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To explore heterogeneous behavior diffusion in the same population under a
heterogeneous network, this study establishes a dual-layer heterogeneous
network model to simulate the spreading patterns of hesitant individuals and
regular individuals in different networks. It analyzes the influence of to
investigate heterogeneous behavior diffusion within the same population in
a heterogeneous network, this paper establishes a dual-layer heterogeneous
network model to simulate the spreading patterns of hesitant individuals and
regular individuals in different networks. It analyzes the influence of
individuals’ hesitation states and different spreading patterns in
heterogeneous networks on the information diffusion mechanism. In the
propagation of this model, when either layer of the dual-layer network
becomes the dominant spreading layer, second-order continuous
spreading is observed. However, when the regular adoption behavior
serves as the dominant spreading layer, its spreading threshold occurs
earlier than the spreading threshold when hesitant adoption behavior is the
dominant spreading layer. When there is no dominant spreading layer, first-
order discontinuous spreading is observed, and the spreading threshold
occurs later than the threshold in the presence of a dominant spreading
layer. Additionally, the study discovers the existence of cross-phase
transitions during the spreading process. The results of theoretical analysis
align with the simulation results.
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1 Introduction

In the field of network science, the study of social communication has garnered
widespread attention among researchers [1, 2]. It can be applied to analyze financial
behaviors [3, 4], social information diffusion [5], and emotional contagion [6].
Furthermore, it can be utilized for disaster prediction [7] and risk mitigation [8].
Scholars have explored the mechanisms of social communication through both
theoretical analysis and extensive experimental validation. Research has revealed that
social communication exhibits certain unique reinforcement effects compared to
biological propagation [9, 10].
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In the early stages of research, the most commonly used approach
was the threshold model based on memoryless Markov processes [11].
In this threshold model, a behavior is adopted when the number of
adopting neighbors exceeds a predetermined threshold [12, 13]. Given

the small proportion of initial seeds, the initial infection rate is predicted
using percolation principles [14, 15]. Based on the assumption of
constant thresholds, because of variations in the average degree,
saddle-node bifurcation occurs, leading to a continuous increase and
subsequent discontinuous decrease in the final adoption size with
increasing network average degree. Research has found that factors
such as the initial number of seeds [16, 17], clustering coefficient [18],
multilayer networks [19], network temporal dynamics [20] and time-
varying [21] significantly affect information propagation in the
threshold model.

In the field of complex networks, numerous scholars have
conducted extensive research on propagation behaviors in single-
layer networks. However, studies have shown that multilayer
networks better represent real-world social networks. In the context
of bio-information networks [22], individuals can access various
information in the information network to execute different
strategies in the biological network [23]. For example, during the
COVID-19 pandemic, people could obtain preventive measures
through the internet, leading to improved habits and reduced
chances of contracting the virus in the biological network. In the
case of multilayer information networks, individuals often do not
rely on a single channel to interact with the external world. Each
person has multiple social channels, such as WeChat, Twitter,
Instagram, and more. Thus, in a multilayer network, information
does not propagate solely within a single layer but rather
disseminates through multiple coupled networks. However,
individual information acquisition remains singular [24]. For
instance, on the YouTube platform, users can upload and share
video content, and other users can subscribe to their channels. This

FIGURE 1
(A) shows the connections between individuals and the information dissemination of individuals in a two-layer heterogeneous network. (B) The
probability of an adoptive individual transferring information to a susceptible individual is λ. The probability of an adoptive individual changing into a
recovered individual is γ. (C) shows different colors represent different individual states. (D) shows the individual adoption behavior function image of an
individual at layer A, and (E) shows the individual adoption behavior function image of an individual at layer B.

