
TYPE Original Research
PUBLISHED 12 December 2024
DOI 10.3389/fphy.2024.1404503

OPEN ACCESS

EDITED BY

Gongye Zhang,
Southeast University, China

REVIEWED BY

Yassine Himeur,
University of Dubai, United Arab Emirates
Peter Pocta,
University of Žilina, Slovakia

*CORRESPONDENCE

Cuimei Liu,
tracyliu20132024@163.com

RECEIVED 21 March 2024
ACCEPTED 25 November 2024
PUBLISHED 12 December 2024

CITATION

Wu Y, Luo X, Guo F, Lu T and Liu C (2024)
Research on multi-scenario adaptive acoustic
encoders based on neural architecture search.
Front. Phys. 12:1404503.
doi: 10.3389/fphy.2024.1404503

COPYRIGHT

© 2024 Wu, Luo, Guo, Lu and Liu. This is an
open-access article distributed under the
terms of the Creative Commons Attribution
License (CC BY). The use, distribution or
reproduction in other forums is permitted,
provided the original author(s) and the
copyright owner(s) are credited and that the
original publication in this journal is cited, in
accordance with accepted academic practice.
No use, distribution or reproduction is
permitted which does not comply with
these terms.

Research on multi-scenario
adaptive acoustic encoders
based on neural architecture
search

Yiliang Wu1,2, Xuliang Luo1,2, Fengchan Guo1, Tinghui Lu1,2 and
Cuimei Liu1*
1Guangdong Power Grid Co., Ltd., Jiangmen Power Supply Bureau, Jiangmen, China, 2Faculty of
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This paper presents the Scene Adaptive Acoustic Encoder (SAAE) method,
which is tailored to diverse acoustic environments for adaptive design. Hand-
crafted acoustic encoders often struggle to adapt to varying acoustic conditions,
resulting in performance degradation in end-to-end speech recognition tasks.
To address this challenge, the proposed SAAE method learns the differences in
acoustic features across different environments and accordingly designs suitable
acoustic encoders. By incorporating neural architecture search technology, the
effectiveness of the encoder design is enhanced, leading to improved speech
recognition performance. Experimental evaluations on three commonly used
Mandarin and English datasets (Aishell-1, HKUST, and SWBD) demonstrate the
effectiveness of the proposed method. The SAAE method achieves an average
error rate reduction of more than 5% compared with existing acoustic encoders,
highlighting its capability to deeply analyze speech features in specific scenarios
and design high-performance acoustic encoders in a targeted manner.
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1 Introduction

The rapid evolution of human-computer intelligent interaction recently has propelled
automatic speech recognition (ASR) [1] to the forefront as a crucial technology for
intelligent interactive applications. ASR has extensive utility across various application
scenarios, such as voice search [2], voice assistants [3], meeting minutes [4], intelligent
services [5], and robots [6]. Over the past few decades, with the rapid advancement of
computer technology and machine learning, speech recognition technology has made
significant progress. Currently, speech recognition systems can recognize continuous speech
[7], handle various accents and dialects [8], and can be applied to various practical
applications.

Speech recognition technology plays a significant role in people’s daily work and lives. It
facilitates communication and operation for individuals with visual or motor impairments,
enabling them to interact with others or operate machines [9]. In the automobile industry,
speech recognition technology enables the hands-free operation of in-vehicle entertainment
systems, contributing to driver safety and convenience [10]. Within office environments,
speech recognition expedites the conversion of spoken words into text, thereby enhancing
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productivity [11]. In customer service, automated voice response
services [12] reduce the need for manual customer service.
Within healthcare, speech recognition aids healthcare professionals
in medical record maintenance and transcription, saving time
and enhancing accuracy [13]. Furthermore, in education, speech
recognition serves as a tool for evaluating students’ language
learning progress [14]. In essence, speech recognition technology
not only enriches daily routines but also continually refines our
quality of life.

Among the existing speech recognition technologies, end-to-
end ASR stands out as the foremost approach [15–18]. Within
end-to-endASR systems, the acoustic encoder is of vital significance.
In practical applications, ASR systems encounter diverse scenarios,
each presenting different acoustic characteristics influenced by
factors such as pronunciation, speaking style, and emotional tone.
These differences emanate from both speakers and speech content,
involving various forms such as telephone conversations, scripted
speech, and in-vehicle interactions. Moreover, linguistic disparities
across languages such as Mandarin Chinese, Cantonese, and
English introduce distinct pronunciation rules, further contributing
to different acoustic characteristics [19, 20]. In addition, real-
world speech data often contend with environmental noise
and reverberation, leading to significant variations in acoustic
properties even when speech content and language remain constant.
Navigating these challenges to enhance the acoustic encoder’s
ability to accurately model speech features under specific scenarios
represents a formidable task.

