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Coincidence loss can have detrimental effects on the image quality provided by
pixelated counting detectors, especially in dose-sensitive applications like cryoEM
where the information extracted from the recorded signal needs to bemaximized. In
thiswork,we investigate the impact of coincidence loss phenomenaon the recorded
statistics in counting detectors producing sparse binary images. First, we derive exact
analytical expressions for the mean and the variance of the recorded counts as a
function of the incoming event rate. Second, we address the problem of the mean
and variance of the recorded events (i.e., pixel clusters identified as individual
incoming events), which also acts as a function of the incoming event rate. In
this frame, we review previous studies from different disciplines on approximated
two-dimensional models, and we critically reinterpret them in our context and
evaluate the suitability of their adoption in the present case. The knowledge of the
first two momenta of the recorded statistics allows inferring about the signal-to-
noise ratio (SNR) and the detective quantum efficiency at zero frequency (DQE0).
Analytical results are validated through comparison with numerical data obtained
with a custom-made Monte Carlo code. We chose a realistic case study for cryoEM
application consistingof a 25-µm-thickMAPSdetector featuring a pixel size of 10 µm
and illuminatedwith electrons of 300 keV energy over awide range of incoming rate.
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1 Introduction

Coincidence loss in counting detectors is the phenomenon whereby an incoming event
fails to be recorded by the system due to its proximity, or overlap, with at least another
incoming event. Proximity or overlap can, in general, occur either in the time domain, in the
spatial domain, or both. In the time domain, coincidence loss problems belong to the
category known as dead time problems [1]. In brief, due to the physics of the particle
interaction with the sensor material and to the specific signal processing in the associated
front-end electronics, the detection of an event on a certain channel can make it insensitive
to upcoming events within a certain time interval—called dead time—leading not only to
count losses but also to distortions of the counting statistics. According to the case-specific
signal processing, a multitude of different counting behaviors can be generated. They
typically cluster into two main categories, namely, the paralyzable and non-paralyzable
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counting modes, and are described in their classical meaning1, e.g.,
in [2]. In the spatial domain, in an analogous way, coincidence loss
may occur when an incoming event would trigger one or more
detection channels within a certain distance to another channel that
already recorded an event such that their spatial traces merge, thus
impairing the possibility of distinguishing the contribution of the
individual events. This distance is typically called the coincidence
length or coincidence area, for the one-dimensional and two-
dimensional case, respectively. In addition, in this instance, the
case-specific detection physics, signal processing, and the actual
definition of event can lead to different counting behaviors and
different degrees of loss of information.

The effects of coincidence loss are therefore particularly
detrimental in dose-sensitive applications where the need to
maximize the information content of the detected signal is pre-
eminent. This is, e.g., the case of electron cryomicroscopy (cryoEM),
an electron microscopy technique for life science applications which
involves the illumination of a highly radiation-sensitive, vitrified
biological sample with a high-energy electron beam (typically in the
range 100–300 keV), and the detection of the transmitted signal with
a two-dimensional pixelated detector array [3, 4]. The development
of tailored detection systems has been driven primarily (but not
exclusively) by the optimization of the detective quantum efficiency
(DQE), a figure of merit that quantifies the worsening of the signal-
to-noise ratio (SNR) of the information in the passage through the
detector and that is commonly adopted by imaging applications in
general. Efforts in this direction led not only to direct-detection
devices based primarily on monolithic active pixel sensors (MAPSs)
[5, 6] with single-electron counting capability [7, 8] but also to
hybrid-pixel counting (HPC) devices like the ones mentioned, e.g.,
in [9, 10], which are intrinsically designed with single-electron
detection capability. The typical data-taking workflow consists on
the acquisition of a series of images, or frames, in a condition of
sufficiently low electron beam intensity such that the individual
recorded events, which leave traces potentially extending over
multiple pixels, are sparse enough to be individually identified
and processed, thus enhancing the DQE of the image resulting
from the sum of all the individual frames [11–13]. If the pixel
electronics works in the charge integrating mode, like typical MAPS
detectors, it is virtually impossible to distinguish between one and
multiple events occurring in the same pixel during a single exposure
or time frame. The use of the information given by energy deposition
per pixel to try to disentangle individual events is also discouraged.
Indeed, in realistic sensor geometries, the random nature of the
electron track in the sensor volume tends to reduce the correlation
between energy deposition per pixel and real impinging positions to
a level that is practically of no use [11, 12]. The first image
processing stage in this case can only be to simply assess if

pixels have recorded any event, in a binary fashion. If no further
image processing is applied, the case would be equivalent to that of a
standard counting detector with an in-pixel counter with a depth of
1 bit. If the image processing continues with single-event analysis,
events—ideally corresponding to individual incoming
electrons—need to be first identified. During the identification
process, if two or more recorded events by chance overlap (i.e.,
their traces hit the same pixel) or merely touch each other (i.e.,
their traces hit neighboring pixels), it is impossible to distinguish them
and the merged event is counted as one. This leads not only to an
underestimation of the number of incoming electrons but also to a
greater uncertainty on the inferred impinging location, all factors that
ultimately contribute to a worsening of the DQE.