FIGURE 2
Figure illustrates the intricate connections within a complex
network comprising multiple nodes. The states of the nodes and their
relationships are essentially identical to those described in Figure 1.
Layer A and Layer B represent the social context of the same
node within two distinct social communication networks. While the
node maintains the same status across different social networks, its
connectivity varies. Within each layer, solid lines denote connected
nodes that do not propagate information, while dashed lines indicate
the transmission of information between two nodes connected by
an edge.
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forms a user-user connectivity network. Each video can be viewed,
commented on, and shared by other users, creating a video-user
connectivity network. When a user uploads a video, their
subscribers can see it in their subscription feed. If these subscribers
find the video appealing or valuable, they can choose to share it with
their own audience. Consequently, the video spreads through user-to-
user sharing in the network. In this example, the social network among
users and the video-user connectivity network constitute a multilayer
network. Video content propagates through sharing and viewing
behaviors among users, and this multilayer network structure can
influence the dissemination path, view counts, and impact of videos.
In conclusion, multilayer networks better capture the essence of real-
world networks, allowing us to simulate human behavior in real-life
situations.

With the diversification of information channels and the complexity
of information forms, people are living in an era of fragmented
information, and the adoption patterns of information have gradually
become differentiated and heterogeneous. This is especially true for
differentiating information sources. For information channels with low
trustworthiness, people may encounter a mix of correct and incorrect
information, leading to skepticism towards the information from these

channels. Conversely, for information channels with high
trustworthiness, such as those associated with authoritative sources or
long-standing trust, people are more likely to trust and adopt
information from these channels [25]. Therefore, the two-layer
network model [26] takes into account the more complex
information transmission, which has significant practical implications.
Previous research has not extensively addressed heterogeneous threshold
functions. While some studies have explored two-layer networks, they
often assume the same threshold function for both layers. However, in
real life, due to the heterogeneity between layers, people have different
levels of trust and acceptance for information from different sources.
Consequently, people behave differently after acquiring information
from different platforms. Therefore, adopting heterogeneous
functions for different channels better reflects reality. In this study, a
heterogeneous threshold function is employed in the two-layer model to
capture this phenomenon.

Existing research has shown that individuals exhibit different
adoption attitudes towards the same information on different
network layers, and their attitudes may change as the amount of
information they receive fluctuates [27]. However, there is relatively
limited research on considering heterogeneous adoption in

FIGURE 3
The graph illustrates the impact of the hesitation degree parameter α and the propagation probability λ on the information outbreak size R (∞), the
final adoption range, and the relative variance in an ER-ER network, with a fixed hesitation amplitude parameter β. In graph (A) (β = 0.5) and graph (C) (β =
0.8), the influence of α on the information outbreak size is shown as the propagation probability varies. The symbols represent simulation results, while the
lines depict theoretical predictions. Different values of α correspond to different propagation patterns of information. In graph (B) (β = 0.5) and graph
(D) (β = 0.8), the peak distribution of the relative variance of the adoption range is shown as the propagation probability varies for different α values. The
peaks correspond to the outbreak points in graph (A) and graph (C), respectively. The remaining parameters are set as ρ0 and γ = 1.
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information propagation within complex networks. In real social
networks, individuals vary in their level of adoption across different
layers of information. Based on the adoption attitudes towards
information on different layers, this study categorizes
heterogeneous adoption in social networks into two types: regular
adoption and hesitant adoption. Regular adoption refers to a linear
increase in the willingness to adopt with the number of received
information or behaviors. Hesitant adoption, on the other hand,
involves a state of hesitation regarding whether to adopt, requiring
repeated verification of information and accumulating more
information before developing the willingness to adopt. For
instance, when a popular piece of information appears on the
internet, an individual is more likely to increase their trust and
adopt it on reliable information platforms, leading to a rapid
saturation of adoption on such platforms. However, when the
same individual encounters this information on an untrustworthy
platform, they may exhibit a hesitant adoption stance, repeatedly
verifying the information before deciding to adopt. As a result, the
propagation speed on such platforms is slower, and it takes some
time for the adoption to reach a relative saturation point. Therefore,
studying the behavioral division of inter-layer adoption
heterogeneity will contribute to a deeper understanding of the
propagation mechanisms in multi-layer social networks.

