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This article aims to analyze the two-dimensional (2D) nanofluid (Ag/C2H6O2) flow
past an exponentially stretched sheet. The magnetic field impact, heat source/
sink, and convection in the thermal profile are taken into account. The complexity
of the problem is reduced by introducing a dimensionless group of functions. The
reduced model is transformed into a system of first-order ordinary differential
equations (ODEs). This system is further analyzedwith the artificial neural network
(ANN), which is trained using the Levenberg–Marquardt algorithm. The whole
dataset is sub divided into three parts: training (70%), validation (15%), and testing
(15%). The impact of nonlinear heat source/sink parameter, magnetic parameter,
volume fraction of nanoparticles, and Prandtl number is displayed through
graphs. The heat source, volume fraction, and the Prandtl number cause an
increase in the thermal profile with its larger values. The magnetic parameter
causes a decline in both the thermal and momentum boundary layers with its
higher values. The analysis shows that the thermal energy profile is enhancedwith
the larger values of the volume fraction of silver nanoparticles and heat source.
For each case study, the residual error (RE), regression line, and validation of the
results are presented. The performance of the proposed methodology is
numerically tabulated for the nanoparticle volume fraction shown in Table 3,
where the minimum absolute error (AE) is 5.3373e − 11 at ϕ � 0.05. Based on this,
we recommend ϕ � 0.05 for better performance. The AEs for the ANN and bvp4c
are computed for the state variables in Tables for the magnetic parameter
M � 5, 10, and 15. These tables show the overall performance of the ANN and
further validate the present study. We have also validated the results of the ANN
through themean squared error graphically, where the accuracy of the proposed
methodology is proven.
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1 Introduction

Fluids including air, water, and plasma are the most
frequently encountered substances in human life. Without a
thorough knowledge of these fluids’ transport properties, their
industrial utilization is not feasible. Several industrial operations,
such as the coating and coloring of constantly moving metal
sheets, extrusion of polymer sheets, drawing of copper wires,
extrusion of polyvinyl chloride, thin film coating on
photographic films, and plastic sheets, include flows over a
stretching surface. Due to its practical implications, the study
of fluid flows driven by stretching surfaces is a popular topic these
days. Byron [1] was the first to investigate the boundary layer flow
of a viscous fluid on a continuously moving surface. Lawrence [2]
achieved a crowded type solution for a 2D flow, limited by a linear
stretching sheet. Numerous assumptions have been taken into
consideration when analyzing this ground-breaking research.
Andersson [3] investigated how slipping forces affect a
stretching surface. The work of Lawrence [2] is expanded
upon by Donald [4] for the 3D case. Liu [5] provided the heat
transfer analysis for a second-grade electrically conducting fluid
across a stretched surface. While discussing the boundary layer
flow caused by an exponentially growing surface, Ishak et al. [6]
considered the radiation effect. The HNF mixed convective flow
phenomenon is examined by Waini et al. [7]. for an exponentially
expanding/constricting surface. Gowda et al. [8]. analyzed
computationally the Stefan effect for a second-grade fluid flow
past a curved stretched sheet. The role of magnetic dipoles in the
flow of ferromagnetic NF past a stretching sheet is presented by
Gowda et al. [9] in their 2013 investigation. Asghar et al. [10]
used the generalized Fourier strategy to analyze the convective
heat transfer for Williamson fluid flows past an unstable sheet.

The phrase “nanofluid” was first used by Choi [11] in a study
presented at the ASME Winter Annual Meeting. The thermal
conductivity of the nanofluids is better than that of water, making
them an innovative type of fluid, including small solid particles.
Microparticle applications involve heat transfer, according to several
recent inventions. Nanofluids are fluids used in conventional heat
transfer that dissipate nanoscale flammable particles. Medical uses for
nanofluids include the use of gold nanoparticles to treat malignant
tumors and the development of tiny explosives to eliminate
malignancies. Jacopo [12] investigated the convective heat
transmission in nanofluids with a new type of nanofluid model.
Nadeem and Lee [13]. examined the boundary layer flow of the
nanofluid that flows past an elongated surface. Convective boundary
conditions are used by Mustafaa et al. [14] to characterize the boundary
layer flow on the exponentially stretched surface. The nanofluid
phenomenon across a porous stretched surface is explained by
Bhattacharyya and Layek [15]. Waqas et al. [16] studied the
thermally radiative MHD nanofluid flow by utilizing the Robin
conditions. Ghosh and Mukhopadhyay [17]. reported the fluxes in
the NF flow past a stretching sheet. Sulaiman et al. [18] discusses the
3D flow of microorganisms that contain nanofluids. Ghosh and
Mukhopadhyay [19]. described the transfer of heat for an NF flow
past an exponentially declining sheet. Ali et al. [20] described
numerically the nanofluid phenomenon for an exponentially
expanding surface by taking non-uniform heat fluxes. The numerical
study for the thermal analysis of the new wavy absorber tube within a