To obtain an acoustic encoder adaptable to specific acoustic
scenarios, a common approach is to employ an existing acoustic
encoder structure and train it with speech data from the target
scenario, thus achieving effective modeling. In previous literature
[21], an acoustic encoder based on the recurrent neural network
(RNN) structure was employed, using temporal modeling of
speech data and training within the RNN-transducer (RNN-T)
framework. Another study [22] introduced an acoustic encoder
with a more efficient multi-head attention mechanism, which is
capable of globally and in parallel modeling the speech sequence,
thereby enhancing the encoder’s modeling capability. This encoder
is effectively trained using the connectionist temporal classification
(CTC) framework [23, 24]. Similarly, in another study [25], an
acoustic encoder based on the multi-head attention mechanism was
employed within an attention-based encoder-decoder framework
(AED). The AED framework can use existing text information to
assist the acoustic encoder in modeling acoustic features in speech,
further refining its modeling capability. Moreover, within RNN-T
frameworks such as CTC and AED, studies have explored the use of
acoustic encoders based on convolutional neural networks (CNNs)
or their variants for ASR tasks.

However, acoustic encoders with fixed structures encounter
challenges in adapting to diverse acoustic scenarios. To address
this challenge, manual adjustment of the encoder structure is
a common approach. Nonetheless, this approach presents two
significant problems: First, the number of manually designed
encoder structures is limited, making it uncertain whether the most
suitable encoder for the target scenario can be devised. Second,
verifying the performance of manually designed encoders entails
training and evaluating each encoder separately, resulting in high
design costs for practical applications.

To address the challenge inherent inmanual encoder design, this
paper proposes a method for designing Scene Adaptive Acoustic
Encoders (SAAE) using neural architecture search [26–28]. This
approach addresses the limitations of manual designs using a
two-pronged strategy. First, a novel search space tailored to the
requirements of acoustic encoders for end-to-end ASR tasks
is developed. This search space comprehensively considers the
acoustic characteristics of speech data across different scenarios,
offering a range of candidate encoder structures suitable for
modeling various acoustic features. Second, the differentiable
architecture search algorithm DARTS is employed to identify
the optimal encoder structure for the target scenario. To further
enhance performance, the Gumbel re-sampling technique and
a corresponding pre-training search strategy are employed.
Experiment validation was conducted on three Mandarin and
English datasets under different scenarios. Results show that SAAE
effectively reduces error rates compared with various baseline
encoders with different structures, affirming its capability to
design high-performance acoustic encoders tailored to specific
acoustic scenarios.

2 Scene adaptive acoustic encoder
structure design

The scene Adaptive Acoustic Encoder Structure Design (SAAE)
method begins by devising a novel search space based on
the domain-specific knowledge of ASR tasks. This search space
provides abundant candidate encoder structures tailored for speech
recognition tasks. Subsequently, SAAE introduces and refines a
differentiable search algorithm to discern the appropriate encoder
structure from the search space based on the target scene. Once
the encoder structure is identified, SAAE proceeds to retrain the
encoder to accomplish the final recognition task.

2.1 Encoder search space

The three predominant end-to-end ASR frameworks, namely,
CTC, AED, and RNN-T, serve as the foundation for defining each
encoder search. Figure 1 shows the specific structures of these
three frameworks. In addition to the feature preprocessing module
required by the end-to-end ASR system, all three frameworks need
an acoustic encoder to extract high-dimensional characterization
information henc from the input speech features {x1, ⋅ ⋅ ⋅,xt} at a
time t, and then send it to their respective downstream units
to derive the prediction of the u-th output text ̂yu and further
complete the recognition decoding task. The CTC framework uses
a CTC classifier to process henc and predict the output label using
the softmax function. In contrast, the AED framework uses an
autoregressive decoder [29] to receive henc and the historical text
{y0, ⋅ ⋅ ⋅,yu−1} simultaneously to predict the current output; RNN-
T uses a dedicated prediction network to process {y0, ⋅ ⋅ ⋅,yu−1} and
obtain the text prediction information Pu of the current u-th output,
and finally gives the prediction of the current output by combining
the information in henc and Pu.

Unlike existing strategies for manually designing encoder
structures, SAAE specifically designs a search space for
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FIGURE 1
Three end-to-end speech recognition frameworks: (A) CTC framework, (B) AED framework, and (C) RNN-T framework.

the encoder in the end-to-end ASR framework. Figure 2
shows a schematic diagram of the entire SAAE encoder
search space.

As shown in Figure 2A, the SAAE encoder comprises N layers
of searchable SAAE modules, with each SAAE module offering
a diverse array of candidate operations. Through a systematic
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FIGURE 2
SAAE encoder search space: (A) the overall framework, (B) specific results of the SAAE module, and (C) an example of a search on the Aishell-1 dataset.

search and combination of SAAE modules layer by layer, the
entire search space furnishes an extensive range of candidate
encoder structures tailored to accommodate various scenarios.
Within each searchable module, SAAE meticulously considers the
characteristics inherent to the ASR task, incorporating multi-head
self-attention modules (MHSA), CNNs, and feedforward neural
network modules (FFN) with distinct functionalities to construct
the acoustic encoder. Figure 2B illustrates the composition of a
module that integrates three distinct functional modules.