The paper proposes a heterogeneous threshold adoption function
on a two-layer model and constructs a heterogeneous adoption
behavior network model for the same information on the two
layers. It investigates the heterogeneous information propagation in
a heterogeneous network of the same population. Through extensive
simulation and theoretical analysis, the study reveals that when either
layer dominates, the final outbreak of the adoption range manifests a
second-order continuous phase transition. In contrast, when there is no
clear dominant layer, the outbreak follows a first-order discontinuous
phase transition. The timing and extent of the outbreak are influenced
by various factors such as hesitant adoption parameter, degree
heterogeneity parameter, and propagation probability. In the steady
state, the final propagation range reaches global dissemination.

2 Model introduction

2.1 SAR model and information
adoption mechanism

To investigate heterogeneous adoption behavior in a heterogeneous
network within the same population, this study utilizes the SF network
model and ER networkmodel as the physical network structure models
for the experiments. In each layer, a bipartite network model with N
nodes and a degree distribution of P(k) is constructed. The layersA and
B stand for two different social networks, while the edges between nodes
stand for their social connections. To explain heterogeneous behavior
propagation on the multilayer network, a generalized Susceptible-
Adopter-Recovered (SAR) model is used. At any given time, each
node can only be in one of the following three states: susceptible (S),
adopter (A), or recovered (R). S-state nodes can only obtain behavioral
information from their neighboring nodes and adopt that information
with a certain probability. A-state nodes have already adopted the
behavior and are willing to propagate the behavioral information to
their neighbors. R-state nodes are not interested in the behavioral
information and do not propagate it to other neighbors.

The variables mA and mB are used to accumulate the information
received by nodes in layers A and B, respectively. At each time step,
when a node successfully gets information from neighbors in layer A or
layer B, the corresponding variablemA

i ormB
i will be incremented by 1.

The adoption probability functions for layer A and layer B are denoted
by ha (x, α, β) and hb (x, α), respectively. During the propagation
process, S-state node i adopts information from layerA and layer Bwith
adoption probabilities ha (x, α, β) and hb (x, α), respectively, converting
to the A-state. The states of nodes in the bipartite network are
synchronized, meaning that any node in the A-layer and B-layer has
the same state. Once the state of a node changes in one layer, it will
correspondingly change in the other layer as well.

Figure 2 more intuitively illustrates the relationship between
Layers A and B as discussed earlier. Arrows and directional cues
emphasize the flow of information or influence from Layer A to

FIGURE 4
Graph (A) represents the relationship between the information outbreak size and the hesitation degree parameter α and propagation probability λ in
an ER-ER network, with a fixed hesitation amplitude parameter β = 0.5. Graph (B) represents the relationship between the information outbreak size and
the hesitation amplitude parameter β and propagation probability λ in an ER-ER network, with a fixed hesitation degree parameter α = 0.5. The remaining
parameters are set as ρ0 and γ = 1.
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Layer B, indicating the dynamic relationship between them. This
illustration aims to enhance understanding by providing a visual aid
that complements the textual description, helping to grasp the
complex interactions between the layers more visually.

2.2 Heterogeneous adoption functions

For layer A, Eq. 1 is as follows:

ha x, α, β( ) �
β −0.5 cos 2πx

α
+ 0.5( ), 0≤x< α

−0.5 cos π x − α( )
1 − α

( ) + 0.5, α≤ x< 1

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
(1)

When 0 ≤ x < α (Region I in Figure 1D), the adoption probability
initially increases non-linearly to its maximum value β and then
decreases to 0.When α ≤ x < 1 (Region II in Figure 1D), the adoption
probability increases non-linearly with x from 0 to 1:

For layer B, Eq. 2 is as follows:

hb x, α( ) � −0.5 cos πx

1 − α
( ) + 0.5, 0≤x< 1 − α

1, 1 − α≤ x< 1

⎧⎪⎨⎪⎩ (2)

When 0 ≤ x < 1 − α, as Region I in Figure 1E, the adoption
probability increases with the increase of x until it reaches 1. On the
other hand, when 1 − α ≤ x < 1, as Region II in Figure 1E, the
adoption probability remains constant at 1. When x < 1 − α, the
increase in x enhances the individual’s adoption capability, while
when x < 1 − α, the adoption capability remains stable.

