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In the spreading dynamics of previous fashion trends, adoption researchers have
neglected to consider that some individuals may behave differently from popular
tendencies, which is called opposite-trend adoption behavior. To explore the
dissemination mechanisms of the behavior, we first establish the adoption-
against-trend model. Additionally, an edge division theory based on the
adoption of opposite trends was proposed to quantitatively analyze this
unique dissemination mechanism. This study presents three different degrees
of opposite trends, each highlighting unique spreading scenarios. In the case of a
strong opposite trend, no spreading occurs. In the case of a weak opposite trend,
limited contact will accelerate information spreading, but it will not alter the
mode of spreading. Nevertheless, in the case of a moderately opposite trend, the
degree of the opposite trend alters the mode of spreading. Meanwhile, a cross-
phase transition occurs. The findings of this paper can be applied to various areas,
including social media and commercial trades.
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1 Introduction

The theory of spreading dynamics can be used to analyze many aspects of life, including
healthy behaviors [1-3], social recommendations [4-9], advertising and promotion [10-11],
and fashion trends. The adoption of popular trends is strengthened by the reinforcement
effect, which can lead to further expansion. Furthermore, investigators have found that due
to the reinforcement effect, individuals showing a higher adoption trend toward certain
behaviors are more likely to adopt those behaviors [12]. Additionally, there appears to be a
connection between the reinforcement and memory effects. Upon receiving information,
individuals accumulate pieces of information, leading to either a full or partial memory
effect, as there are accumulative messages present. Moreover, the memory effect is
characterized by being non-Markovian [13-15]. Apart from the features mentioned
above, investigators discover a lot of elements that affect the infection region, including
group heterogeneity [16], network structure [17], and node preference for connection [18].

To harness information spreading, certain researchers have introduced the threshold
model [19-20]. Individuals only accept information once they have received messages
exceeding a certain threshold. Subsequent studies have proposed the use of a truncated
normal distribution due to the varying adoption probabilities of individuals impacted by
factors such as age and education level [21-22]. Leng et al. discovered that the acceptance of
information by individuals is not only related to the level of intimacy with their neighbors
but also to the degree of nodes in the social network [23]. Similarly, Cui et al. proved that the
adoption of behavior is influenced by individual interest and not merely by the behavior
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itself [24]. Some studies have demonstrated that the acceptance and
adoption of information and behavior are governed by various
influential factors in social networks. Ruan et al. examined the
process by which nodes provide inverse feedback upon the
receipt of messages, influencing vulnerable nodes [25]. Otherwise,
group behaviors should also be observed beyond individual actions.
Investigators have grouped networks into two categories: positive
and negative [26-27]. Researchers have identified imitative
behaviors in society and are studying information propagation
laws in double-layered networks by establishing gate-like
adoption functions [28]. To comprehend the information
dissemination process precisely, Zhu et al. suggested that an
individual can only obtain limited information from their finite
neighbors due to time and energy constraints [29-34].

Hence, it is crucial to establish a network with limited contact. To
date, researchers have rarely studied the dissemination of information
against the fashionable trend, which is called the adoption of behavior
against the trend. People refrain from adopting their neighbors’
behavior when they lack sufficient information. However, if a few
nodes adopt the behavior, individuals are much more likely to adopt it
as well. As the number of individuals displaying the behavior increases,
the likelihood of additional individuals adopting the behavior decreases
significantly. For example, new clothing brands do not immediately
form a trend. Initially, only a few unique individuals will purchase them.
As the clothing becomes more popular, more people will buy it.
However, some individuals may choose to avoid the trend.

Focusing on the aforementioned situation, this paper studies the
spreading mechanism among single-layer network neighbors with
limited contact. A comparable adoption threshold model is
constructed to characterize the spreading characters since the
quasi-right triangle is associated with the adoption qualities
against neighbors, which have a rapidly increasing character at
first and a slowly decreasing character thereafter. Afterward, we
propose a general edge compartmental to quantitatively analyze the
mechanism of propagation. In addition, our acceptable model has
been confirmed through simulations that coincide with theoretical
calculations. We note that there is a phase transition present,
regardless of whether the network is random or scale-free. In
cases of strong opposition, we observe that information is not
transmitted. In the weak scenario, limited contact hastens
transmission but does not convert the spreading mode. In both
networks, the mode of spreading continuously grows with a second-
order transition. In the moderate scenario, the dissemination mode
changes due to the influence of the opposite adaptive parameter.

