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The socialist millionaire problem aims to compare the equality of two inputs from
two users while keeping their inputs undisclosed to anyone. Quantum private
comparison (QPC), whose security relies on the principles of quantum
mechanics, can solve this problem and achieve the information-theoretic
security of information processing. The current QPC protocols mainly utilize
the bitwise XOR operation to implement the comparison, leading to insufficient
security. In this paper, we propose a rotation operation-based QPC protocol to
solve the socialist millionaire problem, which utilizes Bell states as quantum
resources and rotation operations for classical calculations. The proposed
protocol only utilizes easy-to-implement technologies such as Bell states,
rotation operations, and Bell-basis measurements, making it more practical.
The analysis demonstrates that our protocol can meet both the correctness
and security requirements. Compared with the existing QPC protocols, our
protocol has improved performance in terms of practicability and security.
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1 Introduction

With the rapid development of quantum computing, there is a growing concern about
the security and privacy of information transmission. Securing traditional encryption
methods is no longer reliable due to the emergence of quantum algorithms (Shor’s
algorithm [1] and Grover’s algorithm [2]). In order to enhance the security of
information transmission, quantum cryptography, whose security is based on the
principles of quantum mechanics, has become a focus and attracted much attention.
The basic principles of quantum mechanics, such as quantum entanglement, non-cloning,
the uncertainty principle, and the superposition principle, enable quantum communication
to achieve information-theoretic security. In this context, quantum cryptography protocols,
including quantum key distribution (QKD) [3, 4], quantum key agreement (QKA) [5–7],
quantum secure direct communication (QSDC) [8, 9], and quantum secret sharing (QSS)
[10, 11], have been proposed to address various cryptographic tasks.

The millionaire problem, a primitive of secure multi-party computing (SMC), was
proposed by [12] in 1982. In this scenario, two millionaires aim to determine who is
wealthier without disclosing their individual wealth. On the basis of Yao’s research, the
socialist millionaire problem, a variant of the millionaire problem, was proposed by [13], in
which two millionaires sought to compare whether their wealth was equal. However, [14]
pointed out that calculating an equality function involving only two parties in the two-party
computation setting is not secure. A semi-honest third party is inevitably introduced to
complete the design of a secure private comparison protocol.
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Quantum private comparison (QPC) utilizes the principles of
quantum mechanics to ensure the security of private
information. The goal of this project is to solve the socialist
millionaire problem, which aims to determine whether the
private inputs of the participants are equal while keeping
their inputs undisclosed. The first QPC protocol was
proposed by [15], in which two users compare their secrets
using EPR pairs as quantum information carriers. Decoy
photons and a one-way hash function are employed to ensure
the security of the protocol. [16] introduced a QPC protocol
based on triplet-entangled states in which the comparison result
can be obtained even if not all data are compared completely.
This is because the private inputs are divided into multiple
groups, which leads to an improvement in efficiency.
However, [17] pointed out that [16] is susceptible to intercept
resend attacks, and some suggestions are provided to enhance
the security of private information. After that, some researchers
focus on using different quantum states, such as single photons
[18, 19], Bell states [20], multi-qubit states [21–24], and high-
dimensional quantum states [25–28], and various encoding
methods to develop the QPC protocol. Additionally, semi-
quantum private comparison (SQPC) protocols [29–36] have
been proposed to alleviate the burden on quantum resources.
These protocols allow participants with limited quantum
abilities to compare their secrets.

[37] proposed a QPC protocol without a classical part that
utilizes quantum gates for classical calculations, resulting in
improved quantum security. [38] proposed a QPC protocol
without requiring a third party. [39] utilized the property of
entanglement swapping of Bell states to design a QPC protocol
in which each round can compare three-bit classical information. In
2022, an eight-qubit entangled state was used for designing private
comparison, which utilizes decoy photons and QKD technology to
ensure security [40]. [41] designed a QPC protocol to compare
whether single-qubit states are equal with rotation encryption and
swap test. [42] employed 4D GHZ-like states as quantum resources
to design the QPC protocol.

