
aids various researchers in uncovering the underlying mechanisms
of information propagation in social networks.

One of the primary mechanisms for information dissemination
within social networks is through the interconnections among users
[22]. Upon the inception of a piece of information, the originator
initiates its propagation. It is possible that during the initial
dissemination, multiple recipients receive the information
simultaneously. Should a recipient successfully adopt the
information, they then assume the role of a subsequent
disseminator. Concurrently, this process may yield adopters who
do not further propagate the information, as well as non-adopters.

Ultimately, however, the information evolves into a shared resource
among a majority of the network’s participants.

Taking into account the various factors that influence
information propagation, user behavior on social networks
exhibits diversity and heterogeneity, thereby giving rise to
distinct patterns of information dissemination. In real-world
social networks, interactions are more likely to occur among
individuals with similar interests or preferences, and generally,
individuals prefer to receive and share information that aligns
with their interests and preferences. Temporal thematic analysis
of mobile communication systems has revealed homophily
characteristics in social interactions, where communication
between individuals with similar attributes (such as gender and
age) tends to be more frequent [23]. Bakshy et al., based on Facebook
data, observed ideological homophily within friendship networks,
where both conservatives and liberals are more likely to associate
with friends of similar political affiliations [24].

Numerous systems within contemporary society can be
characterized as networks, where the constituent elements are
represented as nodes. If the interactions between nodes are
quantifiable, the interconnecting edges can be assigned weights,
thus forming a weighted network. Consequently, the edge weights
within a weighted network typically serve to denote the individual
relationships between nodes. For instance, in transaction networks,
these weights can signify the proportion of transactions between
financial institutions [25], while in transportation networks, they
may represent the percentage of tourists utilizing different travel
routes [26]. Social networks exhibit complex topological structures
with significant heterogeneity in connection strength and capacity.
Constructing the inter-individual connections as edges with
heterogeneous weight distributions is conducive to uncovering
the impact of edge weight heterogeneity on information
propagation.

Existing research has demonstrated that individual
heterogeneity in adoption manifests as varying receptive attitudes
towards the same information, and individuals’ attitudes may
change as they acquire different amounts of information [27, 28].
In their research presented in Ref. [29], Iyengar R. examined the
propagation of obesity through social networking platforms,
emphasizing the significance of group heterogeneity in the
dissemination of health-related information. Golub B.
investigated the learning processes predicated on individual
heterogeneity within these networks and the subsequent influence
on the collective intelligence of the group [30]. Furthermore, Lerman
K. conducted empirical analyses on the dissemination of news across
social media platforms, including Digg and Twitter, with a particular
focus on the heterogeneity of user behaviors [31]. However, studies
on information propagation in complex networks that consider
group adoption heterogeneity are relatively scarce. Due to the
distinct personalities of each individual in real-world social
networks, the degree of information adoption varies. Based on
the psychology of information adoption, this study categorizes the
population within social networks into two types: common
individuals and hesitant individuals, collectively referred to as
the Hesitant-Common (HECO) model. Common individuals
maintain a liberal attitude towards received information or
behaviors and can adopt them at varying speeds, with an
increased willingness to adopt as more information is received.
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In contrast, hesitant individuals experience a period of
deliberation regarding whether to adopt, repeatedly verifying
the information before reaching a decision to adopt, facilitated
by the acquisition of more information. For example, when a
trending piece of information emerges on the internet, common
individuals are more likely to discover and disseminate it. Among
similar common individuals, the adoption rate is higher, leading to
faster propagation of the trending information and a quicker approach
to relative saturation in the adoption range. On the other hand, hesitant
individuals often receive trending information through common
individuals, adopt it after thorough verification, and thus propagate
itmore slowly, with the adoption range reaching relative saturation after
a period of time. Therefore, categorizing the population in social
networks based on adoption heterogeneity can contribute to a

deeper understanding of the propagation mechanisms within
social networks.

In consideration of the factors previously discussed, this study
investigates the influence of group adoption heterogeneity on
information dissemination within social networks on weighted
networks and explores the HECO characteristics in the context of
information propagation. A model of the information adoption
function is proposed to explain the HECO characteristics.
Subsequently, a set of partitioning principles based on edge
weight and HECO characteristics is formulated to quantify and
analyze the mechanisms of individual information propagation. The
impact of information propagation on group heterogeneity is
validated through simulation results, which are consistent with
theoretical analysis. The structure of the remainder of this paper

FIGURE 1
Subfigure (A) illustrates the schematic of the weighted social network propagation model. Different numerical labels with colors represent various
types of populations, with black denoting the common population, such as 1, 2, 4, and 6. Green represents the hesitant population, such as 3, 5, and 7. The
symbol ε represents the edge weight, which signifies the degree of interaction between two individuals. Blue solid lines indicate that information has not
been disseminated through the connected edge, while green dashed lines signify that information has already been propagated through this edge
and cannot be transmitted further via the same edge. Subfigures 1 (B1,B2) represent the information adoption functions for the hesitant and ordinary
populations, respectively, where x is the ratio of the number of information units received by a node to its degree.
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is as follows: In the second section, an information propagation
model based on group heterogeneity is established on weighted
networks. The third section presents a theoretical analysis of edge
partitioning based on edge weight and HECO characteristics. The
fourth section examines the simulation results, confirming the
propagation process of individual information in line with
theoretical analysis. Finally, a summary is provided in the
fifth section.

2 Information propagation model with
hesitant-common trend

This section aims to construct a two-layer propagation network
model based on an uncorrelated configuration model to investigate
the impact of differences in HECO characteristics among
populations on information dissemination within weighted social
networks. In this model, the network consists of N nodes with a
degree distribution P(k), and the propagation model follows the
susceptible-adopted-recovered (SAR) paradigm. At any given
moment, each node is in one of three states: susceptible state (S),
adopted state (A), or recovered state (R). S-state nodes have not yet
adopted the information and can receive information from
neighboring nodes. A-state nodes have adopted the information
and will pass it on to neighboring nodes. R-state nodes have lost
interest in the information and no longer participate in the
subsequent propagation process (i.e., they will neither adopt nor
disseminate the information). The propagation mechanism is
depicted in Figure 1A. In the weighted social network model
presented in this study, an edge weight distribution is introduced
to represent the degree of interaction between individuals, with
different weight distributions reflecting the heterogeneity in
information reception and dissemination among node
connections. The edge weight between adjacent nodes i and j is
denoted as εij, and the weight distribution function is denoted as
f(ε). When a node i in state A sends information to a node j in state
S, the probability of node j receiving the information is given by
Eq. 1:

βε � β εij( ) � 1 − 1 − λ( )εij (1)

Where λ is the propagation probability of information unit, and
βε gradually monotonically increases with the increase of εij. When
βε � 1, βε � λ, that is, the weight value has no effect on information
transmission.

Let m denote the total number of successfully received
information units by a node in state S. Initially, in the weighted
social network, there is no information propagation, meaning that
for a node j in state S, mj � 0. Subsequently, at each propagation
time step, if node j successfully receives information transmitted via
an edge from a neighboring node i in state A, then the count of
adopted information units by node j increases by 1, such that m
becomes mj → mj + 1.