solar system is provided by Sheikholeslami et al. [21]. They considered
the two-phase model of the nanofluids that contain oil and CuO
nanoparticles. They concluded that the friction factor is decreased by
28.96% with 180.13% improvement in the heat transfer coefficient by
increasing the Reynolds number from 5,000 to 20,000. Sheikholeslami
[22] also demonstrated an air conditioner that uses porous media of
four-lobed cylinders that contain paraffin and nanoparticles of ZnO.
Gowda et al. [23] examined the stretchable disks for the slip effects of the
Casson–Maxwell nanofluid flow. Asghar et al. [24] studied numerically
the motion of an organism sliding down a slime-shaded surface.

Magnetohydrodynamics (MHD) is the study of how electrically
conducting fluids behave under the influence of the applied magnetic
field. The terms magneto (which refers to a magnetic field), hydro (which
refers to a liquid), and dynamic (which refers to motion) form the term
magnetohydrodynamic. This kind of fluid can be found in electrodes,
liquid crystals, seawater, and solitons [25]. The conductor develops a
potential when an electric field and a magnetic field move in relation to
one another, which results in current flowing between the endpoints in
accordance with Faraday’s law of electromagnetic induction [26–28]. This
law is used to create MHD power. Currents may flow through an
electrically conductive fluid that is flowing through magnetic fields,
polarizing the fluid and altering the magnetic field in the process.
Alfvén [29] referred to such a fluid having magnetohydrodynamics
(MHD). The dynamics of the microorganisms for the Carreau–Yasuda
layer is analyzed by Asghar et al. [30]. The mechanism and uses of the
MHD flow in a variety of industrial processes have been the subject of
numerous studies [31–33]. Benos et al. [34] used the Hamilton–Crosser
model to theoretically examine the natural convectiveMHD flowofCNT-
based NF. Asghar et al. [35] studied the flow past a wavy curved sheet in
the presence of lowReynolds number. In another study, Asghar et al. [36].
analyzed the bacterial motion past a slime with the Oldroyd-4 constant. A
more recent survey can be found in Refs. [37–40]. The solution strategy is
important for the analysis of the nonlinear problems [41]. Recently,
artificial intelligence (AI) methodologies have been broadly used for a
variety of nonlinear problems.Among them, Shafiq et al. [42, 43]. used the
ANN for the analysis of the exponential distribution. They have analyzed
the Weibull distribution through the ANN and compared the results by
using a numerical strategy. Bhadauria et al. [44] studied the THNF flow
past a cone and disk by using the supervised learning ANN approach. Ali
et al. [45] studied the Ostwald–de Waele model for the flow through the
cavity by using the ANN based on the Levenberg–Marquardt algorithm.
Srilatha et al. [46] studied the nanofluidflowpast a porous rotating disk by
using the ANN. Brunton et al. [47] explained the applications of machine
learning in fluid mechanics. Amini and Mohaghegh [48] analyzed the
machine learning in a porous media. They implemented the ANN by
considering proxy modeling. Eivazi et al. [49] studied the experimental
fluid mechanics under the impact of machine learning. A more recent
survey on the nanofluid flow by using the ANN can be found in
Refs. [50–52].