According to the analysis of previous QPC protocols, it is
evident that the bitwise XOR operation is primarily used for
comparisons in the design of QPC protocols. This process will
result in classical results that exist in intermediate computations
and are susceptible to attacks by classical attackers. In this paper,
we propose a QPC protocol to solve the socialist millionaire
problem using Bell states. This approach utilizes rotation
operations to replace the bitwise XOR operation. No classical
results are produced, resulting in enhanced security. In
addition, it is straightforward to implement with current
technology. In our protocol, the private inputs are encoded as
the angles of the rotation operation. They can be compared with
the assistance of a semi-honest third party who may exhibit
unfaithful behavior but will perform the protocol process
faithfully. TP is responsible for preparing the initial Bell states
at the beginning of the protocol and conducting the Bell-basis
measurement to obtain the classical result at the end. The
participants only need to encode their inputs as angles and
perform the rotation operation on the received quantum states.
Compared to the previous protocols, our protocol has the
following advantages: we use rotation operations instead of the

bitwise XOR operation for classical calculations, which results in
improved security. Complex quantum technologies, such as high-
dimensional quantum states, entanglement swapping, and joint
measurements, are not necessary. Our protocol only utilizes easy-
to-implement technologies such as Bell states, rotation operations,
and Bell-basis measurements, making it more practical. In other
words, our protocol demonstrates superior performance in terms
of practicability and security.

The remainder of this paper is organized as follows. Section 2
introduces the core method of rotation operation. The details of the
proposed rotation operation-based quantum solution for the
socialist millionaire problem are provided in Section 3. Two
simulation experiments and the analysis of the proposed protocol
are presented in Sections 4, 5, respectively. Finally, the conclusion is
provided in Section 6.

2 Rotation operation

The rotation operation can be represented by the
following matrix:
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cos
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2
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Eq. 1 can be considered a unitary matrix rotated around the
y-axis with an angle θ on the Bloch sphere. When performing the
rotation operation Ry(θ) on the quantum state |ψ〉 � | 1〉, we have
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In order to obtain |ψ〉, we can only perform the rotation
operation Ry(−θ) on |ψ′〉. Thus, we have

ψ
∣∣∣∣ 〉 � Ry −θ( ) ψ′
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Four types of Bell states can be represented as follows:

Φ+| 〉 � 1�
2

√ 00| 〉 + 11| 〉( ),

Φ−| 〉 � 1�
2

√ 00| 〉 − 11| 〉( ),

Ψ+| 〉 � 1�
2

√ 01| 〉 + 10| 〉( ),

Ψ−| 〉 � 1�
2

√ 01| 〉 − 10| 〉( ).

When performing rotation operations on Bell states, we observe
the following special features:
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Lemma 1. (Ry(−θ1) ⊗ Ry(−θ2))(Ry(θ1) ⊗ Ry(θ2))G � G holds
for G ∈ |Φ+〉, |Φ−〉, |Ψ+〉, |Ψ−〉{ }.

Proof.Without the loss of generality, let us consider |Φ+〉 as an
example. We have

Ry −θ1( ) ⊗ Ry −θ2( )( ) Ry θ1( ) ⊗ Ry θ2( )( ) Φ+| 〉

� 1�
2

√ Ry −θ1( ) ⊗ Ry −θ2( )( )
× Ry θ1( ) 0| 〉 ⊗ Ry θ2( ) 0| 〉 + Ry θ1( ) 1| 〉 ⊗ Ry θ2( ) 1| 〉( )

� 1�
2

√ Ry −θ1 + θ1( ) 0| 〉 ⊗ Ry −θ2 + θ2( ) 0| 〉(
+ Ry −θ1 + θ1( ) 1| 〉 ⊗ Ry −θ2 + θ2( ) 1| 〉)

� 1�
2

√ Ry 0( ) 0| 〉 ⊗ Ry 0( ) 0| 〉 + Ry 0( ) 1| 〉 ⊗ Ry 0( ) 1| 〉( )
� 1�

2
√ 0| 〉 0| 〉 + 1| 〉 1| 〉( ) � Φ+| 〉.

In the same way, we can prove that

Ry −θ1( ) ⊗ Ry −θ2( )( ) Ry θ1( ) ⊗ Ry θ2( )( ) Φ−| 〉 � Φ−| 〉,

Ry −θ1( ) ⊗ Ry −θ2( )( ) Ry θ1( ) ⊗ Ry θ2( )( ) Ψ+| 〉 � Ψ+| 〉,

Ry −θ1( ) ⊗ Ry −θ2( )( ) Ry θ1( ) ⊗ Ry θ2( )( ) Ψ−| 〉 � Ψ−| 〉.

Thus,

Ry −θ1( ) ⊗ Ry −θ2( )( ) Ry θ1( ) ⊗ Ry θ2( )( )G � G.