To characterize the decision-making capacity of a population,
this study introduces a hesitancy parameter, denoted as a. A larger
value of a indicates a stronger hesitancy, which corresponds to a
weaker decision-making ability, and conversely, a smaller a
signifies a stronger decision-making ability. Furthermore, to

represent the impact of group adoption heterogeneity on
information propagation, two functions are introduced to
illustrate individual information adoption decision-making
capabilities, as depicted in Figure 1B. The hesitant population,
initially exhibit a phase of active adoption during the early stages of
information dissemination. The propensity for active adoption
increases with the acquisition of more information. However, due
to their hesitancy, they subsequently enter a phase of passive
adoption. When the number of acquired information units
reaches the optimal decision-making capacity for adoption, they
revert to an active mindset and remain unchanged thereafter. Eq. 2
represents the information adoption function for the hesitant
population:

he x, a( ) �

x

a
, 0< x≤

a

2
−x + a

a
,
a

2
≤ x≤ a

x − a

1 − a
, a≤ x≤ 1

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩
(2)

For the general population, there exists a normative reception
and assimilation of information, wherein an increase in the quantity

FIGURE 2
Simulated information dissemination process under weighted
social network.
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of information acquired further enhances the adoption of
information by this demographic. Eq. 3 delineates the
information adoption function of the general population:

hq x, a( ) �
x

1 − a
, 0< x≤ 1 − a

1, x≥ 1 − a

⎧⎪⎨⎪⎩ (3)

In the aforementioned equations, e and q represent the hesitant
and common populations, respectively. The variable x represents
the ratio of the total number m of successfully received messages to
the degree for nodes in state S, which is used to characterize the
collective information reception degree within a network. A higher
value of x indicates a greater quantity of information successfully
accepted by the network. When x = 1, the total number of
successfully received messages is equal to the degree, implying
that all nodes in state S have successfully received the information.

The simulation of information propagation in a weighted social
network is depicted in Figure 2: A complex network with N nodes is
constructed, where the edges between nodes are randomly generated
according to the predefined networkmodel, and all nodes are initially set
to the S-state. A proportion q0 of the nodes in the network is randomly
selected to be common nodes, while the remaining proportion e0 of
nodes are designated as hesitant nodes (from which it follows that
e0 + q0 � 1). Subsequently, a fraction ρ0 of the total nodes is randomly
chosen to be in the A-state, with the remaining nodes defaulting to the
S-state. During information propagation, a node i in state A transmits
information to an adjacent node j in state S via the corresponding edge
with weight εij. The probability that node j successfully receives the
information is β(εij), and upon successful reception, the count of
adopted information units for node j becomes mj → mj + 1. Due to
the non-redundancy of information propagation, the information will
not be disseminated through this edge again. For the group heterogeneity
of node j, the probabilities of adopting information while in the hesitant
and common states are he(x, a) and hq(x, a), respectively, where
x � mj/kj. A node j that successfully adopts the information
transitions to state A; if unsuccessful, it remains in state S. A node i
that has completed the propagation process may lose interest in the
information with a recovery probability γ and transition to the R-state.
The aforementioned propagation process is repeated until no nodes
remain in stateA, atwhich point the information propagation concludes.

3 Theory analysis

Building upon the literature [14, 32], this study examines the
propagation of non-redundant information with group adoption
heterogeneity on weighted networks. On this foundation, the paper
proposes a theory of edge partitioning based on edge weight andHECO
characteristics, thereby analyzing the information propagation
mechanisms of the model. The study introduces nodes in a cavity
state [33], which are capable of receiving information from neighbors
but are unable to transmit information to other nodes. Assuming
that edge weights are randomly distributed, the probability that a
node has not received information from its neighbors by time t is
characterized by Eq. 4:

θ t( ) �∑
ε

f ε( )θε t( ) (4)

Where θε(t) is the probability that the A-state node does not
propagate information to the neighboring nodes in S-state through
the edge with the weight of ε by time t.

By time t, a node i in state S with degree ki has receivedm pieces
of information from its neighbors, an occurrence that can be
represented as in Eq. 5:

φ ki, m, t( ) � ki
m

( )θ t( )ki−m 1 − θ t( )[ ]m (5)

Based on group heterogeneity, differences in HECO characteristics,
and the information adoption function, if node i is a hesitant node in
state S, and after time t, it has received m(m> aki) pieces of
information cumulatively but has not adopted the information and
remains in state S, the probability is articulated by Eq. 6:

ϕe ki, m, t, a( ) �∑m
r�0
φ ki, r, t( )∏r

l�0
1 − he

l

ki
, a( )[ ]

�∑
aki
2

r�0
φ ki, r, t( )∏r

l�0
1 − l

aki
2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

+ ∑aki
r�aki

2

φ ki, n, t( )∏
aki
2

l�0
1 − l

aki
2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠∏r
l�aki

2

1 −
a − l

ki
a

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

+ ∑m
n�aki

φ ki, n, t( )∏
aki
2

l�0
1 − l

aki
2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠∏aki
l�aki

2

1 −
a − l

ki
a

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠∏n
l�aki

1 −
l

ki
− a

1 − a

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(6)

Similarly, when the received information m satisfies the
conditions m< aki

2 and aki
2 <m< aki, the probability of not having

adopted the information and still being in state S is expressed by Eqs
7, 8:

ϕe ki, m, t, a( ) �∑m
r�0
φ ki, r, t( )∏r

l�0
1 − he

l

ki
, a( )[ ]

�∑m
r�0
φ ki, r, t( )∏r

l�0
1 − l

aki
2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ (7)

ϕe ki, m, t, a( ) �∑m
r�0
φ ki, r, t( )∏n

l�0
1 − he

l

ki
, a( )[ ]

�∑
aki
2

r�0
φ ki, r, t( )∏r

l�0
1 − l

aki
2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

+ ∑m
r�aki

2

φ ki, r, t( )∏
aki
2

l�0
1 − l

aki
2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠∏r
l�aki

2

1 −
a − l

ki
a

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(8)

Then, for any hesitant node in state S, Eq. 9 can represent the
probability that such nodes have not yet adopted the information by
time t is:

τe �∑
ki

P ki( )ϕe ki, m, t, a( ) (9)

Similarly, if node i is an common node in state S, and after time t,
it has received m pieces of information cumulatively but has not
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adopted the information and remains in state S, the probability is
articulated by Eqs 10, 11:

ϕq ki,m,t,a( ) �∑m
r�0
φ ki,n, t( )∏r

l�0
1−hq l

ki
,a( )[ ]

� ∑1−a( )ki

r�0
φ ki,n, t( )∏r

l�0
1−

l

1−a( )ki −a
1−a

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦, m> 1−a( )ki( )

(10)
ϕq ki, m, t, a( ) �∑m

r�0
φ ki, r, t( )∏r

l�0
1 − hq

l

ki
, a( )[ ]

�∑m
r�0
φ ki, r, t( )∏r

l�0
1 −

l

1 − a( )ki − a

1 − a

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦, m< 1 − a( )ki( )

(11)
For any common node in state S, the probability of not adopting

the information at the cut-off time t is:

τq �∑
ki

P ki( )ϕ ki, m, t, a( ) (12)

Consequently, the probability that node i in state S, after time t,
remains in state S after having cumulatively received m pieces of
information is given by Eq. 13:

ϕ ki, m, t, a( ) � 1 − ρ0( ) e0ϕe ki, m, t, a( ) + q0ϕq ki, m, t, a( )[ ] (13)

Then, in this weighted network, the proportion of S-state nodes
at time t is delineated by Eq. 14:

Φ m, t, a( ) �∑
k

P k( )ϕ k,m, t, a( ) � 1 − ρ0( ) e0τe + q0τq[ ] (14)

Due to the three states in the SAR model, this study introduces
the term θε(t) for calculation purposes. Initially, θε(t) can be
denoted using Eq. 15 as follows:

θε t( ) � ηS,ε t( ) + ηA,ε t( ) + ηR,ε t( ) (15)

Where ηA,ε(t) represents the probability that a node i in state S, by
time t, has interacted with an adjacent node j in state A via an edge
with weight ε but has not successfully adopted the information. ηS,ε(t)
and ηR,ε(t) are the probabilities that a node i in state S interacts with
an adjacent node j in state S (or R) via an edge with weight ε.