The remainder of this paper is divided into five sections. Section
2 introduces a model of opposite trend acceptance with limited
contact ability. Section 3 presents evidence to support the validity of
the model. Section 4 examines the process of information
dissemination across two distinct networks, using both inference
and simulation. Section 5 offers a conclusion about the study as
a whole.

2 Model description

To investigate the mechanism of individual information sharing
within a single-layer social network under the influence of opposite
trend adoption and limited contact heterogeneity, a network

containing N nodes was designed. The social network is
comparable to platforms such as WeChat, Microblog, and
Facebook, and thus, a distribution of node degrees p(k)
was obtained.

According to the above description of a single-layer network
model, we use the traditional SAR model to research information-
spreading mechanisms, as shown in Figure 1. In the SAR model,
individuals can be in three different stages. Susceptible individuals
have the zest to receive information. Adopted nodes have already
received information and subsequently transmit it to their
neighbors. On the other hand, recovered nodes have received
information but have no interest in the message, so they will not
participate in the propagation of information.

We introduced limited contact to represent the contact ability of
each node. f(kj) denotes the limited contact of nodes, and kj
represents the degree of node j. If f(kj)≥ kj, adopted nodes can
transmit information to all of their neighbors. However, when
f(kj)< kj, they can only transmit information to their f(kj)
nodes, resulting in a reduced amount of information that
individuals can access. Within a unit of time, the adopted nodes
were converted by susceptible nodes with a probability of λ.
Additionally, the nodes adopted the practice of spreading
messages to all of their neighbors with a probability of λf(kj)

kj
.

We define m as the accumulation of information by nodes.
Information is not transmitted initially, but when a susceptible
node receives information, m increases by 1. We present an
adoption threshold model that exhibits the characteristic of
information spread against trends in a similar manner to a
right triangle as Eq. 1.

h x, b( ) �
0 , 0< x< b
1 − x

1 − b
, b≤ x< 1

⎧⎪⎨⎪⎩ . (1)

Here, x represents the ratio of received information to the degree
of a susceptible node and b denotes the degree parameter of opposite
trend adoption.

• The process of information spreading in a single-layer
network with limited contact is outlined as follows: prior to
transmission, we randomly select the proportion of ρ0 adopted
nodes. The remaining nodes are deemed susceptible.

• Adopted nodes, which are stochastically chosen f(kj) times
from susceptible nodes, transmit messages along edges with a
probability of λf(kj)

kj
.

• As susceptible nodes receive messages, the number of
susceptible nodes decreases by 1.

• The node will reject duplicate information that has been
previously received.

• During a unit of time, the adopted nodes have a probability of
transitioning into recovered nodes. However, if there are no
adopted nodes left, the process will terminate within that
time frame.

3 Theoretical analysis

In accordance with the hole theorem in a single-layer network
with limited contact, we assume the random selection of node i as
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the hole state. In this state, node i can merely receive information
from its adopted neighbors. The probability of nodes not
delivering information to their neighbors is determined as θkj.
We subsequently calculate the probability of node i being unable
to accept messages from its neighbors at time t as

θ t( ) � ∑kj max

kj�0

kjp kj( )
< k> θkj t( ). (2)

At time t, the likelihood of the hole-state node receiving
information from multiple neighbors can be represented by Eq. 3.

Φm ki, t( ) � ki
m

( )θ t( )ki−m 1 − θ t( )[ ]m. (3)

Although node i may receive information, it will not transition
immediately to the adopted state upon gaining such information. The
probability of node i remaining susceptible is defined as
Πm

l�0[1 − h( l
k, b)]. We accumulate the probability of the susceptible

state at time t. The degree of node i is also defined as k = ki. Node i is
defined to be in one of three states: susceptible, adopted, or recovered.
We accumulate the probability of the susceptible state at time t as Eq. 4.