Lemma 1 holds.

Lemma 2. Ry(π) ⊗ Ry(π)G � Ry(0) ⊗ Ry(0)G � G holds for
G ∈ |Φ+〉, |Φ−〉, |Ψ+〉, |Ψ−〉{ }.

Proof: Without the loss of generality, let us consider |Ψ+〉 as an
example. We have

Ry π( ) ⊗ Ry π( ) Ψ+| 〉

� 1�
2

√ Ry π( ) 0| 〉 ⊗ Ry π( ) 1| 〉 + Ry π( ) 1| 〉 ⊗ Ry π( ) 0| 〉( )
� 1�

2
√ − 10| 〉 − 01| 〉( ) � − Ψ+| 〉

,

Ry 0( ) ⊗ Ry 0( ) Ψ+| 〉

� 1�
2

√ Ry 0( ) 0| 〉 ⊗ Ry 0( ) 1| 〉 + Ry 0( ) 1| 〉 ⊗ Ry 0( ) 0| 〉( )
� 1�

2
√ 01| 〉 + 10| 〉( ) � Ψ+| 〉

.

Since the global phase has no observable effect, we can easily
infer that

Ry π( ) ⊗ Ry π( ) Ψ+| 〉 � Ry 0( ) ⊗ Ry 0( ) Ψ+| 〉 � Ψ+| 〉.

In the same way, we can prove that

Ry π( ) ⊗ Ry π( ) Φ−| 〉 � Ry 0( ) ⊗ Ry 0( ) Φ−| 〉 � Φ−| 〉,
Ry π( ) ⊗ Ry π( ) Ψ+| 〉 � Ry 0( ) ⊗ Ry 0( ) Ψ+| 〉 � Ψ+| 〉,
Ry π( ) ⊗ Ry π( ) Ψ−| 〉 � Ry 0( ) ⊗ Ry 0( ) Ψ−| 〉 � Ψ−| 〉.

Thus,

Ry π( ) ⊗ Ry π( )G � Ry 0( ) ⊗ Ry 0( )G � G.

Lemma 2 holds.

Lemma 3.
Ry π( ) ⊗ Ry 0( ) Φ+∣∣∣ 〉 � Ry 0( ) ⊗ Ry π( ) Φ+∣∣∣ 〉 � Ψ−| 〉
Ry π( ) ⊗ Ry 0( ) Φ−| 〉 � Ry 0( ) ⊗ Ry π( ) Φ−| 〉 � Ψ+∣∣∣ 〉
Ry π( ) ⊗ Ry 0( ) Ψ+∣∣∣ 〉 � Ry 0( ) ⊗ Ry π( ) Ψ+∣∣∣ 〉 � Φ−| 〉
Ry π( ) ⊗ Ry 0( ) Ψ−| 〉 � Ry 0( ) ⊗ Ry π( ) Ψ−| 〉 � Φ+∣∣∣ 〉

⎧⎪⎪⎪⎨⎪⎪⎪⎩ holds.

Proof: Without the loss of generality, let us consider
Ry(π) ⊗ Ry(0) |Φ+〉 � Ry(0) ⊗ Ry(π) |Φ+〉 � |Ψ−〉 as an
example. We have

Ry π( ) ⊗ Ry 0( ) Φ+| 〉

� 1�
2

√ Ry π( ) 0| 〉 ⊗ Ry 0( ) 0| 〉 + Ry π( ) 1| 〉 ⊗ Ry 0( ) 1| 〉( )
� 1�

2
√ 10| 〉 − 01| 〉( ) � − Ψ−| 〉

,

Ry 0( ) ⊗ Ry π( ) Φ+| 〉

� 1�
2

√ Ry 0( ) 0| 〉 ⊗ Ry π( ) 0| 〉 + Ry 0( ) 1| 〉 ⊗ Ry π( ) 1| 〉( )
� 1�

2
√ 01| 〉 − 10| 〉( ) � Ψ−| 〉

.

Since the global phase has no observable effect, we can easily
infer that

Ry π( ) ⊗ Ry 0( ) Φ+| 〉 � Ry 0( ) ⊗ Ry π( ) Φ+| 〉 � Ψ−| 〉.