Initially, the cavity node theory is introduced to calculate
ηS,ε(t). A node i in the cavity state is unable to transmit
information to other nodes. Thus, a node j in state S with
degree kj can receive information from the other kj − 1
adjacent nodes. Hence, the probability that node j has
cumulatively received n pieces of information from its
neighboring nodes by time t is articulated by Eq. 16:

φ kj − 1, n, t( ) � kj − 1
n

( )θ t( )kj−2−n 1 − θ t( )[ ]n (16)

Based on the differences in HECO characteristics and the
information adoption function of the population, if node j is a
hesitant node in state S, and after time t, it has received

n(n> a(kj − 1)) pieces of information cumulatively but has not
adopted the information and remains in state S, the probability is
represented as:

ψ kj, n, t, a( ) �∑n
r�0
φ kj − 1, r, t( )∏r

l�0
1 − he

l

kj
, a( )[ ]

� ∑
a kj−1( )

2

r�0
φ kj − 1, r, t( )∏r

l�0
1 − l

a kj − 1( )
2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

+ ∑a kj−1( )

r�a kj−1( )
2

φ kj − 1, r, t( ) ∏
a kj−1( )

2

l�0
1 − l

a kj − 1( )
2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ ∏r

l�a kj−1( )
2

1 −
a − l

kj − 1

a

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

+ ∑n
r�a kj−1( )

φ kj − 1, n, t( ) ∏
a kj−1( )

2

l�0
1 − l

a kj − 1( )
2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

× ∏a kj−1( )

l�a kj−1( )
2

1 −
a − l

kj − 1

a

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ ∏r
l�a kj−1( )

1 −
l

kj − 1
− a

1 − a

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(17)

Similarly, when the received information m satisfies the
conditions n< a(kj−1)

2 and a(kj−1)
2 < n< a(kj − 1), the probability of

not having adopted the information and still being in state S is
represented as:

ψ kj,n, t,a( )�∑n
r�0
φ kj −1, r, t( )∏r

l�0
1−he l

kj
,a( )[ ]

� ∑
a kj−1( )

2

r�0
φ kj −1, r, t( )∏r

l�0
1− l

a kj −1( )
2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

+ ∑n
r�a kj−1( )

2

φ kj −1, r, t( ) ∏
a kj−1( )

2

l�0
1− l

a kj −1( )
2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ ∏r

l�a kj−1( )
2

1−
a− l

kj −1
a

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(18)

ψ kj, n, t, a( ) �∑n
r�0
φ kj − 1, r, t( )∏r

l�0
1 − he

l

kj
, a( )[ ]

�∑n
r�0
φ kj − 1, r, t( )∏r

l�0
1 − l

a kj − 1( )
2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ (19)

When node j is a common node in state S, and after time t, it has
received n pieces of information cumulatively but has not adopted
the information and remains in state S, the probability is
represented as:

ψ kj, n, t, a( ) �∑n
r�0
φ kj − 1, r, t( )∏r

l�0
1 − hq

l

kj − 1
, a( )[ ]

� ∑1−a( ) kj−1( )
r�0

φ kj, r, t( )∏r
l�0

1 −

l

1 − a( ) kj − 1( ) − a

1 − a

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦, n> 1 − a( ) kj − 1( )

(20)

ψ kj, n, t, a( ) �∑n
r�0
φ kj − 1, r, t( )∏n

l�0
1 − hq

l

kj − 1
, a( )[ ]

�∑n
r�0
φ kj, r, t( )∏r

l�0
1 −

l

1 − a( ) kj − 1( ) − a

1 − a

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦, n≤ 1 − a( ) kj − 1( )

(21)

Frontiers in Physics frontiersin.org06

Jia et al. 10.3389/fphy.2024.1410089

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2024.1410089


Consequently, the probability that a node j in state S remains in
state S after cumulatively receiving n pieces of information by time t
is given by Eq. 22:

ψ kj, n, t, a( ) � 1 − ρ0( ) e0ψe kj, n, t, a( ) + q0ψq kj, n, t, a( )[ ] (22)

The probability that a node i in state S can interact with a node j
in state S via an edge with weight ε is:

ηS,ε t( ) �
∑
kj

kjP kj( )ψ kj, n, t, a( )
〈k〉 (23)

Where kjP(kj)
〈k〉 represents the probability of contact between node

i and node j whose degree is kj, and 〈k〉 is the network
average degree.

Subsequently, analyze ηA,ε(t) and ηR,ε(t). Given that the
probability of a node i in state S successfully adopting
information from an adjacent node j in state A via an edge with
weight ε is βε, then the probability θε(t) can be further evolved as:

dθε t( )
dt

� −βεηA,ε t( ) (24)

In addition, a node in state A may lose interest in information
transmission with probability γ and change to the state R, and ηR,ε(t)
can evolve into:

dηR,ε t( )
dt

� γηA,ε t( ) 1 − βε( ) (25)

By combining the initial conditions θε(0) � 1 and ηR,ε(0) � 0,
Eqs 18, 19 allows for the derivation of Eq. 26:

ηR,ε t( ) � γ 1 − θε t( )[ ] 1
βε

− 1( ) (26)

By substituting Eqs 17, 20 into Eq. 12, one arrives at Eq. 27:

ηA,ε t( ) � θε t( ) − ηS,ε t( ) − ηR,ε t( )

� θε t( ) −
∑
kj

kjP kj( )ψ kj, n, t, a( )
〈k〉 − γ 1 − θε t( )[ ] 1

βε
− 1( )

(27)
Substituting Eq. 21 into Eq. 18, θε(t) evolves accordingly, as

detailed in Eq. 28:

dθε t( )
dt

� θε t( )−
∑
kj

kjP kj( )ψ kj,n, t,a( )
〈k〉 −γ 1−θε t( )[ ] 1

βε
−1( )

⎧⎪⎪⎪⎨⎪⎪⎪⎩
⎫⎪⎪⎪⎬⎪⎪⎪⎭

� βε

∑
kj

kjP kj( )ψ kj,n, t,a( )
〈k〉 +γ 1−βε( )− γ+βε 1−γ( )[ ]θε t( )

(28)

In the whole network, the density changes of each state can be
represented by Eqs 29, 30:

dR t( )
dt

� γA t( ) (29)
dA t( )
dt

� −dS t( )
dt

− γA t( ) (30)

Therefore, the formula 11, 23, 24 can be iterated together to
obtain each state density S(t), A(t) and R(t) at any time step.

When t → ∞, the status of nodes in the network does not
change, and there are only S-state nodes and R-state nodes in the
network. That is, when dθε(t)

dt |t�∞ → 0, R(∞) is the final information
adoption size. At this time, the probability that the edge with the
weight of ε does not propagate information is articulated by Eq. 31:

θε ∞( ) �
βε∑

kj

kjP kj( )ψ kj, n,∞, a( ) + 〈k〉γ 1 − βε( )
〈k〉γ + 1 − γ( )βε〈k〉 (31)

By combining the formula 11 and 25, the combinatorial iteration
results in S(∞) and R(∞).

Next, focus on the analysis of critical propagation probability,
leading to the introduction of Eq. 32:

Θ βε, ρ0, a, γ, λ[ ] �
βε∑

kj

kjP kj( )ψ kj, n,∞, a( ) + 〈k〉γ 1 − βε( )
〈k〉γ + 1 − γ( )βε〈k〉

+ γ 1 − βε( )
γ + 1 − γ( )βε − βε ∞( )

(32)
θcε(∞) is used to represent the critical probability point of θε(t).
Under the unit critical propagation probability, when t → ∞,
information cannot propagate to node j through the
corresponding edge. At the critical value of θcε(∞),
Θ[βε(∞), ρ0, a, γ, λ] is tangent to the horizontal axis. Thus, the
critical condition can be delineated as shown in Eq. 33:

dΘ
dθε ∞( )

∣∣∣∣
θcε ∞( ) � 0 (33)

4 Simulation and discussion

To validate the theoretical analysis mentioned above, we
conducted numerical simulations and theoretical analysis based
on weighted Erdos-Renyi (ER) networks [34] and weighted Scale-
Free (SF) networks [35].