2.3 Propagation process and methods

• The network consists of N individuals, with a portion initially in
state A and the remaining in state S, without any behavioral
information (mX = 0). The quantity ρ0 stands for the initial ratio
of individuals in state A, defined as the proprtion of the number
of individuals in state A to the total number of individuals in
the network.

• The probability of an individual in state S receiving behavioral
information from an individual in stateA is λ.When an individual
receives behavioral information from another individual in stateA,
the information countm of that individual increases by 1. Due to
the non-redundancy of information, an individual cannot receive
the same neighbor’s information repeatedly.

• In layers A and B, individuals in state S adopt behavioral
information with probabilities N and M, respectively. If adopted,
the individual transitions to state A; otherwise, it remains in state S.
Additionally, whenever the state of a node changes in one layer, the
state of the other layer also changes accordingly.

• When an individual in state A transmits behavioral
information to neighboring individuals, there is a possibility
of transitioning to state R with probability γ, ceasing to take
part in the subsequent propagation process.

• Repeat the process from Step 2 to Step 4 until the state of
individual nodes in the network remains unchanged, with only
nodes in states S and R. At this moment, the propagation

reaches a steady state, and the behavioral information
stops spreading.

3 Formula derivation

Based onRef. [28], this study employs an edge-based compartmental
(EBC) method for theoretical analysis of the model. By analyzing the
variation in the number of individuals in different states in a multilayer
network, the study provides a theoretical evaluation of the propagation
mechanism in a heterogeneous adoption behavior network for the same
information in a dual-layer setting.

Inspired by the “Hole Theory” [29], it shows that individual i is
in a “hole” state, meaning it cannot transmit information to its
neighbors but can receive information from them. Let
θXkXj

(t)(X ∈ A, B{ }) represent the probability that an individual
with degree kj has not transmitted information to i until time t.
Then, in different layers, the probability that individual i has not
received any information until time t can be expressed as Eqs 3, 4:

θA t( ) � ∑
kAj �0

kAj P kAj( )
〈kA〉 θAkAj t( ) (3)

and

θB t( ) � ∑
kBj �0

kBj P kBj( )
〈kB〉 θBkBj t( ) (4)

Based on the assumption that
kXj P(kXj )
〈kX〉 (X ∈ A, B{ }) represents the

probability of node j being connected to node i in layer X, it can be
derived that the probability that node i accumulates mX non-
redundant information in layer X at time t as Eq. 5:

ϕX
mX

kXi , mX, t( ) � kXi
mX

( )θX t( )kXi −mX 1 − θX t( )[ ]mX (5)

Therefore, the probability that node i does not adopt any
behavior in layer A and remains in state S is∏mA

l�0[1 − ha(x, α, β)], and the probability that node i does not
adopt any behavior in layer B and remains in state S is∏mB

l�0[1 − hb(x, α)]. It can be then calculated that the probability
that node i remains in state S after receiving mX non-redundant
information in both layer A and layer B until time t as Eqs 6, 7:

τA kAi , mA, t, α, β( ) � ∑m
r�0

ϕA
mA

kAi , t( )∏r
l�0

1 − ha
kAi
l
, α, β( )[ ]

� ∑αk
A
i

r�0
ϕA
mA

kAi , t( )
× ∏r

l�0
1 − β −0.5 cos 2πk

A
i

αl
+ 0.5( )( )

+ ∑m
n�akAi

ϕA
mA

kAi , t( )

× ∏αki
l�0

1 − β −0.5 cos 2πk
A
i

αl
+ 0.5( )( )

× ∏n
l�akAi

1 − −0.5 cos π x − α( )
1 − α

( )( ) + 0.5( )
(6)
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τB kBi , mB, t, α, β( ) � ∑m
r�0
ϕB
mB

kBi , t( ))∏r
l�0

1 − hb
kBi
l
, α( )[ ]

� ∑1−α( )kBi

r�0
ϕB
mB

kBi , t( )
× ∏r

l�0
1 − −0.5 cos πkBi

1 − α( )l( ) + 0.5( )( )
+ ∑m

n�akBi
ϕB
mB

kBi , t( )

× ∏1−α( )kBi

l�0
1 − −0.5 cos πkBi

1 − α( )l( ) + 0.5( )( )
× ∏n

l�akBi
1 − 1( )

� ∑1−α( )kBi

r�0
ϕB
mB

kBi , t( )∏r
l�0

0.5 + 0.5 cos
πkBi
1 − α( )l( )( )

(7)
So, the probability that node i, with k

.

i � (kAi , kBi ), remains in
state S after accumulatingmA and mBmessages in networks A and B
respectively until time t can be calculated as Eq. 8:

s(k
.