To shed some light on the impact of coincidence loss on the
recorded signal statistics and on the noise figures in counting
detectors producing sparse binary images, we proceed as follows:
first, we investigate the statistics of the recorded counts as a
function of the incoming event rate, where counts are intended
in their classical meaning of (binary) value stored in the pixel
counter. In particular, we derive from basic statistical arguments,
and without the need for free parameters, analytical expressions for
the mean and the variance of the recorded counts. Second, we
investigate the statistics of the recorded events as a function of the
incoming event rate, where events are intended as isolated clusters
identifiable in a sparse image. In particular, we recognize that in
the past decades, analogous mathematical problems have already
been addressed in other fields of science, especially statistics,
biology, and chemistry (chromatography). We give a basic
historical overview of such studies with the double intent of
bringing them back to the attention of detector scientists and
microscopists and to challenge their suitability for our purposes. In
this framework, we individuate the two-dimensional analytical
model that better approximates the behavior of the mean number
of recorded events—as no exact analytical solution
exists—highlighting similarities and differences between the
original and our case regarding the assumptions at the basis of
the model derivation. A two-dimensional model for the variance of
the recorded events also does not exist. However, driven by analogy
principle, we propose an adaptation of the analytical solution valid
for the one-dimensional case. Whenever possible, we highlight the
analogies with the corresponding existing cases in the
time domain.

In both counting cases, the knowledge of the first twomomenta
of the recorded signal statistics allows us to derive the
corresponding analytical expressions for the SNR and for the
DQE at zero spatial frequency (DQE0) as a function of the
incoming event rate. Additional figures of merit, namely, the
area occupancy (AO) and the coincidence loss fraction (CLF),
are also presented.

Analytical results are validated through comparison with
numerical data obtained with a custom-made Monte Carlo
simulation suite. As a realistic case study, we simulated a MAPS
detector for cryoEM applications featuring a thickness of 25 µm and
a pixel size of 10 μm, illuminated with 300-keV electrons up to a flux
intensity of 200 el/s/pix (electrons per second per pixel), working at
the frame rate of 1 kfps and with a counting threshold of 1 keV.
Given the nature of the case study, electrons identify with events the
two terms are used interchangeably.

1 In the classical paralyzable countingmode, each incoming event paralyzes

the system for another dead time period, leading to the relation between

the incoming rate n and the recorded rate m: m � ne−nτ (1)
where τ corresponds to the system dead time.

In the classical non-paralyzable counting mode, on the other hand, only the

first detected event of a series paralyzes the system for a single dead time

period, leading to the relation: m � n

1 + nτ
. (2)

Frontiers in Physics frontiersin.org02

Zambon 10.3389/fphy.2024.1408430

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2024.1408430


2 Materials and methods

2.1 Background

Let us assume a two-dimensional pixelated array with
infinitely large area and with a total number of pixels Npix.
Incoming events constitute a homogeneous random sequence
following Poisson statistics, both in time and in space, with
constant average rate per pixel and per unit time n0. Let N0(t)
be the random variable denoting the total number of incoming
events in a pixel element over the time interval from 0 to t. During
a time frame of duration Δt, the number of incoming events in a
pixel element is thereforeN0 (Δt), and the cumulative value over a
number FN time frames is N0(FNΔt). Due to the physics of the
interaction between the impinging particle and the sensor
material, a single incoming physical event can trigger the
simultaneous detection in multiple, typically neighbors and
pixels. To describe the number of pixels firing due to a single
incoming event, we define the random variable event multiplicity
Mul. Denoting with E[·] the mean value operator, the average
effective incoming event rate is

n � n0E Mul[ ].
In the following sections, quantities are described over the time

interval of a frame Δt. The generalization to the sum of a series of FN
time frames is straightforward, given the statistical independence
between consecutive frames and the homogeneity of the involved
processes. For any random variable X , indeed, it holds

E X FNΔt( )[ ] � FNE X Δt( )[ ], (3)
V X FNΔt( )[ ] � FNV X Δt( )[ ], (4)

where V[·] indicates the variance operator.

2.2 Mean and variance of recorded counts

Let us define the random variable M(Δt) as the total number of
recorded counts per pixel in a time frame and the average recorded
count rate:

m � E M Δt( )[ ]
Δt . (5)

Under the working hypothesis of binary outcome–a pixel can register at
most one count per time frame–M(Δt) assumes the nature of a
Bernoulli distribution (single-trial binomial distribution) and the
probability of a successful outcome, i.e., a pixel registers a count that
is at least one effective incoming event hits the pixel:

Pr M Δt( ) � 1( ) � ∑+∞
i�1

Pr k � i( ) � 1 − Pr k � 0( ),

where Pr(k � i) is the Poisson probability of having i incoming
events in a pixel in a time frame. According to our notation, it takes
the following form:

Pr k � i( ) � n0E Mul[ ]Δt( )ie−n0E Mul[ ]Δt

i!
.

It follows that

Pr M Δt( ) � 1( ) � 1 − e−n0E Mul[ ]Δt

and therefore,

E M Δt( )[ ] � 1 − e−n0E Mul[ ]Δt. (6)
The expression for the recorded count rate m in Eq. 5 can be then
rewritten as

m � 1 − e−n0E Mul[ ]Δt

Δt . (7)

The derivation of the counts variance for an individual pixel is
straightforward from the binomial distribution and yields
the following:

V M Δt( )[ ] � Pr M Δt( ) � 1( ) 1 − Pr M Δt( ) � 1( )[ ],
� 1 − e−n0E Mul[ ]Δt( )e−n0E Mul[ ]Δt.

The analysis of the behavior of individual pixels can be extended to
the collective behavior of the pixel ensemble by introducing an
additional random variable representing the spatially averaged total
number of recorded counts:

�M Δt( ) � 1
Npix

∑Npix

i�1
Mi Δt( ).