The above analysis clarifies that the choice of nanofluids for the
transfer of heat is important. In this work, we will use silver (Ag)
nanoparticles in the base fluid C2H6O2 to form a new nanofluid and
briefly explain the flow of Ag/C2H6O2 past an unstable stretched sheet.
The magnetic parameter is applied perpendicular to the sheet along the
y-axis. The convective impact on the thermal profile is taken into
account. The non-uniform flux of heat is considered to analyze the
source and sink for thermal energy enhancement or reduction.
Including these assumptions, the physical problem is modeled
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together with the boundary convective conditions. Furthermore, the
proposed problem is tackled with a trained ANN that uses the
Levenberg–Marquardt algorithm. To the best of our knowledge, this
is the first study to report the Ag/C2H6O2 nanofluid by using the ANN-
trained approach based on the Levenberg–Marquardt algorithm.

The layout of the article is categorized as follows: Section 2 presents
a physical description of the problem together with its mathematical
relation. The proposed methodology is briefly explained in Section 3,
while the training procedure is explained in Section 3.1. The
approximation and impact of various pertinent parameters are
explained in Section 4, while the conclusion is provided in Section 5.

2 Problem formulation

We consider a constant, incompressible, and two-dimensional
nanofluid flow past a nonlinear stretching surface. A magnetic field
with strength B0 is applied normally to the fluid flow. The impacts of
uneven heat transfer and convective boundary conditions are also
considered. The geometry is chosen in such a way that the surface
is stretched along the x-axis, as shown in Figure 1. Since the surface
chosen is exponentially stretching, the velocity along the x−axis has the
form Uw � U0e

x
l .

By assuming the above conditions, we have [20]

∂u

∂x
� −∂v

∂y
, (1)

u
∂u

∂x
� −v ∂u

∂y
+ μnf
ρnf

∂2u

∂y2
− σnf
ρnf

B2
0u, (2)

u
∂T

∂x
� −v ∂T

∂y
+ κnf

ρcp( )
nf

∂2T

∂y2

+ κnfUw x( )
xvnf ρcp( )

nf

A Tw − T∞( )f′ + T − T∞( )B[ ]. (3)

The boundary conditions from the physical problem can be
written as [20, 53]

u � Uw x( ), v � 0, κf
∂T

∂y
+ hf Tw − T∞( ) � 0, aty � 0,

u → 0, T → T∞ asy → ∞ .

(4)

Here, (u, v) represent the components of velocity; B0 is the
applied magnetic field strength; T is the temperature of the fluid, A
and B are the heat source and sink, respectively, T∞; and Tw are the
ambient and surface temperatures, respectively.

Assume the following [53]:

u

U0
� exp

x

l
( )f′ η( ), v � −







vfU0

2l

√
exp

x

l
( ) ηf′ η( ) + f η( )( ),

θ η( ) Tw − T∞( ) � T − T∞,
η

y
�






U0

2vfl

√
exp

x

2l
( ).

(5)
Now, by substituting Equation 5 into Equations 1–4, we obtain

A0

A1
f′′′ + f′′ � A2

A1
Mf′ + 2f′2, (6)

θ′′ + Pr
A3

A4
fθ′ + A1

A0
f′A + θB( ) � 0, (7)

f′ η( ) � 1, f η( ) � 0, θ′ η( ) + γ 1 − θ η( )( ) � 0 at η � 0,
θ η( ) → 0, f′ η( ) → 0 as η → ∞ .

(8)

Here, A0 � μnf
μf
, A1 � ρnf

ρf
, A2 � σnf

σf
, A3 � (ρcp)nf

(ρcp)f , and A4 � κnf
κf
. All

these parameters are defined in Table 1, whose thermophysical
properties are defined in Table 2. In addition, M � σfB2

0U0

ρf
and Pr �

μf(ρcp)f
ρfkf

are magnetic and Prandtl numbers, respectively.

3 Proposed methodology

This work aims to implement the machine learning strategy known
as the artificial neural network (ANN). The ANN is a nature-inspired
algorithm that uses the structure of the human brain. It receives the
input and trains the neurons in the hidden layers to produce the output.
Nowadays, the ANN is widely used for different purposes, including
future prediction of economic prosperity, weather prediction, and
security purposes. The ANN has opened a new era in machine
learning with its wide range of applications see the references [55, 56].