Firstly, a more comprehensive introduction to the Erdos-
Renyi (ER) network and the Scale-Free (SF) network is provided.
The ER network model is one of the most fundamental models in
the study of complex network theory and holds significant
importance for understanding randomness in networks and
stochastic phenomena within networks. The construction rules
are as follows: (1) There is a fixed number of nodes within the
network; (2) Each pair of nodes is randomly connected with the
same probability p, meaning that the existence of an edge (link)
between any two nodes is independent, and this probability is
identical for all node pairs; (3) The ER network model typically
refers to an undirected graph, where edges have no direction; (4)
The network contains no self-loops (nodes connecting to
themselves) and multiple edges (more than one edge between
the same pair of nodes) [36]. The ER network has practical
applications, including: the ER model can be used to simulate
random friendship formation in social networks [37], in
bioinformatics, it is utilized to model the randomness of gene
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regulatory networks or protein interaction networks [38], and it
can also be applied in transportation networks to simulate
random route selection in urban traffic networks [39].

The SF network is a network model characterized by a power-law
distribution in the connectivity degree of its nodes. The basic steps for
constructing an SF network are as follows: (1) Initial Network: Start
with a small network, typically consisting of a few nodes and the
connections between them; (2) Growth: Over time, the network grows
by adding new nodes. Each new node comes with several edges that
connect to certain nodes in the existing network; (3) Preferential
Attachment: The probability that a new node connects to an existing
node is proportional to its degree (i.e., the number of connections of
the existing node). This means that the more connections a node has,
the higher the likelihood it will attract new connections; (4) Network
Topology: In this manner, the network’s topology evolves over time,
developing a special degree distribution known as a power-law
distribution, which is one of the characteristics of SF networks; (5)
No Self-Loops and Multiple Edges: Self-loops (nodes connecting to
themselves) and multiple edges (more than one edge between two
nodes) are generally not allowed during the construction process; (6)
Network Size: Nodes and edges can continue to be added until the
network reaches the desired scale [40]. Related instances of SF
networks include: Protein interaction networks and metabolic
networks in biological systems are often modeled as SF networks
[41]. Certain parts of power transmission networks can be modeled as
SF networks to study their robustness and vulnerability [42]. In
financial markets, the network of transaction relationships between
companies also exhibits characteristics of SF networks [43].

In the weighted ER network and SF network, 10,000 independent
nodes are set in the network, the average degree of the network
〈k〉 � 10, the weight distribution is fX(ε) ~ ε−αε , εmax ~ 1/(αε − 1),
and the average weight 〈ε〉 � 8. In addition, the probability of the
A-state node returning to the R-state is γ � 1.0.

In this paper, the relative variance X is used to illustrate the
critical unit propagation probability and critical conditions in the
simulation, and is articulated by Eq. 34 as follows:

κ � N
〈R ∞( )2〉 − 〈R ∞( )〉2

〈R ∞( )〉 (34)

Where 〈...〉 is the set mean, and the maximum value of κ is the
critical point of the final adoption scale.

The analysis of information disseminationmodels within this study
relies on the thermodynamic classification of phase transitions. Phase
transitions are categorized based on the mathematical
characteristics—continuous or discontinuous—of the partial
derivatives of free energy with respect to temperature and pressure
at the transition point. This categorization includes first-order, second-
order, and higher-order phase transitions, with the focus of this study
being on the first two types. In the context of thermodynamics, a first-
order phase transition is characterized by equal chemical potentials
between the new and old phases, yet differing first-order partial
derivatives. This type of transition is associated with a discontinuous
change in both entropy and volume. A second-order phase transition is
distinguished by equal chemical potentials and first-order partial
derivatives between phases, but with second-order partial derivatives
that are not equal, resulting in no change in entropy or volume. The
phase transition model is employed to describe the growth rate of the

dissemination range during the process of information dissemination. A
rapid growth in the dissemination range with the unit dissemination
probability, marked by a discontinuous change, is classified as a first-
order discontinuous phase transition. In contrast, a slow growth
exhibiting a continuous change is classified as a second-order
continuous phase transition.

In this section, to conduct a more nuanced examination of the
influence of the HECO characteristic on the propagation of
information within social networks, we focus on two parameters
that are most representative of the HECO trait: the proportion of the
common population q0 and the hesitation parameter a.
Consequently, this section predominantly employs these two
parameters, q0 and a, in our simulation analysis to explore the
distinct dissemination patterns of information across various
proportions of hesitant and common populations within the
network, as well as under different levels of individual decisiveness.

4.1 The propagation process of weighted
ER network

In this paper, the propagation of information on weighted ER
network is discussed first. The nodes in ER network obey Poisson
distribution, that is, P(k) � e−〈k〉〈k〉k/k!.

Figure 3 describes the impact of the unitary propagation
probability λ on the ultimate propagation range R(∞) in a
weighted ER network when the decision-making ability of the
hesitant population is relatively strong (hesitancy parameter
a � 0.2), under different proportions of the hesitant population.
The initial proportion of nodes in state A, ρ0 � 0.001. Subfigures
3(a1) and 3(b1) indicate that as λ increases, the ultimate adoption
range R(∞) gradually enlarges. It can also be observed that at higher
values of λ (λ> 0.5), where the change in the ultimate propagation
range with λ is minimal, the larger the proportion of the common
population, the greater the ultimate adoption range R(∞) at
equilibrium. When the proportion of the common population q0
is large (q0 � 0.8), the information propagation exhibits a first-order
discontinuous phase transition, whereas for smaller or half
proportions of the common population (q0 � 0.2 and q0 � 0.5), it
exhibits a second-order continuous phase transition. Subfigures
3(a2) and 3(b2) present the statistical calculations of the relative
standard deviation for both theoretical analysis and simulation
values, as well as the critical points derived from subfigures 3(a1)
and 3(b1). As the proportion of the common population increases,
the growth in information adoption and the onset of the adoption
explosion threshold are delayed. However, this delay results in a
more rapid attainment of a global adoption state. This suggests that
when the hesitant population possesses a strong decision-making
ability, a smaller proportion of the common population results in
faster propagation and an earlier onset, although the rate of
propagation range growth with unitary propagation probability
remains relatively slow. Conversely, when the proportion of the
common population is large, the onset of information propagation is
further delayed. Yet, the rate of propagation range growth with
unitary propagation probability is more rapid, potentially leading to
a discontinuous phase transition and a swifter achievement of a
global adoption state. Moreover, in comparison to Figures 3A, B, an
increase in the weighted distribution exponent is shown to advance
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the adoption explosion point. However, variations in the weight
distribution do not impact the phase transition mode.

Figure 4 illustrates the impact of the unit propagation
probability λ on the ultimate propagation range in a weighted ER
network when the decision-making ability of the hesitant population
is moderate (a � 0.5), across various proportions of the hesitant
population q0. Subfigures 4(a1) and 4(b1) indicate that under
different weight distributions, the proportion of the ordinary
population q0 does not significantly affect the propagation
pattern of information; that is, the adoption outbreak points are
essentially consistent, and both exhibit a first-order discontinuous
phase transition. However, when the information propagation
outbreak occurs, it is observed that a larger proportion of the
ordinary population q0 results in a larger ultimate adoption
range R(∞) at equilibrium. Subfigures 4(a2) and 4(b2) present
the relative standard deviation calculated from the statistical
simulation values and the critical threshold for the propagation

outbreak as shown in subfigures 4(a1) and 4(b1), respectively. As the
proportion of the common population increases, information
propagation can reach equilibrium at a relatively lower unit
propagation probability λ in the early stages. These observations
suggest that under moderate decision-making ability, regardless of
the proportion of the common population, the outbreak threshold
for information propagation remains the same, but a larger
proportion of the common population leads to a greater jump in
the adoption range during the outbreak and a more rapid
achievement of the global adoption state. Similarly, when the
proportion of the common population q0 is small, the jump in
the adoption range during the outbreak and the ultimate adoption
range at equilibrium are also relatively smaller, failing to reach global
propagation. Additionally, compared to Figure 4A, with Figure 4B,
an increase in the weighted distribution index advances the adoption
outbreak point, but changes in the weight distribution do not affect
the phase transition pattern of propagation.