Given the linearity of the mean value operator, the mean number of
spatially averaged counts is simply

E �M Δt( )[ ] � E M Δt( )[ ],
while for the variance, the derivation is more involved since
pixels may exhibit a correlation. In a previous work [14], we
derived an expression for the variance of a correlated ensemble
of pixels in counting detectors, based solely on the knowledge of
the variance of the single pixel, of the first and second moment of
the event multiplicity distribution, and of the counting
efficiency ηc � m

n :

V �M Δt( )[ ] � V M Δt( )[ ] 1 + E Mul2[ ]
E Mul[ ] − 1( )ηc[ ].

Expanding it and using our notation, we obtain

V �M Δt( )[ ] � e−n0E Mul[ ]Δt 1 − e−n0E Mul[ ]Δt( )
× 1 + E Mul2[ ]

E Mul[ ] − 1( ) 1 − e−n0E Mul[ ]Δt

n0E Mul[ ]Δt[ ]. (8)

We would like to emphasize that this expression is completely
predictable since it does not contain free parameters to be
determined, e.g., by fitting. The only empirical term is the
multiplicity distribution that can be retrieved experimentally
quite easily2.

2 For example, by analyzing the statistical distribution of the cluster sizes

generate by single, non-overlapping incoming events. Please note that the

knowledge of the real incoming flux is needed since Mul includes events

with size 0, which are by definition not detected.
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2.3 Mean and variance of recorded events

The analysis of the statistical properties of events that occurs
randomly, independently, and with uniform probability in a generic
mathematical space belongs to the category of Poisson point processes,
and the gathering of such events into clusters is known as Poisson
clumping or burst. Often, problems in this field necessitate of heuristic
approaches to come to an explicit conclusion [15, 16]. During the 1980s,
a problematic analogous to ours emerged in the field of chromatography,
a chemical analysis technique involving the separation of a mixture into
its components, their spatial drift through a system—the velocity
depending on the nature of the component—, the reaching of a final
stationary state, and the identification of the several possibly overlapping
and assumed Poisson-distributed signal peaks. The study of the statistical
properties of the recorded peaks in the one-dimensional case led Davis
and Giddings to the birth of the statistical model of overlap (SMO) or
statistical overlap theory (STO) [17]. Unsurprisingly, this first exact
analytical result coincides, space exchangedwith time, with the dead time
model for the classical paralyzable counting detectors reported in Eq. 1.
The STO was then extended (with approximations) to the two-
dimensional case by Davis in [18], until the work from Roach [15],
developed in the 1940s–1960s during studies on biological and hygienic
sciences of phenomena closely related to the overlap of spots in two-
dimensional beds, was “re-discovered” in [19]. In the samework, it is also
demonstrated that this model provides the best approximation to
numerical data, among a series of different other models, and
therefore, we took it as reference for our work. Incidentally, it is
worth mentioning Davis’s extension of “Roach model” to the generic
n-dimensional case [20].

To ease the reading, we outline the basic reasoning at the basis
of the Roach model, as described in [19]. The theory starts
assuming circular “zones” with radius r0, whose centers are
randomly distributed on a continuous, two-dimensional space.
If the centers of two zones are closer than 2r0, they are considered
overlapping. A series of overlapping zones is called a spot. The
recorded number of spots determined with the following scheme.
Selected arbitrarily an initial zone A and its first neighbor B, if the
distance between the two centers is greater than 2r0, zone A is a
singlet spot. Otherwise, the overlapping pair forms either a
doublet spot or a higher-order multiplet (e.g., triplet, quartet,
quintet, etc.). In this case, a third zone C is individuated such as
its center is the closest to either A or B. The shortest distance
between C and A or C and B is again compared to 2r0. If greater,
the pair A and B is a doublet spot. If smaller, A, B, and C form at
least a triplet spot. The neighbor-searching procedure is then
repeated until the distance of all remaining zones to any of the n
zones of the spot is greater than 2r0. As a result, a spot consisting
of n overlapping zones, or an n-tet, has been isolated. The process
is iterated for another arbitrary zone until all zones has been
assigned. Figure 1 helps visualizing an example of Roach’s zone
selection procedure.

The outcome of the neighbors overlapping test can be modeled
with the binomial distribution. For instance, probability p1 that the
distance between a zone center and the center of the nearest
neighboring zone is greater than 2r0 (i.e., the first zone is a
singlet) corresponds to the probability that no event occurs
within a circular area of radius 2r0 around the center of the first
zone—let us call this coincidence area 4A0, where A0 is the area of an

individual zone. Let us remember that the spatial distribution of the
events is assumed to follow Poisson statistics. Introducing now our
notation and defining k as the number of events falling within the
coincidence area in a time frame Δt, the Poisson probability
distribution for the number of events can be written as

Pr k � i( ) � QEn0Δt4A0( )ie−QEn0Δt4A0

i!
,

where QE is the quantum efficiency, defined as the ratio between the
number of detected events and the total number of incoming events
assuming no coincidence loss [21], which can be also expressed as

QE � 1 − Pr Mul � 0( ). (9)
The introduction of QE arises from the fact that events that pass
completely undetected do not contribute to the overall statistics (this
statement is reviewed in Section 2.6). From these premises, it follows
that p1 can be written as

p1 � Pr k � 0( ) � e−QEn0Δt4A0 .