τ ki, t( ) � ∑ki
m�0

Φm ki, t( ) Πm
l�0

1 − h
l

ki
, b( )[ ]

� ∑bki� �

m�0
Φm ki, t( ) + ∑ki

m� bki� �
Φm ki, t( ) ∏m

l� bki� �
1 −

1 − l

ki
1 − b

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (4)

In addition, the probability of all the susceptible nodes at time t
can be represented by Eq. 5.

s ki, t( ) � 1 − ρ0( ) ∑ki
m�0

Φm ki, t( ) Πm
l�0

1 − h
l

ki
, b( )[ ]

� 1 − ρ0( )τ ki, t( )
. (5)

The probability of susceptible nodes maintaining their current
status is represented by Eq. 6.

η � ∑ki max

ki

p ki( )τ ki, t( ). (6)

Until time t, the ratio of susceptible nodes in the single-layer
network is observed to be as represented by Eq. 7.

FIGURE 1
(A) Dissemination of information in a complex network comprising a single layer. Individual 1 has embraced the information, while individuals 2, 3,
and 4 are still prone to it. Individual 5 has already regained information. Information was effectively disseminated through the blue dashed line, and node
1 that has received the information has conveyed it to its neighbors through this route. To represent the impact of limited contact, the paper sets the
parameters of limited contact at 5 and 20. This means that each node can receive either 5 or 20 pieces of information from its neighbors. (B)Nodes
that have embraced the information disseminate it to susceptible nodeswith a likelihood of λ. When state nodes transition from adopted to recovered, the
probability is represented by γ. (C) Each color represents a dissemination state—red for adopted nodes, blue for susceptible nodes, and green for
recovered nodes. (D) Probability of neighbors adopting the opposite trend. Adoption probability is 0 when 0 < x < b, but as soon as b ≤ x < 1, individuals will
adopt behavior with a probability of 1−x

1−b.
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S t( ) � ∑
k

p k( )s k, t( ) � 1 − ρ0( )η. (7)

The probability of node j being in one of the three states and not
acquiring any information from its neighboring nodes is represented
by Eq. 8.

θkj t( ) � ξS,kj t( ) + ξA,kj t( ) + ξR,kj t( ). (8)
However, the probability of node j gaining information as of

time t is represented by Eq. 9.

Φm kj − 1, t( ) � kj − 1
m

( )θ t( )kj−1−m 1 − θkj t( )[ ]m. (9)

Susceptible nodes will not transition to adopted state nodes until
they receive a certain quantity of messages. Therefore, we define the
probability of a node receiving n messages and remaining in the
susceptible state as ς(kj − 1, t). At time t, the probability of a node j
with degree kj remaining in the susceptible state is calculated.

ζn kj − 1, t( ) � ∑kj−1
n�0

Φn kj − 1, t( ) Πn
l�0

1 − h
l

kj
, b( )[ ]

� ∑bkj� �
n�0

Φn kj, t( ) + ∑kj
n� bkj� �

Φn kj, t( ) ∏n
l� bkj� �

1 −
1 − l

kj
1 − b

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

(10)
where the likelihood of nodes connecting to neighbors via an

edge is determined as kjp(kj)
< kj > . At time t, the probability of susceptible

nodes remaining in their current state as they have not received any
information is

ξS,kj t( ) � 1 − ρ0( )ζn kj − 1, t( ). (11)
Since the impact is limited by contact, the probabilities of an

adopted node j delivering information to its neighbors and
transmitting through edges are determined as f(kj)

kj
and λ,

respectively. Therefore, the probability of a node transmitting
information to its neighboring nodes via edges is established as
λf(kj)
kj , and a function can be obtained as Eq. 12:

dθkj t( )
dt

� −λf kj( )
kj

ξA,kj. (12)