, t) � 1 − ρ0( ) ∑k
A
i

mA�0
ϕA
mA

kAi , t( )∏mA

l�0 1 − ha
kAi
l
, α, β( )[ ]

× ∑k
B
i

mB�0
ϕB
mB

kBi , t( )∏mB

l�0 1 − hb
kBi
l
, α( )[ ]

� 1 − ρ0( )τA kAi , mA, t, α, β( )τB kBi , mB, t, α, β( ) (8)

If S(t), A(t), R(t) are used to represent the proportions of nodes
in different states, considering nodes with different degrees, the
proportion of nodes in the susceptible state at time t can be
expressed as Eq. 9:

S t( ) � ∑
k
.

PX k
.( )s k

.

, t( ) (9)

Considering that the neighbors of individual i can be in the
susceptible, adopter, or recovered state, θXkXj

(t) can be further
expressed as Eq. 10:

θXkXj t( ) � ξXS,kXj t( ) + ξXA,kXj t( ) + ξXR,kXj t( ) (10)

In this case, ξXS,kXj (t), xiXA,kXj
(t), xiX

R,kXj
(t) represent the

probabilities of neighbor node j being in the susceptible,
adopter, and recovered states, respectively, and not
having transmitted information to node i until time t. Since
node i is in a “hole” state, it cannot transmit information to
node j. Therefore, the probability that node j accumulates nX
non-redundant information in layer X at time t can be
expressed as Eqs 11, 12:

ζA kAj − 1, nA, t( ) � ∑
kAj −1

nA�0
ϕA
nA

kAj − 1, nA, t( )∏nA

l�0 1 − ha x, α, β( )[ ]
(11)

ζB kBj − 1, nB, t( ) � ∑
kBj −1

nX�0
ϕB
nB

kBj − 1, nB, t( )∏nB

l�0 1 − hb x, α( )[ ] (12)

In layer X, the probability that node j remains in the susceptible
state at time t is as Eqs 13, 14:

ξAS,kXj t( ) � 1 − ρ0( ) 1 − 1 − ζA kAj − 1, nA, t( )( ] 1 − τB kBj , nB, t( )( )[ ]
(13)

and

ξBS,kXj t( ) � 1 − ρ0( ) 1 − 1 − ζB kBj − 1, nB, t( )( ] 1 − τA kAj , nA, t( )( )[ ]
(14)

Since the probability of transmitting information through edges
is λ, and the recovery probability of adopter nodes is γ, the equation
for ξXR,kXj (t) as Eq. 15:

dξXR,kXj t( )
dt

� γ 1 − λ( )ξXA,kXj t( ) (15)

At time t, the probability of information being transmitted
through an edge is equal to the probability of an adopter node
transmitting the information to a susceptible neighbor. Therefore,
Eq. 16 is as follows:

dθXkXj t( )
dt

� −λξXA,kXj t( ) (16)

By combining Eqs 12 and 13, Eq. 17 can be obtained:

ξXR,kXj t( ) �
γ 1 − λ( ) 1 − θXkXj t( )[ ]

λ
(17)

By substituting Eqs 8 and 14 into Eq. 13, Eq. 18 can be obtained:

dθXkXj t( )
dt

� −λ θXkXj t( ) − ξXS,kXj t( )[ ] + γ 1 − λ( ) 1 − θXkXj t( )[ ] (18)

Given the initial conditions for θX (0) = 1 and ξXR,kXj (t) � 0, when
t → ∞ the Eq. 15 equals 0, Eq. 19 can be derived the expression for
θXkXj

(t) as:

θXkXj t( ) �
λξXS,kXj t( ) + γ 1 − λ( )

γ 1 − λ( ) + λ
(19)

By substituting the expression for θXkXj (t) into Eqs 2 and 3, Eq. 20
can be obtained:

θX ∞( ) � ∑
kXj �0

kXj P kXj( )
〈kX〉 θXkXj ∞( ) � fX θA ∞( ), θB ∞( )( ) (20)

To simplify the notation, let’s use the function f(x) to
represent θX (∞).