On the other hand, the probability that the distance between a
zone center and the center of the nearest neighboring zone is less
than 2r0 is the complementary probability 1 − p1. The chain of
events that brings to an n-tet spot therefore consists of n − 1
sequences in which the nearest neighbor distances are less than 2r0
and 1 sequence in which the nearest neighbor distance is greater,
breaking the spot connection to the remaining zones. If the inter-
zone distances are independent from each other—a condition
that, as recognized by Roach, is approximately true and necessary

FIGURE 1
Illustration of Roach’s zone selection procedure. Zones (A–E)
form a quintet, as the distance between any zone centers and at least
one of the other zone centers in the spot is less than 2r0. The distances
between all zone centers in the spot and all zone centers not in
the spot, beginning with (F), are greater than 2r0. Figure adapted
from [19].
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to reduce the two-dimensional overlapping problem to a tractable
form—the probability pn for a zone to be part of an n-tet spot is the
product of the individual probabilities:

pn � e−QEn0Δt4A0 1 − e−QEn0Δt4A0( )n−1.
Since each of the QEn0Δt incoming events per unit area
(corresponding to a pixel, in our case) per time frame has this
probability of forming an n-tet spot, the number of zones
contributing to the formation of n-tet spots is QEn0Δt pn.
However, because n zones are required to form each spot, we
need to weight by 1/n this value in order to obtain the expected
number Pn of n-tet spots per unit area per time frame.

Pn � QEn0Δt pn/n, (10)
� QEn0Δte−QEn0Δt4A0 1 − e−QEn0Δt4A0( )n−1/n.

The total number of spots P is the algebraic sum of all the n-tet
spots, which converges analytically to

P � ∑∞
n�1

Pn,

� QEn0Δt
QEn0Δt4A0e−QEn0Δt4A0

1 − e−QEn0Δt4A0
.

Defining now the random variable E(Δt) as the total number of
recorded events per pixel in a time frame, its mean value coincides with p:

E E Δt( )[ ] � P. (11)
The recorded event rate e � E[E(Δt)]/Δt can therefore be written as

e � QEn0( )2Δt4A0
e−QEn0Δt4A0

1 − e−QEn0Δt4A0
. (12)

At this point, it is suitable to bring to the attention to the reader
that the Roachmodel was developed in a continuous two-dimensional
domain and for the “simple” case of circular-shaped zones3, whereas
our case involves a discretized domain (pixels) and random event
shapes. Nevertheless, results shown in Section 3 suggest that the Roach
model still provides an accurate description of the phenomenon, at the
price of interpreting A0 as a sort of effective quantity to be typically
found via curve fitting, on the same line of what is done in [22] for the
effective dead time in counting detectors with pulse shapes different
from the ideal rectangular one. A rough a priori guess can anyway be
attempted, imagining events to be more similar to squares rather than
circles—a consequence of the pixelization of the space—with effective
areaE[Mul] and side L � �������

E[Mul]√
. It is easy to find that this implies

a correlation area equal to

4A0 � 2L + 1( )2. (13)
Let us now focus on the variance of the number of recorded

events. Due to the complexity of the task in two dimensions, no
model could be found neither by the author nor in the consulted
literature. However, an analytical solution for the one-dimensional
case exists and it deserves some attention. In the context of

chromatography, an exact formulation based on statistical
arguments was first achieved by Rowe and Davis [23] (see also
[24] for a comprehensive summary of one-dimensional models):

V P Δx( )[ ] � λΔxe−λx0 1 − 2λx0e
−λx0( ), (14)

where P corresponds to the number of recorded events in the one-
dimensional space intervalΔx, λ corresponds to the incoming event rate
per unit space, and x0 to the coincidence interval. Few years later, in the
context of dead time models for paralyzable counting detectors, Yu and
Fessler achieved independently and by analytical methods an equivalent
formulation [25]—change Δx with the time interval t and x0 with the
system dead time τ. In their derivation, the term equivalent to λe−λx0 in
Eq. 14 is explicitly identified with the recorded event rate p:

p � λe−λx0 , (15)
so that Eq. 14 could be rewritten as

V P Δx( )[ ] � Δxp 1 − 2x0p( ). (16)
By way of analogy, we propose to adapt this expression to the two-
dimensional case by identifying p as the recorded event rate e of Eq. 12
integrated over the time frame Δt (in the one-dimensional context,
indeed, rate is defined per unit spatial dimension), Δx as the number of
pixels Npix and x0 as half the correlation area 4A0

2 . This last relation is
obtained by equivaleting the expressions for the recorded event rate in
one and two dimensions for values of incoming event rates tending to
zero, as reported in Appendix 4. Incidentally, it is worth noting that the
one-dimensional expression is equivalent to the one for the singlets P1
in two dimensions (see Eq. 10 with n = 1), which was, e.g., used to
model, alone, the recorded event rate in two dimension in [21]. From
the aforementioned proposition, it follows that the variance of the
recorded events per pixel and in a time frame can be written as

V E Δt( )[ ] � Δte 1 − 4A0Δte( ), (17)

� QEn0Δt( )24A0
e−QEn0Δt4A0

1 − e−QEn0Δt4A0
1 − QEn0Δt4A0( )2 e−QEn0Δt4A0

1 − e−QEn0Δt4A0
[ ].

2.4 SNR and DQE0

The knowledge of the first two momenta of the recorded
statistics allows us to compute the corresponding SNR over a
time frame, defined as

SNRX Δt( ) � E X Δt( )[ ]2
V X Δt( )[ ] ,

which, thanks to the properties highlighted in Eqs 3, 4, can be easily
generalized to the sum of a series of time frames:

SNRX FNΔt( ) � FN
E X Δt( )[ ]2
V X Δt( )[ ] .