FIGURE 3
In the weighted ER network, when the decision-making ability of the hesitant population is relatively strong, the variation of the final propagation
range for both adopting populations under different proportions q0 as a function of the propagation probability λ is depicted. Subfigures (A1,B1) illustrate
the impact of different edge weights (ε � 25 and ε � 35) on the propagation patterns, respectively. Subfigures 3 (A2,B2) represent the distribution of the
relative standard deviation of the simulation results and the critical points of the propagation threshold in subfigures 3(a1) and 3(b1), respectively.
Other parameters are set to ρ0 � 0.001 and a � 0.2.
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From Figures 5A1, B1, it can be observed that as the unit
propagation probability λ increases, the ultimate adoption range
R(∞) gradually enlarges, and the larger the proportion q0 of the
common population, the greater the ultimate adoption range R(∞)
at equilibrium. At q0 � 0.8 and q0 � 0.5, the propagation pattern of
the ultimate adoption range exhibits a second-order continuous
phase transition, while at q0 � 0.2, it shows a first-order
discontinuous phase transition. Figures 5A2, B2 indicate that the
larger the proportion q0 of the common population, the smaller the
unit propagation probability threshold at the time of adoption
outbreak. Figures 5A, B demonstrate that when the decision-
making ability of the hesitant population is low, a larger
proportion of the common population can reach the information
adoption outbreak point at a smaller unit propagation probability λ,
and the ultimate adoption range at equilibrium is larger. Conversely,
when there is a smaller proportion of the ordinary population, the
outbreak threshold for information propagation is higher, and the

ultimate adoption range at equilibrium is relatively smaller.
Additionally, compared to Figure 5A, with Figure 5B, the
adoption outbreak point advances with an increase in the
weighted distribution index, but changes in the weight
distribution do not alter the phase transition pattern of propagation.

Figure 6 describes the joint effect of the unit propagation
probability λ and the hesitancy parameter a on the ultimate
adoption range R(∞) in a weighted ER network when the
proportions of the hesitant and common populations are equal
(q0 � 0.5), under different weight distributions (subfigure 6(a) with
ε � 25 and subfigure 6(b) with ε � 35). The initial proportion of
nodes in state A, ρ0 � 0.001. The joint effect plane is divided into
four regions based on different propagation patterns of information,
Region I: With the increase in the unit propagation probability λ and
the hesitation parameter a, the color temperature remains
unchanged and is at its lowest, indicating that no information
propagation phenomenon has occurred. Regions II and IV: With

FIGURE 4
In the context of a weighted ER network, where the decision-making capacity of the hesitant population is moderate, this figure examines the effect
of the unit propagation probability λ on the ultimate propagation range across various proportions of the common population q0. Subfigures 4 (A1,B1)
depict the influence of weight distribution variations (ε � 25 and ε � 35) on the propagation patterns. Subfigures 4 (A2,B2) present the statistical
computation of the relative standard deviation of the simulated values and the critical threshold for propagation outbreak as indicated in subfigures
4(a1) and 4(b1), respectively. Additional parameters are fixed at ρ0 � 0.001 and a � 0.5.
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the increase in the unit propagation probability λ and the hesitation
parameter a, there is a distinct stage of continuous color temperature
change in the color temperature map, signifying that a second-order
continuous phase transition has occurred in these areas. Region III:
Upon With the increase in the unit propagation probability λ and
the hesitation parameter a, there is a distinct moment of abrupt
color temperature change in the color temperature map, indicating
that a first-order discontinuous phase transition has occurred in this
area. In Region I, where the hesitancy parameter is very small,
indicating a very strong decision-making ability of the hesitant
population, no information propagation outbreak occurs. This is
because the hesitant population, with strong decision-making
ability, inhibits the spread of information. In Region II, as the
hesitancy parameter increases (indicating a weakening decision-
making ability), the growth of the ultimate adoption range R(∞)
exhibits a second-order continuous phase transition. This is due to
the hesitant population dominating in the early stages of
information propagation when the decision-making ability is

relatively strong, leading to an outbreak. Subsequently, as λ

increases, the common population continues the propagation on
the basis of the hesitant population. In Region III, with a further
increase in the hesitancy parameter and a continued weakening of
decision-making ability, the growth of the ultimate adoption range
R(∞) exhibits a first-order discontinuous phase transition. In this
region, the decision-making ability of the hesitant population is
moderate, and the adoption capabilities of the hesitant and common
populations are similar, with no dominant side. Both sides have
similar outbreak thresholds and outbreak simultaneously during the
propagation process, leading to a first-order discontinuous phase
transition. In Region IV, where the hesitancy parameter is large and
the decision-making ability of the population is very low, the growth
of the ultimate adoption range R(∞) exhibits a second-order
continuous phase transition. This is the result of the common
population dominating the propagation when the decision-
making ability of the hesitant population is low, hence the
outbreak threshold for this second-order continuous propagation

FIGURE 5
Under the weighted ER network, this figure presents the influence of the unit propagation probability λ on the ultimate adoption range across
different proportions of the common population q0 when the decision-making ability of the hesitant population is relatively weak. Subfigures (A1,B1)
demonstrate the effects of changes in weight distribution (ε � 25 and ε � 35) on the propagation patterns. Subfigures 5 (A2,B2) represent the statistical
computation of the relative standard deviation of the simulated values and the critical threshold for the information outbreak as indicated in
subfigures 5(a1) and 5(b1). Other parameters are set to ρ0 � 0.001 and a � 0.8.
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is smaller than that in Region II. This also illustrates that the
common population has a stronger promoting effect on the
outbreak of information propagation than the hesitant
population. Furthermore, compared to Figures 6A, B indicates
that an increase in the weighted distribution index can promote
the adoption of information.

Figure 7 illustrates the joint effect of the unit propagation
probability λ and the proportion of the common population q0
on the ultimate adoption range R(∞) in a weighted ER network,
under different decision-making abilities of the hesitant population
with a constant weight distribution index. The initial proportion of
nodes in state A, ρ0 � 0.001, with hesitancy parameters a being

0.2 for subfigure 7(a), 0.5 for subfigure 7(b), and 0.8 for subfigure
7(c). In subfigure 7(a), where the hesitant population has a strong
decision-making ability (a � 0.2), the figure can be divided into two
regions based on the phase transition patterns. As the proportion of
the common population q0 increases, there is a transition from a
second-order continuous phase transition in Region I to a first-order
discontinuous phase transition in Region II. Region I: With the
increase in the unit propagation probability λ and the proportion of
the common population q0, there is a distinct stage of continuous
color temperature change in the color temperature map, signifying
that a second-order continuous phase transition has occurred in
these areas. Regions II: With the increase in the unit propagation

FIGURE 6
The joint effect of the unit propagation probability λ and the hesitancy parameter a on the ultimate adoption range R(∞) in a weighted ER network.
Under different weight distributions, subfigure 6 (A) (ε � 25) and subfigure (B) (ε � 35) illustrate the occurrence of information stagnation propagation,
first-order continuous phase transition, second-order continuous phase transition, and first-order discontinuous phase transition phenomena in regions
I, II, III, and IV, respectively. All other parameters are set to ρ0 � 0.001 and q0 � 0.5.