By substituting the obtained equations into (4)–(7), it can be
derived that the proportion of susceptible nodes S (∞). Since the
growth of dA(t)dt is due to the decrease in S(t), so the equations for the
proportions of nodes in different states as Eqs 21, 22:

dA t( )
dt

� −dS t( )
dt

− γA t( ) (21)
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and

dR t( )
dt

� γA t( ) (22)

Based on S (∞), it can be obtained that R (∞) as a complement
to 1, since the proportions of nodes in all states must sum up to 1.

To further investigate the conditions for non-continuous growth
of the function, the situation can be determined when Eq. 17 is
tangent to θX (∞) < 1 by calculating the following Eq. 23:

∂fA θA ∞( ), θB ∞( )( )
∂θB ∞( )

∂fB θA ∞( ), θB ∞( )( )
∂θA ∞( ) � 1 (23)

4 Parameter settings

To ensure simulation accuracy, a minimum of 103 dynamic
realizations are recommended in the network for this study. The

network size is set to N = 104, with an average degree of
〈kA〉 � 〈kB〉 � 〈k10〉 � 10. To investigate the impact of contact
capacity on information propagation mechanisms in ER-ER and
SF-SF networks, the network layer XX ∈ A, B{ } in ER-ER network
follows a Poisson degree distribution pX(kX) � e−〈kX〉〈kX〉

kX

kX!
, while

in SF-SF network, the network layer follows a power-law degree
distribution pX(kX) � ξXkX

−v. Here, ξX � 1∑
kX

kX
−v and ] are

parameters representing the degree exponent of layer A and layer
B, respectively.

The heterogeneity of the network degree distribution is
negatively correlated with the degree distribution exponent ].
When ] is small, the network contains a few high-degree nodes
andmany low-degree nodes. Additionally, to make the process more
convenient, the information transmission probability is set as λA =
λB = λ, and the recovery rate is set as γ = 1.0.

The peak of the relative variance χ curve of the final adoption
range and the corresponding information transmission probability
at the critical points are as Eq. 24:

FIGURE 5
The graph shows the effects of the hesitation degree parameter α and the propagation probability λ on the information outbreak size R (∞) and the
relative variance of the final adoption range in an SF-SF network with a fixed hesitation amplitude parameter β, where the heterogeneity parameter V is set to
2.1. Graphs (A) (β = 0.5) and (C) (β = 0.8) illustrate the influence of α on the information outbreak size as the propagation probability varies. The symbols
represent simulation results, while the lines depict theoretical predictions. Different propagation patterns of information are observed for different values
of α. Graphs (B) (β = 0.5) and (D) (β = 0.8) display the distribution of the relative variance of the adoption range for different α values as the propagation
probability changes. They correspond to the variations observed in graphs (A, C), respectively. The remaining parameters are set as ρ0 and γ = 1.
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χ � N
〈 R ∞( )2( 〉 − 〈R ∞( )〉2

〈R ∞( )〉 (24)

The symbol 〈 . . . 〉 here represents the ensemble average.

5 Simulation and discussion

In this paper, the first exploration is about the propagation of
information on a weighted ER network, where the nodes in the ER
network follow a Poisson distribution, denoted as
[P(k) � e−〈k〉〈k〉k/k!. The simulation results represented by
symbols and the predicted results represented by lines show
consistent trends.