The MHSA module employs a unique self-attention mechanism
to process the global context of the input series, facilitating
the extraction of deep acoustic features [30]. Meanwhile, the
CNN module employs convolutional operations to model the
local intercorrelation of acoustic signals, thereby uncovering latent
information in speech signals [31]. Finally, the FFNmodule is tasked
with mapping the current signal sequence to a higher-dimensional
hidden layer for nonlinear activation, thereby enhancing themodel’s
nonlinear fitting capability [32]. Figure 2B demonstrates the specific
configuration of the searchable SAAE module, which comprises
the above three different functional modules. The overall structure
is abstracted into a directed acyclic graph, where every node
x(i) signifies the output of the preceding module x(i−1), and the
lines between adjacent nodes represent the respective candidate
operations offered by the current functional module. Additionally,

residual connections are introduced into the SAAE module, which
has been previously proven effective in improving the generalization
performance of the model [33].

Based on three different functional modules, SAAE provides
various candidate operations according to the structural
characteristics of the group. In Figure 2B, OM, OC, and OF represent
the number of candidate operations corresponding to each module.
SAAE provides a flexible setting for the number of attention heads
in the candidate operations of MHSA, such as 4, 8, and 16, which
are denoted as MHSA4, MHSA8, and MHSA16, respectively. For
the CNN module, SAAE provides multiple candidate operations
with different kernel sizes to process acoustic features of different
ranges, such as kernels 7, 15, and 31, which are denoted as
CNN7, CNN15, and CNN31, respectively, and an additional Skip
candidate operation. For the FFN module, SAAE offers different
dimensions of hidden layers, such as 256, 512, and 1,024, which
are denoted as FFN256, FFN512, and FFN1024, respectively, to
explore the influence of the FFN hidden layer dimension on the
performance of the acoustic encoder. In this study, we set the
number of layers N of the SAAE module to 8, so that the number
of possible candidate encoders in the entire search space can be
obtained (3× 4× 3)8 ≈ 2.82× 1012, which adequately demonstrates
the diversity of the SAAE search space compared with manually
designed encoders.
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In practical applications, SAAE conducts a layer-by-layer search
ofN-layermodules using specified scenario data. It iteratively selects
the optimal operation from multiple candidate operations within
each functional module, thereby determining the search result of
the current module. This process continues until the complete
structure of the acoustic encoder is obtained. Subsequently, when
combined with the downstream units of the corresponding end-to-
end framework, an entire end-to-end ASR system is constructed to
accomplish the final recognition task.

2.2 Differential search algorithm

Upon defining the search space illustrated in Figure 2, the
challenge of selecting the optimal SAAE encoder structure from
this extensive array of possibilities arises. Exhaustive enumeration
or manual selection, based on empirical knowledge, proves
prohibitively costly and impractical given themultitude of candidate
encoder structures. To efficiently navigate this encoder structure,
SAAE employs the differentiable architecture search algorithm
known as Differentiable Architecture Search (DARTS). Originally
proposed by Liu et al. for searching CNN model structures in image
classification tasks.DARTSoffers amore efficient alternative to other
search algorithms, such as those based on reinforcement learning
or evolutionary algorithms, which require continuous sampling and
training. DARTS uses gradient backpropagation to independently
learn the weights of candidate operations, thereby significantly
improving search efficiency.

To enable differentiation operations within a discrete search
space and facilitate gradient backpropagation, DARTS uses
the softmax function to relax the entire search space into a
continuous form as Equation 1.

x(i+1) = o(i,i+1)(x(i)) =
|O|

∑
k=1

exp(α(i,i+1)k )
|O|

∑
k′=1

exp(α(i,i+1)k′ )

o(i,i+1)k (x
(i)), (1)

where |O| represents the total number of candidate operations
between the two computing nodes (i, i+ 1), o(i,i+1)(x(i)) denotes the
computational result after the mixing of x(i), i.e., x(i+1). o(i,i+1)k (⋅)
specifically refers to the k-th candidate operation between the two
computing nodes (i, i+ 1) , and α(i,i+1)k represents the corresponding
learnable structural parameter. After calculating the softmax on
the structural parameter α, each candidate operation is assigned a
respective weight, and a weighted sum is conducted on multiple
candidate operations, thereby making several distinct candidate
operations continuous, allowing further differentiation of the search
space and enabling gradient backpropagation. During the search
process, SAAE utilizes a two-level optimization strategy, alternating
between optimizing the structural parameters α and the model’s
parametersW based on the target scenario data, to ultimately obtain
an adaptive optimal structural parameter α for the given scenario.
Once the search is completed, SAAE utilizes the optimal structural
parameter α to select the operation with the highest corresponding
weight from the multiple candidate operations for each module in
the search space, thereby obtaining the acoustic decoder structure.
Subsequently, this encoder is combined with the corresponding

downstream units for joint retraining, ultimately yielding a well-
trained end-to-end ASR system.