More interesting, however, due to its importance and widespread
use in the imaging community (see [26] and references therein for an
interesting historical overview), is the DQE, defined as

DQE � SNROUT

SNRIN
, (18)3 Considerations on the case of elliptical zones are, however, reported

in [18, 20].
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where SNROUT is the signal-to-noise ratio referring to the recorded signal
statistics and SNRIN is the one referring to the incoming signal statistics,
which, under the assumption of obeying Poisson statistics, equals to

SNRIN FNΔt( ) � FNn0Δt, (19)
whichmakes the DQE independent on the number of acquired frames.

In its modern acceptance4, DQE is conceived in the two-
dimensional domain of the spatial frequencies by applying
Fourier transform to the output signal and noise. Use of
frequency analysis requires the system to exhibit the properties of
shift-invariance, linearity and wide-sense stationary statistics. In
general, rarely, a system satisfies all the requirements in a rigorous
manner. For example, a pixelated detector is not strictly shift-
invariant, unless shifts are by an integer number of pixels. In
addition, in a counting system, the noise is stationary only in
conditions of uniform illumination as it depends on the
incoming signal itself. Therefore, care must be taken when
interpreting the results as they might be approximations of the
true properties of the system [27, 28]. In our specific case, the
requirement of linearity is clearly not satisfied. Since a
straightforward extension of the theory is not well-established
(see [29] for a nice compendium on possible generalizations of
the concept of DQE to non-linear systems), we limit our analysis to
the degenerate zero-frequency case denoted DQE0

5.
The DQE0 of the recorded counts as a function of the incoming

event rate can therefore be retrieved using Eqs 6, 8, 18, 19 in obtaining

DQE0 �M
� 1 − e−n0E Mul[ ]Δt

n0Δte−n0E Mul[ ]Δt 1 + E Mul2[ ]
E Mul[ ] − 1( ) 1−e−n0E Mul[ ]Δt

n0E Mul[ ]Δt[ ],
while one of the recorded events using Eqs 11, 17–19 obtaining

DQE0E �
QE2n0Δt4A0

e−QEn0Δt4A0
1−e−QEn0Δt4A0

1 − QEn0Δt4A0( )2 e−QEn0Δt4A0
1−e−QEn0Δt4A0

.

2.5 Derived quantities

Additionally, derived quantities of particular interest, which we
would like tomention, are the area occupancy (AO) and the coincidence
loss fraction (CLF). The AO is defined as the ratio between the average
number of counting pixels per frame and the total number of pixels,
coinciding with the average number of recorded counts in a time frame.

AO � NpixE M Δt( )[ ]
Npix

,

� E M Δt( )[ ].
Information on the AO can have implications on the detector
readout mechanism design and optimization, as well as on the
choice of suitable data compression algorithms. The coincidence loss

fraction is defined as the ratio between the number of “lost” events,
i.e., not recorded, and the total number of incoming events.

CLF � QEn0 − e

QEn0
, (20)

� 1 − QEn0Δt4A0
e−QEn0Δt4A0

1 − e−QEn0Δt4A0

and reflects the counting efficiency of the system. In Eq. 20, the
physical incoming event rate n0 in the denominator is scaled by QE
as QEn0 is the actual ideal event rate recorded in the absence of
coincidence loss.

2.6 General remarks

i. The study of the counting statistics of pixels featuring binary
counts presented here complements a picture already including
at least the classical paralyzable and non-paralyzable counting
modes [25] and a particular case of the non-paralyzable mode
[14], where the paralysis is avoided, thanks to a circuital
stratagem called “instant retrigger.”

ii. The results on the recorded event statistics are of general
validity, whether the hit digitization occurs directly in the pixel
(with binary or non-binary outcome), in the readout
electronics, or at the image processing stage. Differences
can arise on the value of the coincidence area, according to
the specific algorithm used for the event recognition.

iii. A detector with in-pixel counting electronics might have some
advantages compared to one working in the charge integrating
mode in terms of a slightly smaller coincidence area. It can indeed
happen that a pixel receives, in the same time frame, signals
originated by more than one event. If the front-end electronics
works in the counting mode, the contribution of every event is
individually processed (provided they do not undergo pile-up). If
the front-end electronics works in the charge integrating mode, it
is the sum of the contributions to be processed, making more
probable the recording of a hit and the consequent formation of a
“bridge” between neighboring events.

iv. The presented models were derived for systems with frame-
based readout, but their validity can be extended to systems
with the event-based readout as well. In a system with event-
based readout, the detection of an event triggers its own
readout, but the time stamp associated with it has finite
resolution, and therefore, neighboring events within this
time interval cannot be distinguished. The time-stamp
discretization corresponds to our frame time6.

4 Originally, the DQE was conceived as a “large area” property, what is

nowadays called zero-frequency DQE [26].

5 The notation DQE0 is preferred over DQE(0) not to induce to think that the

DQE is an actual function of frequency.

6 Modern event-based readout chips can feature time-stamp discretization

down to ns or sub-ns levels, allowing in line of principle for count rate

capabilities orders of magnitude better than frame-based ones. A practical

limit anyway arises from the fact that transmitting spatial coordinates and

timing information to the readout electronics potentially generates huge

amount of data, saturating the system bandwidth. Although much

depends on the specific implementation details, the advantage of one

readout mode over the other is not obvious.
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2.7 Monte Carlo simulation framework

To validate the analytical models, we used results of numerical
simulations carried out with an improved version of the Monte
Carlo tool used in [13, 30, 31]. The first step of the workflow was
the creation of a statistically relevant pool of electron tracks in the
semiconductor sensor. A total of 40 million tracks were generated
using FLUKA7—a Monte Carlo particle transport and interaction
suite [32, 33]—storing, for each of them, the three-dimensional
spatial coordinates with an accuracy of 1 µm and the amount of
energy released therein.