FIGURE 7
The joint effect of the unit propagation probability λ and the proportion of the common population q0 on the ultimate adoption range R(∞) in a
weighted ER network is depicted. Subfigures 7 (A) (a � 0.2), (B) (a � 0.5), and (C) (a � 0.8) represent the influence of λ and q0 on the ultimate adoption
range under different decision-making abilities of the hesitant population. In subfigure 7 (A), Region I exhibits a second-order continuous phase
transition, and Region II exhibits a first-order discontinuous phase transition; in subfigure 7 (B), the entire region shows a first-order discontinuous
phase transition; in subfigure 7 (C), Region I exhibits a first-order discontinuous phase transition, and Region II exhibits a second-order continuous phase
transition. All other parameters are set to ρ0 � 0.001 and a � 0.5.
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probability λ and the proportion of the common population q0,
there is a distinct moment of abrupt color temperature change in the
color temperature map, indicating that a first-order discontinuous
phase transition has occurred in this area. In Region I (q0 < 0.8), the
proportion of the hesitant population gradually decreases with
increasing q0, causing a delay in the outbreak of information
propagation. However, the phase transition mode of propagation
shifts from continuous to discontinuous. This is because the hesitant
population, which is dominant at this stage, determines the outbreak
of information propagation. Therefore, the more the hesitant
population, the easier the outbreak, but due to their slower
propagation speed, the growth of propagation is initially slow
until the threshold of the common population is reached, after
which the propagation range grows rapidly. In Region II
(0.8< q0 ≤ 1), where the common population is in the majority,
the proportion of the hesitant population decreases with increasing
q0, insufficient to support an outbreak of propagation. The outbreak
of information propagation becomes more delayed and approaches
an outbreak that would occur if only the common population were
present, leading to a first-order discontinuous propagation pattern
that reaches a global adoption state. Observing horizontally at lower
unit propagation probabilities (λ< 0.2), Region I has already reached
global adoption, while Region II has not yet begun to propagate,
confirming the above conclusions. In subfigure 7(b), the growth
pattern of R(∞) is a first-order discontinuous phase transition
across all regions. Upon With the increase in the unit propagation
probability λ and the proportion of the common population q0, The
color temperature map exhibits an abrupt change in color
temperature at a fixed unit propagation probability ‘a’, indicating
the occurrence of a first-order discontinuous phase transition in that
region. When the decision-making ability of the hesitant population
is moderate (a � 0.5), the common and hesitant populations have
equal dominance. The proportion of the common population q0
does not affect the outbreak of information propagation; all
propagation outbreaks have consistent thresholds as shown in the
figure. Despite the consistent thresholds across different
proportions, the different adoption phenomena of the hesitant
and common populations lead to an increase in the ultimate
adoption range R(∞) at the time of propagation outbreak as the
proportion of the common population q0 increases. This is because
the common population has a stronger promoting effect on the
propagation process than the hesitant population. Therefore, when
there is a larger common population, the adoption rate during the
propagation outbreak is faster, resulting in a larger adoption range.
Subfigure 7(c) is divided into two regions based on the phase
transition patterns, Region I: As the unit propagation probability
λ and the proportion of the common population q0 increase, the
color temperature map exhibits a distinct moment of abrupt color
temperature change, transitioning from the lowest to the highest
color temperature, indicating that a first-order discontinuous phase
transition has occurred in this region. Region II: With the increase in
the unit propagation probability λ and the proportion of the
common population q0, the color temperature map displays a
less pronounced continuous change in color temperature,
showing a gradual transition from the lowest to the highest color
temperature as compared to Region 1, signifying that a second-order
continuous phase transition has taken place in this region.When the
decision-making ability of the hesitant population is weak (a � 0.8),

the adoption phenomenon of the common population dominates. In
Region I (q0 < 0.2), where the proportion of the common population
is small, there is insufficient dominant population to guide the
outbreak of propagation, making the propagation more closely
aligned with the outbreak threshold of the hesitant population
and exhibiting a discontinuous propagation pattern. As the
proportion of the common population q0 increases and enters
Region II (0.2< qo ≤ 1), the common population takes the lead in
propagation, with the common population initiating the outbreak
first, followed by the hesitant population, showing continuous
characteristics. However, due to the promoting effect of the
common population on information propagation, the continuous
features are not as strong as those when the hesitant population is
dominant in subfigure 7(a). Nevertheless, it can be observed from
subfigure 7(c) that as the proportion of the common population
increases, the ultimate propagation range at equilibrium also
becomes larger.

4.2 The propagation process of weighted
SF network

In the weighted SF network, the degree distribution
heterogeneity of nodes is negatively correlated with the degree
index ], the degree of nodes follows the power distribution

P(k) � ξk−], ξ � 1/∑
k

k−], and the parameter ] represents the

degree index of SF network.
Figure 8 demonstrates the impact of the unit propagation

probability λ on the ultimate adoption range R(∞) for different
proportions of the common population q0 in a weighted SF network,
when the decision-making ability of the hesitant population is
strong (hesitancy parameter a � 0.2). Subfigures 8(a1) and 8(b1)
show the effects of different degree indices ] � 2.1 and ] � 4 on the
propagation patterns, respectively. The initial proportion of nodes in
state A, ρ0 � 0.001, and the edge weight is taken as ε � 25. It can be
observed from subfigures 8(a1) and 8(b1) that as λ increases, R(∞)
gradually enlarges. However, in subfigure 8(a1), an increase in the
proportion of the common population enhances the ultimate
adoption range at equilibrium, while in subfigure 8(b1), the
ultimate propagation reaches global propagation at equilibrium.
It is also noticeable that when the proportion q0 is small
(q0 � 0.2), indicating a larger number of hesitant individuals, the
propagation outbreak threshold occurs earlier compared to when
the proportion is larger (q0 � 0.5 and q0 � 0.8). This is attributed to
the stronger decision-making ability of the hesitant population,
which takes the leading role. Therefore, when the dominant
population is larger, it facilitates the outbreak of information
propagation, aligning with the propagation phenomena and
theories observed in weighted ER networks. Additionally, it is
found that the propagation patterns during the outbreak differ;
when q0 � 0.2 and q0 � 0.5, a second-order continuous propagation
phenomenon is exhibited, but there is a change in the slope of the
propagation trend line, due to the initial outbreak being dominated
by the hesitant population followed by the inclusion of the common
population, leading to a change in the propagation speed.
Furthermore, as the degree index ] increases (indicating a
decrease in degree distribution heterogeneity), making the
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degrees of individuals in the network more similar, the propagation
outbreak threshold does not change significantly. However, the
ultimate adoption range at equilibrium increases, and the
propagation rate becomes faster, eventually reaching global
adoption. Thus, when the decision-making ability of the hesitant
population is strong, reducing the degree distribution heterogeneity
can promote a larger ultimate adoption range and even global
propagation at equilibrium. Subfigures 8(a2) and 8(b2) represent
the relative standard deviation computed from the statistical analysis
of the simulation values and the critical threshold for the
propagation outbreak as indicated in subfigures 8(a1) and 8(b1),
respectively. Moreover, the theoretical analysis (curves) matches
well with the simulation values (symbols), indicating a good fit.

Figure 9 depicts the influence of the unit propagation probability
λ on the ultimate adoption range in a weighted SF network when the
decision-making ability of the hesitant population is moderate,
across different proportions q0 of the common population.