In the same way, we can prove that

Ry π( ) ⊗ Ry 0( ) Φ−| 〉 � Ry 0( ) ⊗ Ry π( ) Φ−| 〉 � Ψ+| 〉,
Ry π( ) ⊗ Ry 0( ) Ψ+| 〉 � Ry 0( ) ⊗ Ry π( ) Ψ+| 〉 � Φ−| 〉,
Ry π( ) ⊗ Ry 0( ) Ψ−| 〉 � Ry 0( ) ⊗ Ry π( ) Ψ−| 〉 � Φ+| 〉.

Thus,

Ry π( ) ⊗ Ry 0( ) Φ+| 〉 � Ry 0( ) ⊗ Ry π( ) Φ+| 〉 � Ψ−| 〉
Ry π( ) ⊗ Ry 0( ) Φ−| 〉 � Ry 0( ) ⊗ Ry π( ) Φ−| 〉 � Ψ+| 〉
Ry π( ) ⊗ Ry 0( ) Ψ+| 〉 � Ry 0( ) ⊗ Ry π( ) Ψ+| 〉 � Φ−| 〉
Ry π( ) ⊗ Ry 0( ) Ψ−| 〉 � Ry 0( ) ⊗ Ry π( ) Ψ−| 〉 � Φ+| 〉

.

Lemma 3 holds.

3 Quantum solution for the socialist
millionaire problem

In the description of the socialist millionaire problem, there are
two users, Alice and Bob, each having their own secrets X and Y,
respectively. They sought to compare whether X = Ywhile keeping X
and Y undisclosed to each other, and they learn nothing if X ≠ Y.

The binary representations of X and Y are X �
(xn−1xn−2/x1x0) and Y � (yn−1yn−2/y1y0), respectively, where
xj, yj ∈ 0, 1{ }, j ∈ 0, 1, 2,/, n − 1{ }, and 2n−1 ≤X,Y< 2n. Since the
proposed protocol is designed for the two-party computation
setting, a semi-honest third party named Charlie is involved in
performing the comparison. Before the protocol begins, Alice and
Bob share a secret key KAB � (kn−1kn−2/k1k0)
(kj ∈ 0, 1{ }, j ∈ 0, 1, 2,/, n − 1{ }) via a QKD protocol. The details
of the proposed rotation operation-based quantum solution for the
socialist millionaire problem are depicted as follows:
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Step 1: Charlie prepares a 2n-length quantum sequence
S � ⊗n−1

j�0G, where G is randomly chosen from four kinds of Bell
states. He records their states and takes the first and second particles
of all Bell states to generate two ordered n-length quantum
sequences S1 and S2, respectively.

Step 2: Charlie generates 2m decoy photons randomly
chosen from | 0〉, | 1〉, | + 〉, | − 〉{ }. Next, he inserts the
same number of decoy photons into S1 and S2 at random
positions to generate two new (m + n)-length quantum
sequences S1′ and S2′, respectively. Then, he records the
positions and states of each decoy photon. Finally, he sends
S2′(S2′) to Alice (Bob).

Step 3: When receiving S2′(S2′), Alice (Bob) sends a message to
Charlie, who will then announce the positions andmeasurement basis
to Alice (Bob). If the decoy photon is in | 0〉, | 1〉{ }, the measurement
basis is Z-basis; otherwise, the measurement basis is X-basis. If an
eavesdropper exists, the measurement outcome will not be consistent
with the initially prepared decoy photons, and Charlie andAlice (Bob)
will abort the protocol. Otherwise, Alice (Bob) discards the decoy
photons to get S1 and S2 and performs the following steps:

Step 4: Alice performs rotation operations Ry(πX) and
Ry(πKAB) on S1 to get SA. For Bob, he performs rotation
operations Ry(πY) and Ry(πKAB) on S2 to get SB.

Step 5: Alice (Bob) follows the same procedures, which involve
inserting decoy photons to generate SA′(SB′), sending them to Charlie,
and checking the presence of an eavesdropper, similar to what Charlie
and they did. If they detect the presence of an eavesdropper, they abort
the protocol. Otherwise, Charlie discards the decoy photons to get
SA(SB) and proceeds with the following steps:

Step 6: Charlie performs Bell-basis measurements on SA and SB
to obtain the measurement results. If all measurement results match
the initially prepared Bell states, then X = Y. Otherwise, X ≠ Y.
Charlie announces the final comparison result to Alice and Bob.