The ANN is also very fault-tolerant and continues its
functioning even if some parts stop working. In addition, ANNs
are helpful for modeling complicated systems because they can
detect nonlinear correlations in data. Finally, ANNs are helpful for
many real-world applications because they can accurately map
inputs to outputs as suggested in the reference [57]. ANNs are
based on interconnected neurons and nodes. They receive the input
and perform various operations back and forth to generate
the output.

FIGURE 1
Problem geometry.

TABLE 1 Nanofluid models.

Property Nanofluid

Density ρnf � (1 − ϕ)ρf + ϕρs

Viscosity μnf � μf
(1−ϕ)23

Heat capacity (ρcp)nf � (1 − ϕ)(ρcp)f + ϕ(ρcp)s

Thermal conductivity κnf
κf

� κs+(n−1)κf−(n−1)ϕ(κf−κs )
κs+(n−1)κf+ϕ(κf−κs )

Electric conductivity σnf
σf

� σs+2σf−2ϕ(σf−σs )
σs+2σf+ϕ(σf−σs )
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We reduce the system of Equations 6–8 to a first-order system as
given below:

y1 � f, y3 � f′′, y2 � f′, y4 � θ, y5 � θ′,
y1′ � y2,

y2′ � y3,

y3′ � −A1

A0
y1y3 − 2y2

2 −
A2

A1
My2( ),
y4′ � y5,

y5′ � − Pr
A3

A4
y1y5 + A1

A0
Ay2 + By4( )(

(9)

The corresponding B.Cs are as follows:

y1 0( ) � 0, y5 0( ) � −γ 1 − y4 0( )( ), y2 0( ) � 1,
y2 ∞( ) � 0, y4 ∞( ) � 0.

(10)

In general, for an unknown function uk, the weight wk and
constant βk are given by the following formula for a certain input tk.

uj � ∑k
j�1

wjtj − βj. (11)

We introduce the following sigmoid function to obtain the
results for f(ζ) and θ(ζ):

χ uj( ) � 1

1 + e
− wjtj−βj( ). (12)

3.1 Weight training

The generation of output results with the training phase in
the hidden layer needs to be analyzed in detail. Before the
implementation of the ANN, the systems of Equations 9, 10
are solved using the bvp4c. Bvp4c uses the finite difference
scheme and implements the Lobatto IIIa formula. This
formula is derived from the collection of polynomials that
provide a continuous, fourth-order, accurate, and uniform
solution. We assume η � 3, step size = 0.01, and tolerance =
e − 10. We approximate the unknown function given in Equation
11 by using the sigmoid function defined in Equation 12. The
basic idea of the bvp4c for fluid flow problems is explained by
Wang et al. [58]. Ullah et al. [59] recently explained the
supervised learning approach for HNF flow problems. We take
this result as a dataset and split it into testing, training, and
validation datasets for the implementation of the ANN. The ANN
assigns different weights to the neurons and produces the optimal
result. The solution is discussed with mean squared error,
absolute error, and regression (R2), defined as follows:

MSE � 1
j
∑j
i�1

zi t( ) − ẑi t( )( )2, (13)

1 − R2 � ∑j
i�1 ẑi t( ) − �xi t( )( )2∑j
i�1 zi t( ) − ẑi t( )( )2 , (14)

and

AE � |zi t( ) − ẑi t( )|, j � 1, 2, . . . , k. (15)

4 Results and discussions

The results obtained are presented in Figures 2–6 and Table 3.
The state variables are displayed under the influence of various
pertinent parameters, together with AEs, regression lines, and
validation of results given in Equations 13–15. In addition, the
results are presented in the form of a table for various choices of the
nanofluid volume fraction.