We then processed each individual electron track with a
custom-developed numerical code mimicking the physics of the
charge collection and signal formation at the pixelated
electrode. The generated charge distribution of each track
segment was thus propagated through the remaining sensor
thickness to the pixels, and a Gaussian blurring was added to
reproduce the effect of thermal diffusion, with a total width
depending on an initial intrinsic contribution and, under the
assumption of the constant electric field, to a contribution
depending on the total travel length. The charge collected by
each pixel was converted into energy and a counting threshold
was applied, if the energy is higher, the pixel counts 1;
otherwise, it counts 0. A random fluctuation representing the
electronic noise, normally distributed and assumed
uncorrelated among the pixels, was added to the signal. The
response of both the sensor and the readout electronics has
been assumed uniform in space. At this point, it was possible to
extract the statistical distribution of the event multiplicity.
Then, for each value of a series of incoming electron rates, a
set of 2000 independent images (frames) was generated. The
total number of impinging electrons for each individual frame
was chosen randomly according to the suitable Poisson
statistics and then they were uniformly and randomly
distributed across the sensor surface, which covered an area
of 2048 × 2048 pixels. A pixel cluster recognition algorithm was
then applied to each frame to isolate single events. In order to be
considered isolated, two clusters need to be separated by at least
one empty pixel.

2.8 Case study

We chose a case study realistic for CryoEM applications
consisting of a 25-µm-thick MAPS detector, covered with 5 µm
of Al accounting for the metal layers and featuring square pixels of
size 10 µm. The counting threshold energy was 1 keV, the electronic
noise was 200 eV rms, and the thermal diffusion between 1 and 3 µm
rms. The frame rate was assumed 1 kfps. The energy of the
impinging electrons was 300 keV, with values of incoming rates
in the range 1–200 el/s/pix.

3 Results and discussion

In order to get a visual feeling of the events distribution
recorded on the pixel matrix, two frame sub-regions obtained
with an incoming electron rate of 5 el/s/pix and 30 el/s/pix,
respectively, are shown in Figure 2. The first can be considered
an example of low incoming rate condition, the second an example
of medium incoming rate condition, with event clumping clearly
noticeable.

The single-event multiplicity probability distribution,
computed in a condition of no coincidence loss, is shown in
Figure 3. The large majority of clusters consist of 1–4 pixels,
with a peak of probability at 2. Cluster sizes greater than 4 exist
with lower occurrence probability. In addition, the case of no
detection, i.e., cluster size 0, is very unlikely with probability 0.002.
This allows us to infer the quantum efficiency through Eq. 9,
yielding QE = 0.998. The first two statistical momenta of the

FIGURE 2
Example of frames sub-regions obtained with an incoming
electron flux of 5 el/s/pix (left) and 30 el/s/pix (right). Pixels with
overlapping events have been highlighted in red for
visualization purposes.

FIGURE 3
Single-event multiplicity probability distribution. Lines are to
guide the eye.

7 v. 4-2.1. The physics was set to multiple Coulomb scattering with the

cutoff energy of 1 keV for electrons and 100 eV for photons. Fluorescence

was enabled, and no biasing was used.
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distribution, fundamental for the continuation, are E[Mul] � 2.87
pix and E[Mul2] � 12.93 pix2.

Figure 4 (top) shows the comparison between recorded count
rate curves obtained with numerical simulations and predicted by
the analytical model of Eq. 7, as a function of the incoming electron
rate. The ideal count rate curve n0E[Mul] is also shown as reference.
Figure 4 (bottom) shows the corresponding error in percentage, which
is on the order of few per mill across all the range of probed incoming
electron rates. In addition, as a quantitativemeasure of the goodness-of-
fit, we computed the L2 relative error norm (L2REN), defined as

L2REN x( ) �

���������������∑NoP
i�1 xsim

i − xana
i( )2∑NoP

i�1 xana
i( )2

√√
,

where NoP corresponds to the number of simulated points. In this
case, it amounts to 0.13%.

Figure 5 (top) shows the comparison between recorded count
variances in one time frame obtained with the numerical simulations
and predicted by the analytical model of Eq. 8, as a function of the
incoming electron rate. The Poisson variance values of the incoming
electron statistics n0Δt and of the ideal recorded counts n0E[Mul2]Δt
[14] are also shown as reference. Figure 5 (bottom) shows the
corresponding error in percentage. The L2REN amounts to 3.97%.

The level of agreement between simulated and predicted data for
both for the mean and the variance is such that we can positively
conclude on the validity of the proposed model.