4 Simulation experiments

Considering a case, the secrets of Alice and Bob are denoted as
X = 6 and Y = 6, which can be represented in binary form asX � 110
and Y � 110. Since the lengths of X and Y are 3, the number of Bell
states is 3. We assume that the initially prepared Bell states are
denoted as |Ψ−〉, |Ψ+〉, |Φ+〉, and the quantum circuit and
measurement outcome without considering the eavesdropping
detection can be seen in Figures 1, 2. Since the quantum circuit
is designed and executed on IBM Quantum Composer, which is
accessible for circuits utilizing fewer than 7 qubits, and the chosen
measurement basis is the Z basis, the measurement outcomes are
represented in the form of 0 and 1. Suppose that the secret key
shared between Alice and Bob via a QKD protocol is KAB � 001.
When Alice performs the rotation operations
Ry(π), Ry(π), Ry(0){ } and Ry(0), Ry(0), Ry(π){ } on the first

FIGURE 1
Quantum circuit of the initially prepared Bell states.

FIGURE 2
Measurement outcomes of the initially prepared Bell states.

FIGURE 3
Quantum circuit for comparing X and Y.
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particles of |Ψ−〉, |Ψ+〉, |Φ+〉 and Bob performs the rotation
operations Ry(π), Ry(π), Ry(0){ } and Ry(0), Ry(0), Ry(π){ } on
the second particles of |Ψ−〉, |Ψ+〉, |Φ+〉, the corresponding
quantum circuit and the final measurement outcome can be seen
in Figures 3, 4, respectively. It must be noted that no Bell-basis
measurement exists on the IBM Quantum Composer, and we use
single-particle measurement instead of Bell-basis measurement to
get the same effect. From Figure 4, we can easily observe that the
measurement outcome when performing the quantum circuit in
Figure 3 is the same as the measurement outcome of the initially
prepared Bell states in Figure 1. This indicates that all the
measurement results match the initially prepared Bell states,
suggesting that the comparison result is X = Y. In a precise
sense, we can conclude that X = Y due to the identical rotation
operations performed by Alice and Bob. The simulation

experiment further verifies the correctness and feasibility of
the protocol.

Considering another case, the secrets of Alice and Bob are
denoted as X′ � 5 and Y′ � 4, which can be represented in
binary form as X′ � 101 and Y′ � 100. Since the lengths of X
and Y are 3, the number of Bell states is 3. Suppose that the
secret key shared between Alice and Bob via a QKD protocol is
KAB � 110. We also assume that the initially prepared Bell states are
denoted as |Ψ−〉, |Ψ+〉, |Φ+〉, which are the same as those in the
first case. When Alice performs the rotation operations
Ry(π), Ry(0), Ry(π){ } and Ry(π), Ry(π), Ry(0){ } on the first
particles of |Ψ−〉, |Ψ+〉, |Φ+〉 and Bob performs the rotation
operations Ry(π), Ry(0), Ry(0){ } and Ry(π), Ry(π), Ry(0){ } on
the second particles of |Ψ−〉, |Ψ+〉, |Φ+〉, the corresponding
quantum circuit and the final measurement outcome can be seen
in Figures 5, 6, respectively. From Figure 6, however, we can observe
that the measurement outcome when performing the quantum
circuit shown in Figure 5 is different from the measurement
outcome of the initially prepared Bell states in Figure 1. This
discrepancy indicates that the measurement results do not match
the initially prepared Bell states, suggesting that the comparison
result is X ≠ Y. Since the rotation operations performed by Alice
and Bob are different, we can draw the direct conclusion thatX ≠ Y.
From another perspective, we can directly see that X ≠ Y.

In conclusion, these two simulations reveal the correctness and
feasibility of our protocol.

5 Analysis

5.1 Correctness

Without the loss of generality, we take |Ψ+〉 as the initially
prepared Bell state. When performing rotation operations
(Ry(πx0), Ry(πk0)) and (Ry(πy0), Ry(πk0)) on the first and
second particles of |Ψ+〉, respectively, we have

FIGURE 4
Measurement outcomes when performing the quantum circuit
in Figure 3.

FIGURE 5
Quantum circuit for comparing X′ and Y′.

FIGURE 6
Measurement outcomes when performing the quantum circuit
in Figure 5.
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Ψ+| 〉′ � Ry πk0( )Ry πx0( ) ⊗ Ry πk0( )Ry πy0( ) Ψ+| 〉

� 1�
2

√ Ry πk0( )Ry πx0( ) 0| 〉 ⊗ Ry πk0( )Ry πy0( ) 1| 〉
+Ry πk0( )Ry πx0( ) 1| 〉 ⊗ Ry πk0( )Ry πy0( ) 0| 〉

⎛⎝ ⎞⎠ .