A shown in Figure 2A, the impact of the space-dependent
parameter A> 0 is displayed for the velocity gradient. When
increasing the positive A from 0 to 0.9, the velocity gradient
decreases from 1 to 0. A quite similar trend is observed in
Figure 2B for A< 0. The AEs for both positive and negative
trends of A are displayed in Figures 2C, D. The AEs in both
cases vary up to 10−9. This effect is faster as η varies from 0 to 3.
The maximum AE occurs at η � 2.7 for A< 0, while the same trend
is observed for A> 0 when η � 2.67. The maximum AE occurs for
A � 0.6 and A � 0, as shown by the red and blue lines in Figures 2C,
D, respectively. Regression is employed to assess the reliability of the
data. As the regression value approaches 1, it implies improved data.
Regression is used to assess the validity, training, and testing data. As
shown in Figures 2E, F, the regression lines show 1, which proves the
best result and recommends that 100% data are available on the
linear line. This analysis proves that our proposed methodology has
better performance. Furthermore, the surrogate results are presented
on the y−axis. The total performance in both cases is presented in
Figures 2G, H. The best validation performance for A> 0 is
3.8533e − 10 at 280 epochs, while for A< 0, it is 3.9475e − 09 at
292 epochs. The same parameter for both positive and negative
values is analyzed for the thermal profile, as shown in Figure 3.
WhenA> 0, the thermal profile increases and vice versa, as shown in
Figures 3A, B. By comparing both figures, we see that the increase is
a bit slower as compared to the decline. In the case of A> 0, the fluid
velocity blows, and the thermal profile due to the convection
increases. On the other hand, when A< 0, the suction takes place
and the fluid velocity declines. As a result, the migration of the
particles decreases, which further decreases the interaction and
causes a decline in the thermal profile. The AEs for both A> 0
and A< 0 are displayed in 3(c) and 3(d), respectively. The AEs for
both cases are bounded in the range 10−4–10−8, which proves the

TABLE 2 Thermo-physical properties of the base fluid and nanoparticles [54].

Base fluid/Nanoparticle ρ(kgm−3) Cp( J−1 K−1) k(Wm−1 K−1) σ(sm−1)
C2H6O2 1,110 22,000 0.253 5.5 × 10−6

Au 8,908 445 91 1.7 × 10−7
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stability of our proposed methodology. The regression and
performance of the proposed method are displayed in Figures
3E–H. The regression line shows that R � 1 proves the total data

on the fitting line, while the performance is achieved at 3.8533e − 10
and 3.9475e − 09, respectively. This minimum validation is obtained
at 280 and 292 epochs, respectively.

FIGURE 2
Impact of the space-dependent parameter (A) on f′ when (A) A>0, (B) when A<0, (C) absolute error (AE) when A>0, (D) absolute error (AE) when
A<0, (E) regression line when A>0, (F) regression line when A<0, (G) performance when A>0, and (H) performance when A<0.
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The impact of the magnetic parameter for its increasing values is
displayed in Figure 4. Figures 4A, B shows the results for the velocity
gradient and thermal profiles, respectively. The larger values of M

cause a decline in both the velocity gradient and thermal profiles.
The reference solution is represented with bold lines, while the ANN
results are displayed with dots. The resemblance in both solutions

FIGURE 3
Impact of the space-dependent parameter (A) on θ when (A) A>0, (B) when A<0, (C) absolute error (AE) when A>0, (D) absolute error (AE) when
A<0, (E) regression line when A>0, (F) regression line when A<0, (G) performance when A>0, and (H) performance when A<0.
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shows the accuracy of the implemented methodology. As M
approaches M and η → 3, the velocity gradient and the thermal
profiles tend to 0. Physically, the larger values of M are due to the

stronger magnetic parameter strength (B0), which acts
perpendicular to the stretching sheet. This force creates a field of
spirals in the motion of the velocity field that itself is a function of x

FIGURE 4
Impact of the magnetic parameter (M) on (A) f′ and (B) θ, (C) absolute error (AE) for f′, (D) absolute error (AE) for θ, (E) regression line for f′, (F)
regression line for θ, (G) performance for f′, and (H) performance for θ.
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only. As a result, the field created acts as a barrier to the velocity field,
which causes a decline in the velocity profile. Again, the influence of
B0 cannot be ignored on the thermal profile. The field created acts as

a barrier to the migration of the nanoparticles. The transfer of heat is
due to the minimum convection of these nanoparticles, which
becomes very small with larger values of M. As a result, the

FIGURE 5
Impact of the nanoparticle volume fraction (ϕ) on (A) f′ and (B) θ, (C) absolute error (AE) for f′, (D) absolute error (AE) for θ, (E) regression line for f′, (F)
regression line for θ, (G) performance for f′, and (H) performance for θ.
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thermal profile decreases. The absolute error shows the total
performance of the method applied. As shown in Figures 4C, D,
the absolute error varies from 10−4–10−9 and 10−4–10−7,
respectively. The fitness of the current data for the magnetic
parameter is displayed in Figures 4E, F. The regression line
shows R � 1 in both the cases, which recommends that the 100%
data are used in fitting the regression curve. On the y−axis, the
surrogate results are displayed, which vary by 10−17 in both cases.
The validation for the current analysis is shown in Figures 4G, H.