Although DARTS effectively improves search efficiency, it
introduces a certain degree of search bias. During the search process,
SAAEuniformly optimizes all candidate operation parameters in the
entire search space; however, the search results used for retraining
after the search is completed represent only a subset of the entire
search space. The inconsistency between the two can cause some
search bias, leading to the actual encoder structure obtained from
the search not necessarily being the optimal one in the current search
space. To address this challenge, the Gumbel reparameterization
trick [34] is used to modify the continuous relaxation method in
Equation 1 to minimize the discrepancy between the search and
retraining. First, let G(i,i+1)k = − lg(− lg(U

(i,i+1)
k )) denote a random

variable following the Gumbel distribution, where U(i,i+1)k is a
random variable following the uniform distribution. Given the
relaxation temperature λ, based on G(i,i+1)k , the following relaxation
strategy based on Gumbel sampling in the search space is obtained
(Gumbel-softmax), as Equation 2.

o(i,i+1)(x(i)) =
|O|

∑
k=1

exp[(α(i,i+1)k +G
(i,i+1)
k )\\/λ]

|O|

∑
k′=1

exp[(α(i,i+1)k′ +G
(i,i+1)
k′ )/λ]

o(i,i+1)k (x
(i)), (2)

In comparison to the softmax-based relaxation strategy, the
Gumbel-softmax introduces the concept of relaxation temperature.
During the actual search process, by gradually reducing the
relaxation temperature, the calculated weight distribution
approaches “one-hot encoding.” This ensures that the optimized
parameter structure during the search process is closely aligned
with that during retraining, thereby significantly reducing search
bias. Moreover, sampling based on the Gumbel distribution
still adheres to the weight distribution obtained using softmax,
thereby preserving the optimization efficacy for the structural
parameter. Section 4.3 compares the two search strategies and
validates the effectiveness of the Gumbel sampling technique.

3 End-to-end ASR pre-training search
strategy

In the training process, besides the structural and model
parameters in the SAAE encoder, the three end-to-end frameworks
include a multitude of parameters within their downstream units
that necessitate training. For example, the CTC framework is the
CTC classifier, the AED framework comprises the autoregressive
decoder, and the RNN-T framework includes the prediction and
joint networks.This adds complexity to the SAAE encoder structural
search, as the outputs of the SAAE encoder may be severely
underfitted when interfacing with the downstream units during the
initial stages of model training. Consequently, providing accurate
guidance to the SAAE structural search becomes challenging,
potentially leading to suboptimal optimization in the early stages
and affecting final performance.

To address this challenge, this paper proposes a pre-
training initialization strategy for downstream units in end-to-
end frameworks. Rather than initializing the downstream units
randomly, a certain degree of pre-training is first applied to
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these units. Subsequently, these pre-trained downstream units
serve as guides for the SAAE encoder structure search. This
enables the SAAE to receive more accurate guidance from the
downstream units, thereby reducing performance loss attributed
to their underfitting and yielding better search results. In addition,
the probability of overfitting can be effectively reduced through
pre-training.

The process of pre-trained SAAE structure search and retraining
can be summarized as follows: (1) First, a pre-training model is
constructed based on the selected framework, where encoder adopts
a manually designed structure such as Transformer or Conformer
based on the MHSA mechanism, while the downstream units are
determined by the end-to-end model framework; (2) The pre-
training model is initialized to a certain extent using the target
scenario dataset, after which the manually designed encoder is
removed, retaining only the model parameters corresponding to the
downstream units; (3) The pre-trained downstream units serve as
the initialization for the downstream units of the SAAE encoder,
and the structure of each module in the SAAE encoder is then
searched layer by layer; (4) The SAAE encoder structure derived
from the search results is combined with the downstream units to
build the complete end-to-end ASR model, which is then retrained
until convergence is achieved; (5) The retrained end-to-end ASR
model is integrated with modules such as voice activity detection
and feature signal processing to construct a complete end-to-end
ASR system, which is subsequently tested and evaluated on the
corresponding dataset to obtain recognition performance metrics
such as error rates.

4 Experimental analysis

4.1 Experimental datasets and evaluation
metrics

To validate the effectiveness of SAAE, experiments were
conducted using three commonly used Chinese and English
datasets: Aishell-1 [35], HKUST [36], and SWBD [37].

Aishell-1 is a comprehensive Mandarin speech dataset
comprising 178 h of speech data. It consists of three subsets: train,
dev, and test. Each speech segment contains utterances from a single
speaker. The dataset covers 11 different task scenarios, including
smart home, autonomous driving, and industrial production.
Recordings were made using three different devices (high-fidelity
microphone, Android phone, and iOS phone) in a quiet indoor
environment.

HKUST is a Chinese Mandarin telephone speech dataset
recorded under the supervision of the Hong Kong University of
Science andTechnology. It includes 200 h of speech data divided into
training and test subsets. Each telephone speech segment contains
utterances from two speakers engaging in daily conversations
spanning various topics such as society, economics, entertainment,
and sports.

SWBD: is a series of English telephone speech datasets released
by the Linguistic Data Consortium (LDC). For this study, the
300-hour Switchboard-I (LDC97S62) dataset was selected for
training. This dataset includes more than 70 diverse topics of
daily conversations, with each conversation involving two speakers.

Additionally, the Hub5′00 dataset, a subset of the SWBD series, was
used as the test set, comprising approximately 11 h of data from the
swbd1 and callhm subsets.