Due to the adopted nodes being converted to a recovered state
with a certain probability γ, it is possible to require the function
about

dξR,kj(t)
dt , which can be expressed as Eq. 13

dξR,kj t( )
dt

� γξA,kj t( ) 1 − λf kj( )
kj

⎛⎝ ⎞⎠. (13)

By combining Eqs 10, 11, we can derive

ξR,kj t( ) � γ 1 − θkj t( )[ ] kj

λf kj( ) − 1⎡⎢⎣ ⎤⎥⎦. (14)

By applying Eqs 11, 14 along with Eq. 10, we derive the following
result: ξA,kj(t). Regarding the initial conditions, information has not
been transmitted yet. As a consequence, we can calculate the probability
of susceptible nodes not receiving any messages using Eq. 15:

θkj 0( ) � 1. (15)

At the same time, the network does not have any recovered
nodes, providing us with the knowledge that

ξR,kj 0( ) � 0. (16)

Overwriting function

dθkj t( )
dt

� −λf kj( )
kj

θkj t( ) − ξS,kj t( )[ ] + γ 1 − θkj t( )[ ]
× 1 − λf kj( )

kj
⎛⎝ ⎞⎠. (17)

When t → ∞, on the basis of Eq. 20, we obtain

θkj ∞( ) � ξS,kj ∞( ) + γ 1 − θkj ∞( )[ ] kj

λf kj( ) − 1⎡⎢⎣ ⎤⎥⎦. (18)

Substituting Eq. 18 into Eq. 2, we obtain Eq. 19

θ ∞( ) � ∑
kj�0

kjp kj( )
< k> θkj ∞( ) � g θ ∞( )( ). (19)

In order to simplify the process, we consider

θ ∞( ) � g θ ∞( )( ). (20)
When Eq. 16 is in tangency with Eq. 17, it can be observed that a

value abruptly changes into another value. The implication is that
R(∞) increases discontinuously with λ. When θ(∞) < 1, the critical
condition for information spreading can be obtained as Eq. 21:

∂g θ ∞( )( )
∂θ ∞( ) � 1. (21)

4 Results and discussion

In this study, the network comprised a set number of total
nodes of 2 × 104 and an average degree of 10. To demonstrate the
parameter, experiments were conducted on both the random
networks (ER) and scale-free networks (SF). The ER network
adheres to a Poisson distribution p(k) � e−<k><k> k

k! for its node
degree, unlike the SF network, which displays a power–law

distribution with values of p(k) = ζk−v and ζ � 1/∑
k

k−v. It was

observed that the heterogeneity of the node distribution was
negatively correlated with the degree exponent v. To
comprehend the complete information transmission process, we
establish γ as 1. The specific critical value is denoted by χ, as
detailed in Eq. 22.

χ � < R ∞( ) − <R ∞( )>( )2 >
<R ∞( )> 2

. (22)

4.1 Analysis of opposite adoption against
neighbors on the ER network

The limited contact that is heterogeneous in nature is
observed to impact the ultimate range of propagation for both
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Figures 2A, B. Additionally, variations in the mode of
dissemination are uncovered. The data suggest that the
increase in λ eventually leads to universal acceptance R(∞). If
in a weak opposite trend condition b = 0.01, the growth mode of
R(∞) continues in a second-order fashion. Notably, R(∞)
remains unchanged, and information is not disseminated
under strong opposite conditions b = 0.15. Under moderate
opposite-trend conditions b = 0.10 with limited contact, the
transition R(∞) is second-order and continuous. However,
under strong limited contact, the transition R(∞) is first-
order and discontinuous. A comparison of the figures reveals
that stronger limited contact has a greater impact on the spread of
the network than weaker contact.

Figures 2C, D indicate the ratio of critical dissemination of
information, including relative errors. The highest point of
relative errors χ, known as the critical point, demonstrates
global adoption. The theoretical (lines) and simulated
(symbols) results coincide.