The mean squared error in each case decreases, and the best results
in both cases for velocity and thermal profiles are achieved at
285 epochs, which is 4.6145e − 10 for both profiles.

The impact of the volume fraction ϕ on its increasing trend is
displayed in Figure 5. As shown in Figures 5A, B, these analyses are
carried out for the state variables (velocity gradient and thermal profile).
As ϕ increases, the velocity decreases. This decrease is very small. For
more clarity, a zoom capture is provided, where the decrease is clearly
visible. Physically, the larger volume fraction decreases the convection,
and as a result, the velocity profile decreases. As shown n Figure 5B, the
temperature profile decreases due to the larger values of the nanofluid
volume fraction. The larger volume fraction has the ability to absorb
more heat and acts as a source of heat. Thus, the larger the volume
fraction, the greater the volume fraction. The reference solution and
ANN solution show a similar trend in both profiles. The absolute errors
for both cases are plotted in Figures 5C, D. The absolute error for both
the velocity and temperature ranges from 10−2–10−9. The regression
lines and validations are presented in Figures 5E–H. The regression
lines show R � 1 and the output 10−17 on the y − axis in both cases.
The results are validated at 1.7537e − 09 at 226 epochs, as shown in
Figures 5G, H.

FIGURE 6
Impact of Prandtl number Pr on (A) θ, (B) AE for θ, (C) regression line for θ, and (D) performance for θ.

TABLE 3 Absolute error (AE) for various values of ϕ.

ϕ AE

0 3.8413e-10

0.025 3.9990e-10

0.05 5.3373e-11

0.075 3.5322e-10

0.1 6.2934e-10
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The impact of the Prandtl number Pr on the thermal profile
is shown in Figure 6. The increasing values of Pr increase the
thermal profile. When Pr increases, the specific heat increases,
further causing the fluid to lose internal energy. The density ρ is
inversely related to Pr, and hence the larger values of Pr cause
the fluid density to be smaller and the base fluid to become more
feasible to flow. The motion of the base fluid and the thermal
increase in the specific heat increases the thermal profile. The
AE for the Pr variations is plotted in Figure 6B. The absolute
error (AE) ranges in 10−4–10−8. This shows the overall
performance of our method. The regression line and
validations are both presented in Figures 6C, D. The
regression line has R � 1, with the trained output on the y−
axis varying up to 10−17. The validations are achieved at
5.5151e − 10 with 535 epochs. The overall performance shows
that the results are validated.

The AEs for various choices of ϕ while keeping other
parameters fixed are displayed in Table 3. The AE varies
from 10−10–10−11. Best values of AE occur at ϕ � 0.05. This
analysis proves that in the range of 0–0.1, the ideal choice
would be 0.05 for ϕ. The numerical results for the AEs are
presented in Tables 4, 5 for f′ and θ, respectively. The ANN
results are compared with the bvp4c results for various choices
of M. It is clear from both the tables that when η → 1, the
convergence of f′, as compared to bvp4c, is faster. This

convergence rate is proved at each step, and the ANN results
converge more rapidly toward 0. A quite similar trend is
observed in Table 5, where the larger values of η push the
ANN results for θ more rapidly toward 0 as compared to bvp4c.
The analysis proves that the ANN has better performance as
compared to bvp4c.

5 Conclusion

This article provides a comprehensive analysis of a new type of
ethylene glycol-based nanofluid with silver nanoparticles. The shape
of nanoparticles and other important parameters for the thermal as
well as the velocity profile are discussed in detail. We observed the
following points:

• The thermal profile under the influence of the increasing values of
the heat source increases, while the velocity gradient decreases.

• The larger values of the magnetic parameter cause a decline in
the thermal and velocity profiles.