Overall, these three datasets exhibit significant differences in
content, topics, languages, and speakers, providing comprehensive
validation of SAAE’s performance in adaptively designing acoustic
encoders based on given scenario-specific speech data across
diverse contexts.

For the two Chinese datasets (Aishell-1 and HKUST), the
Character Error Rate (CER) was selected as the evaluation metric,
which was calculated as the ratio of incorrectly recognized
characters to the total number of characters. For the SWBD English
dataset, the Word Error Rate (WER) was chosen as the evaluation
metric. Lower CER values indicate better system performance.WER
is calculated as the ratio of incorrectly recognized words to the
total number of words. Lower CER or WER values indicate better
system performance, aligning with current mainstream practice in
the academic community.

4.2 Baseline models and implementation
methodology

This study used two common manually designed acoustic
encoders: Transformer and Conformer, chosen as baselines for
comparison with SAAE. The Transformer is the most widely
used encoder structure based on the MHSA mechanism and has
found extensive application. The Conformer, after incorporating
CNN mechanisms, represents the best-performing encoder
structure for end-to-end ASR tasks. The optimal performance
of the manually designed baselines on the three datasets used
in this study was achieved by the Conformer encoder. The
structures of the two baseline encoders were manually adjusted
to examine the influence of different manual encoder structures
on system performance. In the Transformer encoder, the primary
functional unit is the MHSA. Hence, this study provides various
specifications of attention heads for MHSA, such as 4, 8, and 16,
denoted as H4, H8, and H16, respectively. Apart from MHSA,
the Conformer encoder emphasizes the modeling of context
information using CNN in addition to MHSA. Therefore, this
study provided different combinations of the number of MHSA
attention heads and the size of CNN convolutional kernels, denoted
as HxCy, representing the combination of attention heads and
convolutional kernels.

In terms of the specific implementation of the models, the open-
source end-to-endASR training tool ESPnet [38], based on PyTorch,
was utilized for model training. Hyperparameters related to model
design and training according to the optimal settings provided by
ESPnet developers. For both the baseline model and SAAE, the
attention dimension was set to 256, and the number of encoder
layers was set to 8. The hidden layer mapping dimension of the FFN
module in the baseline model was fixed at 1,024. The CNN module
structure used in Conformer and SAAE was consistent with the
design by Gulati et al. In the CTC framework, the output dimension
of the CTC classifier is aligned with the number of output labels in
the dataset. The AED employed a four-layer Transformer decoder,
whereas the prediction network of the RNN-T used a one-layer
LSTM. Specific model parameters adhered to the optimal settings
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TABLE 1 Comparison of CER of SAAE encoder and handcrafted encoder under CTC framework.

Model
structure

Settings Aishell-1 HKUST Hub5′00

Parameter
count(M)

dev (%) Test (%) Parameter
count(M)

Test (%) Parameter
count(M)

swbd1
(%)

Callhm
(%)

Transformer

H4 8.18 7.1 7.7 8.18 24.1 8.18 13.4 24.7

H8 8.19 6.9 7.5 8.19 23.7 8.19 13.8 25.2

H16 8.19 6.9 7.4 8.19 23.8 8.19 13.6 25.1

Conformer

H4C7 9.69 5.8 6.5 9.69 23.4 9.69 11.8∗ 22.1

H4C15 9.75 6.0∗ 6.6∗ 9.75 22.8∗ 9.75 12.0 22.4

H4C31 9.93 6.5 7.2 9.93 23.7 9.93 11.8∗ 22.0∗

H8C15 9.75 6.0∗ 6.7 9.75 22.8∗ 9.75 12.3 22.9

H16C15 9.75 6.2 6.8 9.75 23.4 9.75 12.2 22.8

Random
search

searched 9.95 6.3 6.0 9.15 23.9 9.65 12.4 23.2

SAAE (No
pre-training)

searched 9.43 5.9 6.5 9.83 22.8 9.33 11.8 22.1

SAAE
(softmax)

searched 9.23 6.1 6.8 9.93 23.3 9.57 12.1 22.3

SAAE searched 9.12 5.6 6.1 9.07 22.1 9.78 11.5 21.5

provided by ESPnet. All experiments were conducted on a computer
equipped with a single Nvidia RTX4090 GPU, a 32-core Intel (R)
Core i9-13900K CPU, and 32 GB RAM.

In this study, SAAE used pre-training and the Gumbel-Softmax
technique by default, with the temperature factor in Gumbel-
Softmax exhibiting exponential decay. The effectiveness of SAAE
using pre-training and Gumbel-Softmax was compared with that
of SAAE without pre-training and using softmax. Furthermore, to
independently evaluate the effectiveness of the search algorithm, a
comparison with the random search algorithm was conducted. The
specific approach involved uniformly sampling five model samples
from the SAAE search space and selecting the best-performing
model on the development set as the experimental result for random
search. Each dataset and each end-to-end framework underwent an
independent random search.