Subfigures 9(a1) and 9(b1) showcase the effects of different
degree indices (] � 2.1 and ] � 4) on the propagation patterns.
The initial proportion of nodes in state A, ρ0 � 0.001, with an edge
weight value of ε � 25. As λ increases, R(∞) gradually enlarges, and
the proportion q0 of the common population has no significant
effect on the outbreak point of propagation. This is because, at this
time, the adoption thresholds of both hesitant and common
individuals are essentially the same, consistent with the
propagation phenomena observed in the aforementioned ER
networks. However, the larger the proportion of the common
population, the greater the ultimate adoption range R(∞)
achieved during the propagation outbreak. Additionally, as the
degree heterogeneity index ] increases (indicating a decrease in
degree distribution heterogeneity), making the degrees of
individuals in the network more similar, the outbreak threshold
for information propagation does not change significantly.
However, the ultimate adoption range at equilibrium increases,

FIGURE 8
In a weighted SF network, when the decision-making ability of the hesitant population is relatively strong, this figure illustrates the impact of the unit
propagation probability λ on the ultimate propagation range across different proportions of the common population q0. Subfigures 8 (A1) (] � 2.1) and
8 (B1) (] � 4) describe the influence of different degree indices on the propagation patterns. Subfigures 8 (A2,B2) represent the statistical computation of
the relative standard deviation of the simulated values and the critical threshold for propagation outbreak as indicated in subfigures 8(a1) and 8(b1),
respectively. The remaining parameters are fixed at ρ0 � 0.001, a � 0.2, and ε � 25.
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and the propagation rate becomes faster, reaching global adoption at
equilibrium. Subfigures 9(a2) and 9(b2) present the statistical
computation of the relative standard deviation of the simulated
values and the critical threshold for the propagation outbreak as
indicated in subfigures 9(a1) and 9(b1), respectively. When the
decision-making ability of the hesitant population is moderate, the
growth pattern of the adoption range R(∞) is discontinuous for
different proportions of the common population q0 and different
degree indices ]. Therefore, reducing the degree distribution
heterogeneity can promote a larger ultimate adoption range in
information propagation when the decision-making ability of the
hesitant population is moderate. Moreover, the theoretical analysis
(curves) matches well with the simulation values (symbols),
indicating a good fit.

Figures 10A1, B1 present the influence of different degree
indices (] � 2.1 and ] � 4) on the propagation patterns, with an
initial proportion of nodes in state A (ρ0 � 0.001) and an edge

weight value (ε � 25). As the unit propagation probability λ

increases, the ultimate adoption range R(∞) gradually enlarges.
From Figure 10A1, it can be observed that when q0 � 0.8, indicating
that the majority of the population is in the common state, the
outbreak threshold for propagation occurs earlier compared to when
q0 � 0.2 and q0 � 0.5. This is attributed to the weaker decision-
making ability of the hesitant population, where the common
population takes a dominant role in propagation. Furthermore,
due to the promoting effect of the common population on
propagation, a higher proportion of the common population
leads to a larger ultimate propagation range at equilibrium. These
conclusions and phenomena are consistent with the theories and
observations derived from weighted ER networks. Comparing
Figures 10A1, B1, it is noted that as the degree heterogeneity
index ] increases (indicating a reduction in degree distribution
heterogeneity) and the degrees of individuals in the network
become more similar, the ultimate adoption range in Figure 10B1

FIGURE 9
In a weighted SF network, this figure examines the influence of the unit propagation probability λ on the propagation range under different
proportions of the common population q0 when the decision-making ability of the hesitant population is moderate. Subfigures 9 (A1) with degree
exponent ] � 2.1 and 9 (B1) with ] � 4 illustrate the effects of different degree indices on the propagation patterns. Subfigures 9 (A2,B2) depict the
statistical computation of the relative standard deviation of the simulated values and the critical threshold for the propagation outbreak as indicated
in subfigures 9(a1) and 9(b1), respectively. All other parameters are set to ρ0 � 0.001, a � 0.2, and ε � 25.
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is larger at equilibrium compared to that in Figure 10A1, although
the outbreak threshold for propagation does not change. Figures
10A2, B2 provide the statistical computation of the relative standard
deviation of the simulated values and the critical threshold for the
propagation outbreak as indicated in Figures 10A1, B1, respectively.
It can be seen from the figures that when the decision-making ability
of the hesitant population is weak, reducing the degree distribution
heterogeneity can increase the ultimate adoption range at
equilibrium for information propagation. Moreover, the
theoretical analysis values (curves) match well with the
simulation values (symbols), indicating a good fit.

Figure 11 illustrates the combined effect of the unit propagation
probability λ and the hesitancy parameter a on the ultimate
adoption range R(∞) in a weighted SF network with a high
degree of heterogeneity in the degree distribution. The initial
proportion of nodes in state A, ρ0 � 0.001, with an edge weight
value of ε � 25 and a degree exponent v � 2.1. Figure 11A (q0 � 0.2),

11(b) (q0 � 0.5), and 11(c) (q0 � 0.8) are each divided into three
regions, the regional division of information propagation patterns is
analogous to that in ER networks, where the delineation is based on
the continuous and discontinuous changes in color temperature.
Transitioning from Region I, representing the second-order
continuous phase transition stage, to Region II, the first-order
discontinuous phase transition stage, and finally to Region III,
another second-order continuous phase transition stage. In
Figure 11A, where the proportion of the common population is
small (q0 � 0.2), the outbreak threshold for information
propagation initially increases and then decreases with the
weakening of the population’s decision-making ability, and the
propagation rate follows a similar pattern. This suggests that in
networks with high degree distribution heterogeneity and a larger
hesitant population, the weakening of decision-making ability
initially leads to a suppressive effect of the hesitant population
on the outbreak of information propagation. Subsequently, as the

FIGURE 10
In a weighted SF network, this figure examines the impact of the unit propagation probability λ on the ultimate propagation range under different
proportions q0 of the common population when the decision-making ability of the hesitant population is relatively weak. Subfigures 10 (A1)with degree
index ] � 2.1 and 10 (B1) with ] � 4 illustrate the effects of different degree indices on the propagation patterns. Subfigures 10 (A2,B2) provide the
statistical computation of the relative standard deviation of the simulated values and the critical threshold for the propagation outbreak as indicated
in subfigures 10(a1) and 10(b1), respectively. The remaining parameters are set to ρ0 � 0.001, a � 0.8, and ε � 25.
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common population becomes dominant, the rate of information
propagation accelerates. When the decision-making ability is very
weak (a≥ 0.8), the suppressive effect of the hesitant population on
information propagation is more pronounced, leading to a slower
propagation rate. Figures 11B, C correspond to scenarios where the
proportions of the common and hesitant populations are equal
(q0 � 0.5) and where the common population has a larger share
(q0 � 0.8), respectively. As the decision-making ability weakens, the
propagationmechanism is similar to that when the proportion of the
common population is small in Figure 11A, with the distinction that
the dividing lines between Regions I and II in Figures 11B, C occur at
a � 0.4 and a � 0.2, respectively. This indicates that when there is a
smaller hesitant population with stronger decision-making ability,
there is a promotional effect on information propagation.

Figure 12: This figure represents the combined effect of the unit
propagation probability λ and the hesitancy parameter a on the
ultimate adoption range R(∞) in a weighted SF network, where the
degree distribution exhibits a relatively lower degree of
heterogeneity. The initial proportion of nodes in state A,
ρ0 � 0.001, with an edge weight value of ε � 25 and a degree
index ] � 4. Figure 12A (q0 � 0.2) and 12(b) (q0 � 0.5) are each
divided into four regions, the regional division of information
propagation patterns is analogous to that in ER networks, where
the delineation is based on the continuous and discontinuous
changes in color temperature. Reflecting the transition of
information propagation from non-propagation to discontinuous
propagation, then to continuous propagation, back to discontinuous
propagation, and finally to continuous propagation as the decision-
making ability of the population weakens. When the network has a
relatively low degree of heterogeneity and the population has a very
strong decision-making ability (a≤ 0.1), but the proportion of the
hesitant population is large or moderate, information propagation is
challenging, transitioning from non-propagation to gradual
propagation. As the decision-making ability decreases, the
propagation mechanisms in regions II, III, and IV of Figures
12A, B are similar to those in Figures 11A, B. Figure 12C
(q0 � 0.8) is divided into two regions. When the common
population constitutes a larger proportion of the network, the

unit propagation probability at the outbreak threshold for
information propagation decreases, and the propagation shifts
from discontinuous to continuous as the decision-making ability
of the population weakens. Due to the dominant role of the common
population, which promotes propagation, the outbreak threshold
decreases. However, when the decision-making ability of the
hesitant population is very weak (a≥ 0.8), there is a suppressive
effect on information propagation, but since the hesitant population
is small, there is a brief phase of continuous propagation.