• The shape effect of the nanofluid decreases the velocity profiles
and increases the thermal profile.

• The minimum AE 5.3373e − 11 is observed at ϕ � 0.05 in
Table 3, and therefore, we recommend nanoparticle shape
0.05 for simulation purposes.

TABLE 4 Comparison of ANN and bvp4c AEs for f9.

η fann′ (M � 5) bvp4c fann′ (M � 10) bvp4c fann′ (M � 15) bvp4c

0 0.999947 1 0.999932 1 0.999992 1

0.053452 0.900705 0.900671 0.832065 0.832058 0.781214 0.781227

0.100223 0.797703 0.797722 0.708924 0.708926 0.586452 0.586469

0.200445 0.616322 0.616306 0.50391 0.503903 0.34526 0.345231

0.253898 0.537592 0.537601 0.420361 0.420368 0.277968 0.27797

0.300668 0.477228 0.477252 0.358833 0.358849 0.229994 0.230015

0.35412 0.416716 0.41673 0.299578 0.299592 0.185271 0.185295

0.400891 0.370246 0.37024 0.255889 0.255894 0.15337 0.153383

0.454343 0.323567 0.323545 0.213762 0.213756 0.123606 0.123604

0.501114 0.28765 0.287628 0.182663 0.182653 0.102352 0.102341

0.551225 0.231305 0.231306 0.154368 0.154358 0.072102 0.072092

0.601336 0.180004 0.180026 0.13047 0.130465 0.048126 0.048131

0.651448 0.140199 0.140211 0.110284 0.110283 0.032134 0.03214

0.701559 0.109269 0.10926 0.093231 0.093234 0.021467 0.021464

0.75167 0.085194 0.085176 0.078822 0.078827 0.014342 0.014336

0.801782 0.066431 0.066421 0.066646 0.066651 0.009577 0.009575

0.851893 0.051804 0.051807 0.056356 0.056359 0.006567 0.00657

0.902004 0.040403 0.040414 0.047658 0.047659 0.005016 0.00502

0.952116 0.031519 0.031529 0.040304 0.040304 0.003349 0.003353

0.998886 0.025004 0.025008 0.034468 0.034468 0.0023 0.002301
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• As shown in Tables 4, 5, the results of the ANN are compared
with the bvp4c for different values ofM, where the efficacy of
the ANN is proved.

• For the validity and stability of the proposed
methodology, the regression line, MSE, and AE are
presented in each case.
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TABLE 5 Comparison of ANN and bvp4c AEs for θ.

η θann (M � 5) bvp4c θann (M � 10) bvp4c θann (M � 15) bvp4c
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0.454343 0.750293 0.750311 0.837027 0.837031 0.873677 0.873727

0.501114 0.746189 0.746208 0.830299 0.830308 0.865001 0.865057

0.551225 0.741817 0.741829 0.823725 0.823734 0.856836 0.856878

0.601336 0.731912 0.7319 0.816017 0.816023 0.840334 0.840325

0.651448 0.717841 0.717817 0.807664 0.807665 0.819228 0.819187

0.701559 0.701227 0.701223 0.798701 0.798697 0.79605 0.796039
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Nomenclature
σ Electrical conductivity S

m

B0 Magnetic field strength T

k Thermal conductivity W
mK

Pr Prandtl number

Uw Stretching velocity (m
sec)

U0 Constant surface velocity (m
sec)

T Fluid temperature (K)
A,B Source and sink of heat

ν Kinematic viscosity m2

sec

ρ Density (Kg
m3)

μ Dynamic viscosity mPa

cp Specific heat ( J
KgK)

x, y, and z Coordinates (m)
η Similarity variable

ψ Stream function

hf Convective heat transfer coefficient

M Magnetic parameter

ϕ Nanofluid volume fraction

f , g Dimensionless velocities

l Characteristic length m

MSE Mean squared error

R Regression line

RE Residual error

AE Absolute error

bvp4c Built-in code MATLAB for boundary value problems

θ Dimensionless temperature

ANN Artificial neural network

χ Activation function

f Base fluid

NF Nanofluid

HNF Hybrid nanofluid

∞ Condition at infinity

0 Reference condition
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