4.3 Experimental results and analysis

Tables 1–3 present the experimental results under the CTC,
AED, and RNN-T frameworks, including the CER on the Chinese
test dataset and the WER on the English test dataset. The best results
for each dataset are highlighted in bold, with “∗” indicating the best
result obtained by the manually designed baseline on that dataset.

By comparing the results of the manually designed encoders
with various structural parameters across the three frameworks, it
can be observed that due to the different acoustic characteristics

present in different speech scenarios, an acoustic encoder structure
suitable for one scenario may not necessarily be suitable for another.
A fixed encoder structure cannot achieve the lowest error rate for
all datasets. Taking the AED framework as an example, among
all manual baselines, the Conformer encoder with the H16C15
structure achieved the lowest error rate on the Aishell-1 dataset,
but this structure did not deliver the optimal performance on
the HKUST and SWBD datasets. This highlights the necessity of
designing encoder structures based on the acoustic characteristics of
target speech scenarios. Furthermore, it is evident that by manually
experimenting with various encoder structures, relatively lower
error rates can be achieved in the target scenarios, with the error
rates at the “∗” points in Tables 1–3 noticeably lower than those of a
fixed manual encoder structure.

While manually designing various encoder structures improves
recognition performance to some extent, SAAE offers a better
method for adaptively designing acoustic encoders based on the
target dataset. The advantages of SAAE are evident in two aspects:
First, the SAAE search space provides a more diverse set of
candidate encoders, ensuring that SAAE can explore a wider
range of encoder structures, thereby achieving lower character
error rates. As illustrated in Tables 1–3, under the three common
end-to-end frameworks, the character error rates obtained by
SAAE are significantly lower than those of the manually designed
encoder baselines. Additionally, from the parameter count column,
it can be observed that the encoder structures obtained by SAAE,
while having either a smaller parameter count or a marginal
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TABLE 2 Comparison of CER of SAAE encoder and handcrafted encoder under AED framework.

Model
structure

Settings Aishell-1 HKUST Hub5′00

Parameter
count
(M)

dev (%) Test (%) Parameter
count
(M)

Test (%) Parameter
count
(M)

swbd1
(%)

Callhm
(%)

Transformer

H4 8.18 5.7 6.2 8.18 22.8 8.18 8.4 17.6

H8 8.19 6.2 6.5 8.19 22.6 8.19 8.5 17.2

H16 8.19 5.3 5.9 8.19 22.6 8.19 8.6 18.0

Conformer

H4C7 9.69 5.3 5.9 9.69 21.5 9.69 8.1 16.0

H4C15 9.75 5.1∗ 5.7∗ 9.75 21.4∗ 9.75 8.2 16.3

H4C31 9.93 5.2 5.8 9.93 21.8 9.93 8.0∗ 15.9∗

H8C15 9.75 5.2 5.7∗ 9.75 21.6 9.75 8.1 16.3

H16C15 9.75 5.1∗ 5.7∗ 9.75 22.0 9.75 8.2 16.5

Random
search

searched 9.37 5.4 6.2 9.52 22.2 9.09 8.3 17.1

SAAE (No
pre-training)

searched 9.43 5.1 5.6 9.93 21.4 9.52 8.0 16.1

SAAE
(softmax)

searched 9.73 5.2 5.7 9.23 21.6 9.43 8.2 16.5

SAAE searched 9.05 4.8 5.3 9.11 21.0 9.82 7.7 15.3

increase, achieve better WER results. Furthermore, under otherwise
unchanged conditions, the model’s computational complexity is
correlated with its parameter count. Therefore, the computational
efficiency of SAAEmodels is comparable to that of othermodels, and
empirical observations confirm this perspective. Thus, in practical
applications, SAAEmodels do not consume excessive computational
resources compared to other models. Across all datasets, compared
with the best results of the manually designed encoders (∗), SAAE
achieved an average relative reduction of 5% in the character
error rate.

Second, by employing a differentiable search algorithm, the
design cost of SAAE encoders is much lower than that of the
manual encoder design strategy. Table 4 compares the time costs
between the search process of SAAE and the training of manually
designed encoders. The training time for the manual baselines
is the cumulative training time for the aforementioned eight
different manually designed baseline encoders. The strategy of
manually designing multiple encoders requires the expensive time
cost of training and evaluating each encoder structure individually.
However, SAAE effectively reduces the design cost of the encoder
by using a differentiable search algorithm. The time expenses of
SAAE consist of pre-training, search, and re-training, and even the
combined time for these three components is considerably lower
than the strategy of training multiple manual baselines. Compared
with the strategy of manually designing various encoder structures,
SAAE reduces the time cost by over 75%.

In summary, SAAE provides a scenario-adaptive acoustic
encoder design method that is superior to manual methods in terms
of both performance and efficiency.

Given that the search space used by random search aligns with
that of SAAE, the performance improvement of SAAE compared
with the results obtained by random search can be entirely
attributed to the search algorithm used by SAAE. This indicates
the effectiveness of the differentiable search algorithm employed
to select encoder structures in this study. When comparing
the experimental results without using end-to-end pre-training,
SAAE demonstrated comprehensive performance improvements.
Moreover, when compared with the AED and RNN-T frameworks,
the CTC framework exhibits the smallest performance degradation
when pre-training is not used. This might be attributed to CTC
having the fewest downstream unit parameters among the three
frameworks, necessitating the least number of parameters for pre-
training, thus having the least impact on the CTC framework. This
finding aligns with the analysis presented in Section 3.