5.1 ER network

From Figure 3A, it can be observed that when the individual
hesitation amplitude is relatively small (β = 0.5), the outbreak of R (∞)
exhibits second-order continuous phase transitions for α = 0.2 and α =
0.8. The propagation outbreak occurs earlier but with a slower growth
rate for α = 0.2 compared to α = 0.8. However, when α = 0.5, the
outbreak point occurs later, and the growth pattern is characterized by
discontinuous growth with a faster rate. In the steady state, the final
propagation size reaches complete spread for all values of α. Figure 3C
indicates that when the individual hesitation amplitude is relatively large
(β = 0.8), the propagation patterns are similar to those in Figure 3A, but
the outbreak of R (∞) occurs earlier, and there are cross-over phase
transitions in the propagation. Additionally, when α = 0.2 and α = 0.8,
the outbreak point for α = 0.2 precedes that of α = 0.8, indicating that
the impact of the hesitation amplitude β on the propagation differs for
different hesitation degrees α.

Figure 3B demonstrates that when β = 0.5, the relative variance
of the adoption range exhibits an earlier outbreak for α = 0.8,
followed by α = 0.2, and finally α = 0.5. The saturation order is

α = 0.8, α = 0.2, α = 0.5. In Figure 3D, when β = 0.8, the relative
variance of the adoption range exhibits an earlier outbreak for α =
0.2, followed by α = 0.8, and finally α = 0.5. The saturation order is
α = 0.2, α = 0.8, α = 0.5.

Figure 4A represents the joint effect of the hesitation amplitude

parameter β and the hesitation degree parameter α on the final

adoption range R (∞) in an ER network. Based on different phase

transition patterns, Figure 4A can be divided into four regions. In

regions I (0.75 < α ≤ 1) and III (0.09 < α ≤ 0.41), as λ increases, a

second-order continuous phase transition is observed. This is

because when α is large (dominance of the ordinary state) or

small (dominance of the hesitant state), both layer A (ordinary

state adoption) and layer B (hesitant state adoption) exhibit single-

layer outbreaks, where the outbreak of one layer leads to the

outbreak of the other layers, resulting in continuous propagation.

In region II (0.41 < α ≤ 0.75), a discontinuous first-order phase

transition is observed as λ increases. This occurs when both layers

simultaneously outbreak, but with a delayed outbreak point,

indicating the absence of a dominant propagation layer. In

region IV (0 < α ≤ 0.09), there is no growth, indicating the

absence of information outbreak in this region.
Figure 3B represents a continuous single-stage process, exhibiting

a continuous second-order phase transition as λ increases. As β

decreases, the propagation becomes slower, indicating a positive
correlation between the hesitation amplitude parameter and the
hesitant population.

5.2 SF network

In a weighted SF network, there is a negative correlation between
the heterogeneity of node degree distribution and the degree exponent
]. Node degrees in this network follow a power-law distribution,
denoted as P(k) � ξk−], ξ � 1/∑

k

k−], where the parameter ]

represents the heterogeneity parameter of the SF network.

FIGURE 6
The graphs represent the relationship between the information outbreak size and the hesitation degree parameter α and the propagation probability
λ in an SF-SF network with ]= 2.1, while the hesitation amplitude parameter β is fixed. In Graph (A), the hesitation amplitude parameter β is set to 0.5, while
in graph (B), it is set to 0.8. The remaining parameters are set as ρ0 and γ = 1.
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• for ] = 2.1

In Figure 5A, it is shown that when the individual hesitation
amplitude is relatively low (β = 0.5), the values of the outbreak
threshold for α = 0.2, α = 0.5, and α = 0.8 are all relatively large,
indicating a first-order discontinuous phase transition. The
outbreaks in these cases are rapid and of short duration. In the
steady state, the final propagation size is fully spread. In Figure 5C, it
is shown that when the individual hesitation amplitude is relatively
high (β = 0.5), the outbreaks for α = 0.2 and α = 0.8 exhibit second-
order continuous phase transitions. The outbreak point for α =
0.2 occurs earlier than that for α = 0.8, which is different from the
case when β = 0.5. This indicates that the impact of changes in the
hesitation amplitude β on the propagation varies depending on the
hesitation degree α. For α = 0.5, the outbreak exhibits a first-order
discontinuous phase transition. Additionally, when the individual
hesitation amplitude is larger, the outbreaks occur earlier, and there
is evidence of cross-contagion.