Figure 13 illustrates the combined effect of the unit propagation
probability λ and the proportion of the common population q0 on
the ultimate adoption range R(∞) in a weighted SF network.
Subfigures 13(a) and 13(b) depict the impact of λ and q0 on the
ultimate adoption range under different degree indices, with ] � 2.1
and ] � 4, respectively. The propagation patterns in Figures 13A, B
are similar; when the population’s decision-making ability is
moderate, an increase in the proportion of the common
population q0 does not significantly affect the information
propagation threshold. However, the larger the degree index ],
indicating less degree distribution heterogeneity, the greater the
ultimate adoption range at equilibrium, and the faster the
propagation rate, eventually leading to global adoption.
Conversely, when the degree index is smaller (] � 2.1), it is only
as q0 increases, and the network is predominantly composed of
common individuals, that information can achieve global adoption.
Thus, a lower degree of distribution heterogeneity more effectively
facilitates information propagation to reach a larger adoption range.

5 Conclusion

This study investigates the propagation of information in social
networks within weighted networks, considering the heterogeneity in
group adoption characteristics. The heterogeneity is characterized by
distinct Hesitant-Common (HECO) traits in information adoption
across different populations. The paper proposes two information
adoption functions to elucidate the impact of group heterogeneity on
information propagation. For common individuals, their adoption

FIGURE 11
This figure illustrates the combined effect of the unit propagation probability λ and the hesitancy parameter a on the ultimate adoption rangeR(∞) in
a weighted SF network. Subfigures 11 (A–C) correspond to different proportions of the coomon population, with (A) for q0 � 0.2, (B) for q0 � 0.5, and (C)
for q0 � 0.8. Each of these subfigures is divided into three distinct regions: Region I represents the second-order continuous phase transition stage,
Region II the first-order discontinuous phase transition stage, and Region III the second-order continuous phase transition stage. The remaining
parameters are set to ρ0 � 0.001, ε � 25, and v � 2.1.
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probability increases with the accumulation of received information.
However, for hesitant individuals, the adoption probability initially
increases similarly to that of common individuals but then declines as
more information is received, eventually stabilizing and no longer
changing once the optimal decision-making capacity is reached. The
study randomly selects a proportion q0 of the population as common
individuals, with the remaining proportion e0 designated as hesitant
individuals. Interactions among individuals are modeled as edge
weights in the social network, leading to the development of a
social network information propagation model based on edge
weights and HECO characteristics. This model is validated within
both ER and SF networks.

Through simulation analysis, this study explores the
information adoption behaviors of different types of individuals
(hesitant and common), and investigates how these behaviors

impact the speed and extent of information dissemination. It also
observes phase transition phenomena during the information
propagation process, particularly the correlation between the
pattern of change in the ultimate adoption range and the
proportion of common individuals. The study examines the
impact of variations in the weight distribution index on the
speed and efficiency of information propagation. It discusses how
the heterogeneity in the degree distribution of nodes within the
network affects information dissemination and how this
heterogeneity interacts with the phase transition patterns of
information propagation. The influence of decision-making
ability on propagation is a focal point of consideration. Findings
align with theoretical analysis, indicating that common individuals
facilitate the spread and adoption of information. Furthermore, a
phase transition crossover phenomenon is observed, where the

FIGURE 12
The joint effect of the unit propagation probability λ and the hesitancy parameter a on the ultimate adoption range R(∞) in a weighted SF network is
depicted. Subfigures 12 (A–C) represent different proportions of the common population, with (A) for q0 � 0.2 and (B) for q0 � 0.5 each divided into four
regions: Region I, the first-order discontinuous phase transition stage; Region II, the second-order continuous phase transition stage; Region III, another
first-order discontinuous phase transition stage; and Region IV, the second-order continuous phase transition stage. (C) for q0 � 0.8 is divided into
two regions: Region I, the first-order discontinuous phase transition stage, and Region II, the second-order continuous phase transition stage. All other
parameters are set to ρ0 � 0.001, ε � 25, and ] � 4.

FIGURE 13
This figure delineates the joint impact of the unit propagation probability λ and the proportion of the common population q0 on the ultimate
adoption range R(∞) within a weighted SF network. Subfigures 13 (A,B) respectively illustrate the influence of λ and q0 on the ultimate adoption range
under different degree indices ] � 2.1 and ] � 4. All other parameters are held constant at ρ0 � 0.001, a � 0.5, and ε � 25.
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growth pattern of R(∞) shifts from a first-order discontinuous
phase transition to a second-order continuous phase transition as
the value of q0 increases. An increase in the weight distribution
exponent promotes information propagation. Furthermore, a
decrease in degree distribution heterogeneity enhances the spread
of information, while an increase in degree distribution
heterogeneity, coupled with a weakening of the population’s
decision-making ability, inhibits information propagation.

The heterogeneity of groups within social networks plays a pivotal
role in the propagation of information, yet there is a paucity of related
research. This paper, through rigorous modeling and analysis, reveals
the significant impact of the Hesitant-Common (HECO) attributes
based on group heterogeneity on information dissemination.
Furthermore, the HECO characteristics hold notable potential in
practical applications, particularly in understanding and forecasting
the dynamics of information propagation within social networks.
Below are some potential applications of the HECO model across
various domains: (1) Social Media Marketing: By understanding the
extent to which users accept advertisements or trending information,
the HECO model can assist marketers in designing more effective
social media strategies to enhance the velocity and reach of
information dissemination; (2) Public Health Campaigns: When
promoting health information or awareness of vaccination
initiatives, the model can predict the rate at which different
demographic groups will accept health-related messages, thereby
aiding health organizations in more accurately targeting their
promotional resources; (3) Crisis Management: In emergency
situations, comprehending the rapid spread of information is
essential for an effective crisis response. The HECO model can
forecast the speed and breadth of information propagation,
assisting in the development of more robust emergency
communication strategies; (4) Online Sentiment Analysis:
Governments and corporations can utilize the HECO model to
monitor and analyze the genesis and evolution of public opinion,
thereby gaining a more profound understanding of the needs and
reactions of the populace; (5) Product Promotion: Businesses can
apply the HECO model to refine their strategies for new product
promotion by identifying consumer groups most likely to rapidly
accept and disseminate information, thus accelerating the market
penetration of their products; (6) Information Security: Within the
realm of cybersecurity, the HECO model can aid in the anticipation
and prevention of the spread of misinformation or rumors by
pinpointing key nodes in the propagation of information to bolster
network defenses; (7) Traffic Planning: In the analysis of traffic
networks, the conceptual framework of the HECO model can be
employed to comprehend and optimize the flow of information, such
as real-time traffic updates, to alleviate congestion and enhance traffic
efficiency. By applying the HECO model in these domains, a deeper
understanding and more effective utilization of the mechanisms of
information propagation within social networks can be achieved,
leading to improved quality and efficiency in decision-making
processes. The research presented herein also offers a new

direction for the study of information propagation in
heterogeneous networks. However, this study only considers
the propagation of group heterogeneity under basic scenarios
and does not account for propagation within multi-layer
networks. Additionally, the influence of parameters such as
limited contact capacity is not considered. It is hoped that
future research will have the opportunity to further explore
this field.
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