In comparing the experimental results using the Gumbel-
softmax and softmax relaxation strategies, it becomes evident
that the direct use of softmax leads to a significant performance
degradation compared with the use of Gumbel-softmax. This
highlights the necessity of using Gumbel-softmax during the search
process. Figure 3 depicts the variation of the loss function on the
training and validation sets when using the CTC framework with
softmax and Gumbel-softmax for the encoder structure search
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TABLE 3 Comparison of CER of SAAE encoder and handcrafted encoder under RNN-T framework.

Model
structure

Settings Aishell-1 HKUST Hub5′00

Parameter
count
(M)

dev (%) Test (%) Parameter
count
(M)

Test (%) Parameter
count
(M)

swbd1
(%)

Callhm
(%)

Transformer

H4 8.18 6.5 7.2 8.18 27.8 8.18 11.3 20.5

H8 8.19 6.3 6.8 8.19 27.9 8.19 11.1 20.4

H16 8.19 6.3 7.0 8.19 27.7 8.19 11.5 20.9

Conformer

H4C7 9.69 6.0∗ 6.8 9.69 27.3 9.69 10.3∗ 20.2

H4C15 9.75 6.0∗ 6.8 9.75 26.6∗ 9.75 10.5 19.6

H4C31 9.93 6.1 6.9 9.93 26.8 9.93 10.7 20.1

H8C15 9.75 6.0∗ 6.7∗ 9.75 27.0 9.75 10.7 19.6∗

H16C15 9.75 6.0∗ 6.7∗ 9.75 27.2 9.75 10.5 20.0

Random
search

searched 9.71 6.2 6.9 9.83 27.2 9.47 10.9 20.5

SAAE (No
pre-training)

searched 9.18 6.0 6.4 9.81 26.5 9.32 10.6 19.8

SAAE
(softmax)

searched 9.03 6.1 6.8 9.39 27.1 9.54 10.2 19.4

SAAE searched 9.85 5.6 6.2 9.33 25.9 9.72 9.8 18.8

TABLE 4 Comparison of the training time cost of the SAAE encoder and the handcrafted encoder.

Method Aishell-1 HKUST SWBD

CTC AED RNN-T CTC AED RNN-T CTC AED RNN-T

Manual baseline training 156.5 195.6 231.6 210.9 265.1 316.1 476.6 598.1 725.7

SAAE pre-training 2.1 2.5 3.2 2.8 3.4 4.2 6.3 7.9 9.2

SAAE Search 12.5 15.0 18.7 16.4 20.5 24.5 37.1 46.6 60.4

SAAE re-training 20.6 25.2 31.4 27.3 34.1 41.1 62.0 77.6 94.0

Total time of SAAE 35.2 42.7 53.3 46.5 58.0 69.8 105.4 132.1 163.6

on the Aishell-1 dataset. Here, “train_loss” denotes the training
set error, while “validation_loss” refers to the validation set error.
When using softmax, after reaching a certain point in training,
the validation set loss significantly deviates from the training set
loss, indicating search bias due to the use of softmax. Gumbel-
softmax effectively mitigates this phenomenon, as the performance
of the validation set consistently improves in conjunction with the
training set for the entire search process. This implies that Gumbel-
softmax significantly reduces the deviation between the training
and validation sets during the search process, which aligns with the
analysis in Section 2.2.

In practical applications, aside from factors such as speech
content and language, ASR systems often encounter speech data
contaminated with noise and reverberation.These noisy speech data
notably differ in acoustic characteristics from clean speech. In this
study, reverberation and noise were added to the train and dev
data of Aishell-1, resulting in a new noisy dataset termed Aishell-
Noisy. Initially, reverberation at three distances (1, 2, and 5 m)
was randomly added to the original clean speech. Followed by
the superposition of this reverberated speech with the open-source
WHAM noise dataset [39]. The signal-to-noise ratio was uniformly
and randomly distributed between 0 and 20 dB. The resulting
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FIGURE 3
Loss function variation curve on Aishell-1: (A) use softmax, (B) use Gumbel-softmax.

FIGURE 4
Examples of changes in speech spectral features before and after noise were added to Aishell-1 speech: (A) clean speech, (B) speech with 5 m
reverberation, and 20 dB noise added.

Aishell-Noisy dataset maintains the same speaker information,
speech content, and language information as the original Aishell-1
dataset, with the only distinction being the presence of noise.

Figure 4 illustrates the spectrogram of the speech sample
BAC009S0002W0150 in the dataset, both before and after the
addition of 5 m reverberation and noise with a signal-to-noise ratio
of 20 dB. Despite identical speech content, the spectrograms before
and after noise addition present distinct spectral characteristics.
Consequently, even when the speech content is identical, noisy
speech and clean speech should be viewed as belonging to two
different speech scenarios, and the most suitable acoustic encoder
structure may differ entirely in these two scenarios.