Without the loss of generality, we set k0 � 1, and four situations
should be considered.

Case I. When x0 � 0 and y0 � 0, we have

Ψ+| 〉′ � 1�
2

√ Ry π( )Ry 0( ) 0| 〉 ⊗ Ry π( )Ry 0( ) 1| 〉
+Ry π( )Ry 0( ) 1| 〉 ⊗ Ry π( )Ry 0( ) 0| 〉

⎛⎝ ⎞⎠
� 1�

2
√ 1| 〉 ⊗ − 0| 〉( ) − 0| 〉 ⊗ 1| 〉( ) � − 1�

2
√ 01| 〉 + 10| 〉( )

� − Ψ+| 〉

.

When performing Bell-basis measurement on |Ψ+〉′, the
measurement outcome is |Ψ+〉, indicating that x0 � y0.

Case II. When x0 � 0 and y0 � 1, we have

Ψ+| 〉′ � 1�
2

√ Ry π( )Ry 0( ) 0| 〉 ⊗ Ry π( )Ry π( ) 1| 〉
+Ry π( )Ry 0( ) 1| 〉 ⊗ Ry π( )Ry π( ) 0| 〉

⎛⎝ ⎞⎠
� 1�

2
√ 1| 〉 ⊗ 1| 〉 − 0| 〉 ⊗ 0| 〉( ) � − 1�

2
√ 00| 〉 − 11| 〉( )

� − Φ−| 〉

.

When performing Bell-basis measurement on |Ψ+〉′, the
measurement outcome is |Φ−〉, indicating that x0 ≠ y0.

Case III. When x0 � 1 and y0 � 0, we have

Ψ+| 〉′ � 1�
2

√ Ry π( )Ry π( ) 0| 〉 ⊗ Ry π( )Ry 0( ) 1| 〉
+Ry π( )Ry π( ) 1| 〉 ⊗ Ry π( )Ry 0( ) 0| 〉

⎛⎝ ⎞⎠
� 1�

2
√ − 0| 〉 ⊗ − 0| 〉( ) − 1| 〉 ⊗ 1| 〉( ) � 1�

2
√ 00| 〉 − 11| 〉( )

� Φ−| 〉

.

When performing Bell-basis measurement on |Ψ+〉′, the
measurement outcome is |Φ−〉, indicating that x0 ≠ y0.

Case IV. When x0 � 1 and y0 � 1, we have

Ψ+| 〉′ � 1�
2

√ Ry π( )Ry π( ) 0| 〉 ⊗ Ry π( )Ry π( ) 1| 〉
+Ry π( )Ry π( ) 1| 〉 ⊗ Ry π( )Ry π( ) 0| 〉

⎛⎝ ⎞⎠
� 1�

2
√ − 0| 〉 ⊗ − 1| 〉( ) − 1| 〉 ⊗ − 0| 〉( )( )

� 1�
2

√ 01| 〉 + 10| 〉( ) � Ψ+| 〉

.

When performing Bell-basis measurement on |Ψ+〉′, the
measurement outcome is |Ψ+〉, indicating that x0 � y0.

The same method can be used to verify the 2n-length quantum
sequence S, which could help confirm the protocol’s correctness.

5.2 Security analysis

In this section, we will demonstrate that the proposed protocol is
resistant to both external and insider attacks. More specifically, any

eavesdroppers attempting to steal the private inputs will be
inevitably detected. One participant cannot access the private
input of another participant, even if they process the immediate
result. TP, who knows the comparison result, cannot learn the
private inputs.

5.2.1 External attacks
Suppose that an outsider eavesdropper, Eve, with quantum

capabilities, attempts to steal the private inputs. Various quantum
attacks, including intercept–measure–resend attacks, man-in-the-
middle attacks, and correlation–elicitation attacks, are frequently
mentioned as methods to steal information. However, if the decoy-
state method is used to detect the eavesdropper, any eavesdropping
in the quantum channel will be detected, and the quantum
communication protocol will be aborted. The decoy-state method
can be considered an effective approach to detecting the presence of
an eavesdropper, as validated in [43]. Since the quantum sequence
transmitted in the quantum channel includes both target states and
non-orthogonal states (decoy photons) that cannot be distinguished
by Eve, Eve has to consider both of them as the target states and
perform the same operation UE on them. This will inevitably lead to
the modification of the photon sequence, making her actions
detectable. Without the loss of generality, Eve performs the same
operation UE to entangle the sample photons and the prepared
auxiliary quantum system E � |E0〉, |E1〉,/, |En〉{ }, and this
process can be expressed as