Figure 6 (top) shows the comparison between recorded electron
rate curves simulated and fitted with the analytical models, as a function

of the incoming electron rate. We first observe that the counting
paralysis occurs here much earlier than for the bare counts in
Figure 4, due to the inflating effect of the event multiplicity. Then,
the curve labeled “ana. 2D” corresponds to the result using the Roach
model of Eq. 12, whose fitting yields a value of 4A0 = 20.51 pixels. For
accuracy reasons, the fitting was restricted to a range of incoming
electron rate 0–80 el/s/pix (the upper bound corresponds to the location
of the maximum recorded electron rate) as above this limit, the model
tends to overestimate the number of recorded electrons. Within this
range, the L2REN of the Roach model amounts to 0.06%. Incidentally,
we note that using the Roach model of Eq. 13 to estimate a priori the
correlation area 4A0, we obtain a value of 19.26, which is not far from
the correct value obtained through the fitting. The curves labeled with
“ana. Pn” show the breakdown of the Roach model into the first five n-
tet spot components, namely, the singlet, doublet, tripled, quartet, and
quintet spots, computed with Eq. 10. It is interesting to note how the
contribution of lower-order n-tet spots is always dominant on higher-
order spots over all the range of incoming electron rates. To some
extent, this explains why the one-dimensional model of Eq. 15
(mathematically equivalent to the number of singlets in the two-
dimensional model) with parameter x0 � 4A0

2 � 10.255, labeled in
Figure 6 as “ana. 1D,” also provides an acceptable approximation of
the simulated data, in particular at low values of incoming electron rates.
This statement is supported also by Figure 6 (bottom), which shows the
corresponding fitting errors in percentage.

Figure 7 (top) shows the recorded electrons variance in one
time frame, as a function of the incoming electron rate. The
curve labeled “ana. 1D,” corresponds to the one-dimensional
analytical solution in Eq. 16, while the curve labeled “proposed

FIGURE 4
(Top) Comparison between recorded count rate curves obtained
with numerical simulations (error bars) and predicted by the analytical
model of Eq. 7 (solid line). Please note that the error bars on the
simulated values are smaller than the graphical symbol. The ideal
count rate curve is also shown as reference. (Bottom) Deviation
expressed in percentage.

FIGURE 5
(Top) Comparison between recorded count variances in one
time frame obtained with the numerical simulations (error bar) and
predicted by the analytical model of Eq. 8 (solid line). The Poisson
variance of the incoming electron statistics and of the ideal
recorded counts is also shown as reference. (Bottom) Deviation
between the two curves expressed in percentage.
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ana. 2D” corresponds to the proposed extension of the one-
dimensional model to the two-dimensional case, as in Eq. 17.
The Poisson variance of the incoming electrons statistics n0Δt is
also shown as the reference. We observe that up to the incoming
electron rate of ~30 el/s/pix (corresponding to a coincidence
loss of 27.6%, see Figure 9), both models describe the behavior
of the recorded variance equally well, with a L2REN of 6.8%. For
increasing incoming electron rates, both models underestimate
the data down to a factor 1/2, as shown in Figure 7 (bottom).
The proposed model, however, follows the peculiar “bulged”
shape of the simulation better than the original one-
dimensional one. For this reason and because it also leads to
a simpler expression of the DQE0E, we endorse the adoption of
the proposed model for the two-dimensional case.

The behavior of the DQE0 as a function of the incoming electron
rate is reported in Figure 8, for both the cases of recorded counts and
recorded electrons. The knowledge of the first two statistical
momenta of the multiplicity distribution allows us to compute
the limiting value of the DQE0M for low incoming electron rates8:

lim
n0→0

DQE0 �M
� E Mul[ ]2
E Mul2[ ],

which, in our case, amounts to 0.64. For the DQE0E, on the other
hand, it holds

lim
n0→0

DQE0E � QE,

which, in our case, is 0.998. For increasing incoming electron
rates, DQE0E shows a non-monotonic behavior, while DQE0M

FIGURE 6
(Top) Recorded electron rate curves obtained with the numerical
simulations (error bars) and their fitting with the analytical models
(solid lines). “ana. 2D” corresponds to the fitting with the Roach model
of Eq. 12, while “ana. Pn” corresponds to the contributions of the
n-tet spots up to n = 5 using Eq. 10. “ana. 1D” corresponds to the fitting
with the one-dimensional model of Eq. 15. Please note that the error
bars on the simulated valued are smaller than the graphical symbol.
The ideal recorded electron rate curve n0 is also shown as the
reference. (Bottom) Deviation between the numerical simulations and
their fitting with analytical models expressed in percentage.

FIGURE 7
(Top) Recorded count variance obtained with the numerical
simulations (error bars) and predicted with the analytical models (solid
lines). “ana. 1D” corresponds to the result obtained with the one-
dimensional model of Eq. 16, while “proposed ana. 2D”
corresponds to the result obtained with our proposed two-
dimensional extension of Eq. 17. As reference, the Poisson variance of
the incoming electrons is also shown. (Bottom) Deviation between the
two curves expressed in percentage.

FIGURE 8
Simulated (symbols) and analytically modeled (solid lines) DQE0
for the recorded counts and for the recorded electrons.

8 A result of general validity for counting detectors [34].
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grows indefinitely. We can attempt to explain the increasing trend for
both DQE0M and DQE0E—for the latter before the unavoidable
collapse at high incoming rates due to counting paralysis—in
an analogous way of what is already observed in [14] in the time
domain. Essentially, but probably less intuitively, event
overlapping provides a sort of “regularizing” effect of the
recorded statistics. For instance, a recorded event resulting
from the union of several overlapping events is recorded,
regardless (to some extent) of the variation in number and
position of the single events constituting the union, making it
less sensitive to the natural statistical fluctuations of the
incoming signal, in a sort of noise filtering effect. However,
one should not be tempted to think that operating a detector in
this regime would be absolutely beneficial. Indeed, the gain in
DQE0 is compensated by a loss in spatial resolving capability due
to the increasing size of the merged event.