To verify the aforementioned hypothesis, further experiments
were conducted on the Aishell-Noisy dataset using the AED model
framework. Table 5 presents the recognition performance of various
encoder structures trained on Aishell-Noisy. When faced with noisy
scenarios, compared to manually crafted baselines, the encoder
structures obtained through search on clean speech did not yield
significant performance improvements and failed to achieve better
recognition performance on noisy speech than the optimal manual
baseline (H4C31). Conversely, conducting an encoder structure
search directly on noisy speech proved to be highly effective
in enhancing recognition performance on the noisy test set. In
comparison to the encoder structures obtained through search
on clean speech and the optimal manual baseline, the CER was
improved by over 10%. This suggests that by treating noisy speech

TABLE 5 Comparison of the CER of different SAAE encoders with
handcrafted encoders on Aishell-Noisy.

Encoder Settings Aishell-noisy dev
(%)

Transformer H4 20.2

Transformer H8 19.8

Transformer H16 20.1

Conformer H4C7 19.1

Conformer H4C15 17.3

Conformer H4C31 17.1∗

Conformer H8C15 18.0

Conformer H16C16 17.5

SAAE Aishell-1 search obtained 17.6

SAAE Aishell-Noisy search obtained 15.0

as a distinct acoustic scenario, SAAE offers a novel approach to
achieving robust speech recognition. SAAE can be utilized to design
acoustic encoders with enhanced robustness and noise resistance,
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TABLE 6 Comparison of CER on Aishell-1 between ablation and full search space.

Model structure CTC AED RNN-T

dev (%) test (%) dev (%) test (%) dev (%) test (%)

Transformer (best) 6.8 7.4 5.5 5.8 6.3 6.7

Conformer (best) 5.8 6.5 5.1 5.7 6.1 6.6

Fixed MHSA4 5.9 6.6 5.0 5.5 5.9 6.4

Fixed CNN15 5.8 6.3 5.2 5.6 6.1 6.8

Fixed FFN1024 5.6 6.1 4.8 5.3 5.6 6.2

Stack the same modules 5.7 6.3 5.1 5.7 5.9 6.6

SAAE 5.6 6.1 4.8 5.3 5.6 6.2

thereby improving the recognition performance of ASR systems in
noisy environments.

4.4 Search space ablation experiment

To further investigate the impact of the SAAE search space
on performance, a series of ablation experiments were conducted
on the Aishell-1 dataset focusing on the SAAE search space. Two
specific approaches were employed: (1) fixing three modules as
particular candidate operations and conducting searches only on
the remaining two modules. For instance, SAAE-MHSA4 refers to
fixing MHSA as the MHSA4 operation and searching for CNN and
FFN; (2) searching for a single encoder module, and subsequently
constructing the entire encoder by stacking N layers of the same
module. Table 6 presents the results of the ablation experiments
and the experiments with manual baselines, where Transformer and
Conformer achieved the best performance under the corresponding
frameworks, i.e., the results marked with “∗” in Tables 1–3.

From Table 6, it is evident that restricting the search space
by fixing the MHSA and CNN modules to specific subsequent
operations or by directly stacking multiple layers of the same
module leads to an increase in the CER. This result underscores
the importance of SAAE in providing multiple candidate operations
for each module in the search space. Furthermore, it emphasizes
the importance of independently designing the structure of multiple
layers. A noteworthy observation is that when the FFN layer
is fixed to FFN1024, the performance remains stable compared
to the complete search space. This observation aligns with
the conclusions drawn from the manual design of Transformer
and Conformer, indicating that for the FFN layer, a higher
activation dimension results in stronger modeling capability and
better performance.

5 Conclusion

To systematically design high-performance acoustic encoders
tailored to the acoustic characteristics of specific scenarios,

we proposed a scene-adaptive acoustic encoder method, the
SAAE, which leverages neural network architecture search
techniques. Through differentiable optimization methods, SAAE
comprehensively analyzes speech data in specific scenarios to
uncover acoustic characteristics across multiple dimensions such
as emotion, language, noise, and channel variations. Subsequently,
based on these identified acoustic features, SAAE designs a high-
performance acoustic encoder adapted to the target scenario.
Experimental results demonstrate that SAAE effectively enhances
recognition performance across diverse acoustic scenarios, yielding
lower error rates than existing methods. Although Xiaomi’s recently
released Zipformer [40] model shows better recognition rates on
the Aishell-1 dataset, with a parameter count of 157.3 M, the SAAE
model presented here has a parameter count of only 9.05 M. This
smaller parameter size, while maintaining good recognition rates, is
better suited for resource-constrained devices. Therefore, the SAAE
approach is an effective method for designing high-performance
acoustic encoders tailored to specific acoustic scenarios.

However, the algorithm presented in this paper has only
been experimentally validated on Mandarin and English, and
its results may not necessarily apply to other languages due to
differing acoustic characteristics. To enhance the algorithm’s broader
applicability, it is evidently necessary to conduct experimental and
research analyses on a wider range of languages. This will be one of
our primary research directions moving forward.
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