UE Ei| 〉 0| 〉 � α00 e00| 〉 0| 〉 + α01 e01| 〉 1| 〉, (2)
UE Ei| 〉 1| 〉 � α10 e10| 〉 0| 〉 + α11 e11| 〉 1| 〉, (3)

UE Ei| 〉 +| 〉 � 1�
2

√ α00 e00| 〉 0| 〉 + α01 e01| 〉 1| 〉 + α10 e10| 〉 0| 〉(

+α11 e11| 〉 1| 〉) � 1
2

+| 〉 α00 e00| 〉 + α01 e01| 〉 + α10 e10| 〉 + α11 e11| 〉( )
+ −| 〉 α00 e00| 〉 − α01 e01| 〉 + α10 e10| 〉 − α11 e11| 〉( )( ),

(4)
UE Ei| 〉 −| 〉 � 1�

2
√ α00 e00| 〉 0| 〉 + α01 e01| 〉 1| 〉 − α10 e10| 〉 0| 〉 − α11 e11| 〉 1| 〉( )

� 1
2

+| 〉 α00 e00| 〉 + α01 e01| 〉 − α10 e10| 〉 − α11 e11| 〉( )
+ −| 〉 α00 e00| 〉 − α01 e01| 〉 − α10 e10| 〉 + α11 e11| 〉( )

⎛⎝ ⎞⎠ ,

(5)

where | e00〉, | e01〉, | e10〉, and | e11〉{ } are four pure states
determined by the unitary operations UE, and they satisfy

∑
α,β

〈eα,β
∣∣∣∣eα,β〉 � 1.

Moreover, α00, α01, α10, α11 must satisfy the following
conditions: |α00|2 + |α01|2 � 1 and |α10|2 + |α11|2 � 1. To avoid
being detected by the participants when they perform the
eavesdropping detection, Eqs 2–5 must satisfy the following
conditions:

α00 � α11 � 1
α01 � α10 � 0
α00 e00| 〉 − α01 e01| 〉 + α10 e10| 〉 − α11 e11| 〉 � �0
α00 e00| 〉 + α01 e01| 〉 − α10 e10| 〉 − α11 e11| 〉 � �0

⎧⎪⎪⎪⎨⎪⎪⎪⎩ , (6)

where �0 is a column-zero vector. We can further infer that
| e00〉 � | e11〉. Substituting | e00〉 � | e11〉 and the results of Eq. 6
into Eqs 2–5, we can obtain
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UE Ei| 〉 0| 〉 � e00| 〉 0| 〉,
UE Ei| 〉 1| 〉 � e00| 〉 1| 〉,
UE Ei| 〉 +| 〉 � e00| 〉 +| 〉,
UE Ei| 〉 −| 〉 � e00| 〉 −| 〉.

It can be easily seen that regardless of the sample photons, the
auxiliary quantum system will always be in state | e00〉. In other
words, the non-orthogonal states (decoy photons) can be
distinguished by Eve. Performing any operation will inevitably
introduce errors. Therefore, Eve’s malicious behavior will be
detected, and she will never succeed.

In addition, the rotation operations performed on the initially
prepared Bell states result in the transmitted quantum states
containing four different types ( |Φ+〉, |Φ−〉, |Ψ+〉, |Ψ−〉).
Without knowing the rotation angles, no one can determine the
initial Bell states by measuring the received quantum states.
Therefore, rotation operations also ensure the security of
information transmission in the quantum channel.

5.2.2 Insider attacks
The insider participants (Charlie, Alice, and Bob) may launch

attacks to steal private inputs. Two cases of participants’ attacks are
analyzed as follows:

Case 1. Attack from TP
In our protocol, the semi-honest TP will execute the protocol

process faithfully, but she cannot conspire with any participants. She
may steal some useful information through the protocol loophole.
Throughout the entire process, TP is involved in preparing the initial
Bell states at the beginning of the protocol and conducting the Bell-
basis measurement to obtain the classical result at the end. Although
she knows the final comparison result, she still cannot infer the private
inputs. For example, when Alice and Bob perform rotation operations
Ry(π) and Ry(π) on their received quantum sequences, the final
measurement result obtained by TP is the same as whenAlice and Bob
perform rotation operations Ry(0) and Ry(0) on their received
quantum sequences. Similarly, when Alice and Bob perform
rotation operations Ry(π) and Ry(0) on their received quantum
sequences, the final measurement result obtained by TP is the same as
when Alice and Bob perform rotation operations Ry(0) and Ry(π)
on their received quantum sequences. As a result, TP cannot
distinguish rotation operations performed by Alice and Bob.
Additionally, TP may launch attacks similar to Eve, but this
behavior will be detected, as discussed in Section 5.2.1. Therefore,
TP’s attack does not work.