The growth mode about R(∞) depends on λ and b (Figure 3).
In region I, as λ increases, there is a second-order phase transition
of R(∞) in continuous forms. In region II, there is a first-order

phase transition in discontinuous forms. No information was
reported for region III. The condition for the phase transition
changes with varying degrees of parameter opposition. It is worth
noting that the critical conditions for first- and second-order
phase transitions correspond to the continuous and
discontinuous growth of propagation, respectively.
Additionally, the color temperature chart can elucidate the
mechanisms of spreading and analyze the changes in
spreading modes.

4.2 Analysis of opposite adoption against
neighbors on the SF network

Figures 4A, B demonstrate the relationship between
heterogeneous degree distribution and b influence on global
adoption R ∞( ). With λ growing, R ∞( ) increase to globally
adoption. The findings from Figures 4C, D indicate the ratio of
critical dissemination of information, including relative errors. It
becomes clear that heterogeneous degree distribution has no effect
on the transmission mode of information. In the condition with an

FIGURE 2
Impact of final spreading scope R ∞( ) on distinct opposite trend degree parameters b and heterogeneous limited contact with unit transmission
rates λ in the ER network. Limited contact values of 5 and 20 are shown in (A) and (B) respectively. The ratio of initial infected nodes is also presented ρ0 =
0.00125. Relative mistakes corresponding to (A) and (B) are depicted in (C) and (D) respectively.

Frontiers in Physics frontiersin.org05

Hao et al. 10.3389/fphy.2024.1406403

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2024.1406403


opposite middle b = 0.10, phase transitions vary. In a strong
opposite situation b = 0.15, the growth pattern of R ∞( ) is first
discontinuous. Conversely, in a weak condition b = 0.01, the
increment mode about R ∞( ) is continuously second. The
maximum value of relative error can indicate an explosion in

information propagation at a certain point. Studying the
amplitude of relative error can reflect the scale and pattern of
propagation bursts during propagation.

In Figure 5, the combination effect of (λ, b) on the variable
R(∞) is depicted. In region I, as λ increases, the pattern of R(∞)

FIGURE 3
It can be inferred that there is a shared impact (λ,b) on R(∞) in the ER network. Limited contacts are observed at 5 in (A) and 20 in (B), with the ratio
of initial infected nodes being ρ0 = 0.00125. In region I, the increase in R(∞) follows a second-order continuous pattern, which distinguishes it from
region II, where it increases in a first-order discontinuous pattern. No information propagation is detected in region III.

FIGURE 4
Impact b and heterogeneous limited contact on R(∞) with λ in the SF network. Limited contact is 20, while the heterogeneity of degree v is 2.1 in
(A) and 4 in (B). The impact of these factors on the phase transition in (A) and (B) is evidenced by b. And we set initial infected nodes ρ0 = 0.00125.
(C) and (F) represent relative discrepancies that correspond to (A) and (B).
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represents a second continuous phase transition. In region II, the
mode of increments R(∞) represents a first discontinuous phase
transition. In region III, there is no explosion of information.
Regardless of the scenario shown in Figure 3 or Figure 5, a cross-
phase transition occurs at the junction of a discontinuous (in
region II) or continuous (in region I) phase transition.

5 Conclusion

In this paper, we analyze the mechanism of information
spreading in relation to the adoption of opposing views within
neighboring communities. We investigate the impact of opposite
trend adoption among neighbors in a single-layer network and
find that this behavior influences information dissemination to
varying degrees. Meanwhile, we propose an adoption threshold
function that takes the form of a right triangle with
limited contacts.

The results demonstrate that under a strong opposite trend
condition (b = 0.15), information will not be disseminated.
Moreover, limited contact promotes the dissemination
process, and with the increase in R(∞), the dissemination
scope is second-order continuous under a weak condition
(b = 0.01). Interestingly, there is a cross-phase transition in
the results of the opposite trend condition in the middle (b =
0.10). The growth mode about R(∞) in the ER network shifts
from continuous second-order to discontinuous first-order,
whereas in the SF network, it transits quite contrarily. These
results reveal the significant importance of opposite-
trend adoption.

In future research, researchers could investigate the prevalence
of counter-trend adoption in new settings. For instance,
investigators can study counter-trend adoption in multi-layer
networks and even discover information heterogeneity among
individuals.
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