Finally, Figure 9 shows the area occupancy and the coincidence
loss fraction as a function of the incoming electron rate. In the context
of cryoEM applications, only tiny deviations from linearity are
acceptable—on the order of few percent. Assuming a relaxed
upper limit for the coincidence loss fraction of 10% [21], this is
reached in our case study for an incoming electron rate of 10.10 el/s/
pix and the corresponding area occupancy is 2.86%. In this regime, it
is, therefore, perfectly justified the use of both the Roachmodel for the
recorded electron rate and of the proposed two-dimensional model
for the recorded electron variance. To give a more practical
understanding of the impact of distortions of counting statistics, it
is useful to translate the aforementioned quantities into integrated
values over the detector area (2048 × 2048 pixels) and frame time
(1 ms). A coincidence loss fraction of 10% would then occur at an
incoming electron count of 41’943 el, for a corresponding AO
of 119’957 pix.

4 Conclusion

We investigated the impact of coincidence loss on the recorded
count statistics and on the noise performance in counting detectors

featuring sparse binary images. First, we derived exact analytical
expressions for the mean and the variance of the recorded
counts. Second, we addressed the problem of the mean and
variance of the recorded events (i.e., pixel clusters identified as a
single incoming event). We reviewed, reinterpreted, and
evaluated the suitability of approximated models—as no exact
solutions exist in two dimensions—previously obtained in
several different disciplines, adopting the “Roach model” for
the mean and proposing an extension of the one-dimensional
exact solution for the variance to the two-dimensional case. For
both cases, we derived expressions for the SNR and the DQE0.
Model predictions were qualified against numerical simulation
carried out with a custom-developed Monte Carlo code, for the
CryoEM-realistic case study of a 25-µm-thick MAPS detector
featuring a pixel size of 10 μm, a frame rate of 1 kfps, and
working in the binary counting mode. The incoming beam
consisted of electrons with energy 300 keV and with flux
intensities up to 200 el/s/pix, where coincidence loss phenomena
are bringing the system well into paralysis. The matching between
simulated data and analytical prediction is perfect for the mean and
variance of the recorded counts. For the mean recorded electrons, the
Roach model fits excellently simulated data up to an incoming
electron rate of ~80 el/s/pix, corresponding to the location of the
maximum of the recorded curve. At higher values of incoming rates,
the model tends to slightly overestimate the number of recorded
events. For the variance of the recorded events, both the existing one-
dimensional and the proposed two-dimensional analytical solutions
match the simulated data excellently up to an incoming electron rate
of ~30 el/s/pix. At higher values of incoming rates, both models
severely underestimate the data, but the proposed two-dimensional
extension follows better functional behavior, supporting its adoption.
The resulting DQE0 shows an increasing behavior as a function of the
incoming rate for the recorded counts, while it shows a non-
monotonic behavior for the recorded events. The increase above
the low incoming rate limit is due to an allegedly reduced
sensitivity of the recorded signals resulting from the union of
multiple events to the statistical fluctuations of the individual
incoming events, in a sort of noise filtering effect. Only in the
second case, it ultimately decreases to zero due to the
overwhelming system paralysis. Generalization and limitations to
the validity of the models were also discussed.
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Appendix A: Derivation of the relation
between x0 and A0

In one spatial dimension the recorded event rate per unit length
and unit time p can be expressed as:

p λ( ) � λe−λΔtx0 (A1)
where λ represents the incoming event rate per unit length and
unit time which in our case is λ = QEn0. The term Δt does not
appear in Eq. 14 as it is implicit in the incoming rate definition
which is expressed per unit length. In two spatial dimensions,
the recorded event rate per unit area and unit time e is, from
Eq. 12:

e λ( ) � λ2Δt4A0
e−λΔt4A0

1 − e−λΔt4A0
. (A2)

The goal is to find the value of x0 as a function of A0 such that p ~ e
for λ → 0. As initial step, however, we note that to simplify the
computation both p and e can be divided by λ, so let us defined the
normalized quantities p̂ � p/λ and ê � e/λ. Then, we express them
with their Maclaurin series up to first degree, which gives:

p̂ λ( ) ~ p̂ 0( ) + p̂′ 0( )λ (A3)
ê λ( ) ~ ê 0( ) + ê′ 0( )λ (A4)

where the apex ′ denotes the derivative of the function with respect
to λ.

For p̂ it holds p̂(0) � 1 and p̂′(0) � −Δtx0.
For ê, on the other hand, lim

λ→0
ê(λ) gives the indefinite form 0

0.
Using L’Hôpital’s rule we get:

lim
λ→0

ê λ( ) � Δt4A0e−λΔt4A0 1 − e−λΔt4A0( )
Δt4A0e−λΔt4A0

� 1. (A5)

Also for ê′, which is:

ê′ � −Δt4A0 λΔt4A0 − 1( )eλΔt4A0 + 1[ ]
eλΔt4A0 − 1( )2 (A6)

the lim
λ→0

ê′(λ) leads to the 0
0 indefinite form, which can be solved using

twice L’Hôpital’s rule:

lim
λ→0

ê′ λ( ) � − Δt4A0( )3 λΔt4A0 + 1( )eλΔt4A0

2 Δt4A0( )2eλΔt4A0 2eλΔt4A0 − 1( ) � −Δt4A0

2
. (A7)

Eqs A3, A9 therefore become:

p̂ λ( ) ~ 1 − Δtx0λ (A8)
ê λ( ) ~ 1 − Δt4A0

2
λ (A9)

and equaling the terms it is straightforward to see that x0 � 4A0
2 .
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