Case 2. Attack from Alice or Bob
The roles of Alice and Bob are identical. Without the loss of

generality, assume that dishonest Alice tries to obtain Bob’s private
information. Bob’s private inputs are encoded into the rotation
operation Ry(πY), which is then performed on the received
sequence S2′. However, since there is no communication between
Alice and Bob, intercepting the sequences S2′ and SB transmitted
between Alice and TP is the only way for Alice to learn Bob’s
operation. This attack does not work because the decoy-state
method is adopted to detect eavesdropping, as discussed in Section
5.2.1. Therefore, the private inputs of Alice and Bob will remain
undisclosed to each other.

5.3 Efficiency and comparison

In the QPC protocol, qubit efficiency [44] can be used to
evaluate the utilization of quantum states, which is defined as

ηe �
ηc
ηt
,

where ηc represents the number of classical bits compared in the
whole protocol and ηt represents the total number of qubits
consumed, excluding the decoy photons used to detect the
eavesdropper. The comparison between our protocol and some
other QPC protocols is presented in Table 1, focusing on
quantum resources, quantum operations, and qubit efficiency. In
our protocol, a Bell state is required for comparing one-bit classical
information, resulting in a qubit efficiency of 50%.

From Table 1, we can observe that the qubit efficiency and
quantum resource of our protocol compared to [39] are identical,
but our approach involves rotation operations and Bell-basis
measurements instead of entanglement swapping and GHZ-basis
measurements. This modification makes our protocol easier to
implement and facilitates comparison. Compared with [40], our
protocol demonstrates superior performance in quantum resource
utilization, as the preparation of eight-qubit entangled states poses a
significant challenge. Additionally, [39, 40] require the bitwise XOR
operation for comparison, leading to inadequate security. Although
[15] and our protocol mainly utilize unitary operations, our protocol
has higher qubit efficiency. Implementing [15, 16, 19] is easy with
current technology, but the qubit efficiency is relatively low. It must
be noted that our protocol has an advantage in terms of security
compared with [16, 39, 40] since the participants (Charlie, Alice, and
Bob) do not perform any classical operations, including the bitwise

TABLE 1 Comparison between our protocol and some other QPC protocols.

Reference [15] Reference [16] Reference [19] Reference [39] Reference [40] Ours

Quantum resource EPR pairs GHZ state Single photons Bell states Eight-qubit entangled state Bell states

Unitary operation Yes Yes Yes No No Yes

Entanglement swapping No No No Yes No No

Bitwise XOR operation No Yes No Yes Yes No

Quantum measurement Bell-basis Single-particle Single-particle GHZ-basis Single-particle Bell-basis

Qubit efficiency 25% 33% 25% 50% 25% 50%
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XOR operation, and record the intermediate computations because the
classical computation is replaced by the rotation operation. Therefore, a
classical attacker has a lower chance of performing successful attacks
because no classical result is produced, significantly reducing the
probability of stealing private information. This could contribute to
the better security of the QPC protocol.

6 Conclusion

To sum up, in this paper, we propose a rotation operation-based
QPC protocol to solve the socialist millionaire problem. The protocol
utilizes Bell states as quantum resources and rotation operations for
classical calculations. The private inputs of the participants are encoded
into the rotation operations, and no classical result is produced. This
effectively reduces the risk of classical attacks and enhances the security
of the QPC protocol. Compared with the current QPC protocols,
complex quantum technologies such as high-dimensional quantum
states, entangled swapping technology, and joint measurements are not
required. Our protocol only utilizes easy-to-implement technologies
such as Bell states, rotation operations, and Bell-basismeasurements. All
of these improvements could not onlymake our protocolmore practical
but also enhance its security. In other words, our protocol demonstrates
superior performance in terms of practicability and security. In the
future, we will focus on designing a semi-quantum private comparison
to reduce the demand for quantum resources and develop a more
efficient QPC protocol.
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