In Figure 5B, when β = 0.5, the relative variance of the adoption
range first reaches its outbreak point for α = 0.8, followed by α = 0.2,

and finally α = 0.5. The saturation order of the relative variance is α =
0.8, α = 0.2, α = 0.5. In Figure 5D, when β = 0.8, the relative variance
of the adoption range first reaches its outbreak point for α = 0.2,
followed by α = 0.8, and finally α = 0.5. The saturation order of the
relative variance is α = 0.2, α = 0.8, α = 0.5.

Figure 6 represents the joint effect of the hesitation amplitude
parameter α and the hesitation degree parameter β on the final
adoption range R (∞) in an ER network. Based on different phase
transition patterns, Figure 6A can be divided into three regions.
In regions I (0.84 < α ≤ 1) and III (0 < α ≤ 0.32), as λ increases,
there is a continuous second-order phase transition. This is
because when α is large (dominance of ordinary state) or
small (dominance of hesitant state), in layer A (ordinary state
adoption) and layer B (hesitant state adoption), there is a single-
layer outbreak triggered by the outbreak of the other layer,
resulting in continuous propagation. In region II (0.32 < α ≤
0.84), as λ increases, there is a discontinuous first-order phase
transition. This is because both layers simultaneously undergo an
outbreak, and the outbreak occurs relatively late, indicating that
there is no dominant propagating layer. In region III, as λ

FIGURE 7
] = 4, with a fixed hesitation amplitude parameter β, the graphs (A) (β = 0.5) and (C) (β = 0.8) illustrate the effects of the hesitation degree parameter α
and the propagation probability λ on the information outbreak size R (∞) and the relative variance of the final adoption range. Graphs (A) and (C) show the
impact of α on the information outbreak size as the propagation probability varies. The symbols represent simulation results, while the lines depict
theoretical predictions. Different propagation patterns of information are observed for different values of α. Graphs (B) (β = 0.5) and (D) (β = 0.8)
display the distribution of the relative variance of the adoption range for different α values as the propagation probability changes. They correspond to the
variations observed in graphs (A) and (C), respectively.
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increases, there is a continuous second-order phase transition,
similar to region I. Comparing Figures 6A, B, it can be observed
that when the hesitation amplitude is higher, a larger λ is required
to achieve the same adoption range.

• for ] = 4

Figure 7A indicates that when the individual hesitation
amplitude is relatively low (β = 0.5), the outbreaks for α =
0.2 and α = 0.8 exhibit second-order continuous phase
transitions. The outbreaks occur earlier compared to α = 0.5, but
the growth rate is slower for α = 0.2 compared to α = 0.8. For α = 0.5,
the outbreak shows a first-order discontinuous phase transition. The
outbreak occurs later but with a faster growth rate, and in the end,
the propagation is fully spread. Figure 7C shows that when the
individual hesitation amplitude is relatively high (β = 0.8), the
propagation patterns are similar to those in Figure 7A, but the
outbreaks occur earlier. Additionally, there is evidence of cross-
contagion in the propagation. Furthermore, for α = 0.2 and α = 0.8,
the outbreak point occurs earlier for α = 0.2 compared to α = 0.8,
indicating that the impact of changes in the hesitation amplitude β
on the propagation varies depending on the hesitation degree α.

In Figure 7B, when β = 0.5, the relative variance of the adoption
range first reaches its outbreak point for α = 0.8, followed by α = 0.2,
and finally α = 0.5. The saturation order of the relative variance is α =
0.8, α = 0.2, α = 0.5. In Figure 7D, when β = 0.8, the relative variance
of the adoption range first reaches its outbreak point for α = 0.2,
followed by α = 0.8, and finally α = 0.5. The saturation order of the
relative variance isα = 0.2, α = 0.8, α = 0.5.

Figure 8 represents the process of change in four stages. In regions I
(0.75 < α ≤ 1) and III(0.05 < α ≤ 0.41), as λ increases, there is a
continuous second-order phase transition. This is because when α is
large (dominance of the ordinary state) or small (dominance of the
hesitant state), in layer A (adoption of the ordinary state) and layer B
(adoption of the hesitant state), there is a single-layer outbreak triggered
by the outbreak of the other layer, resulting in continuous propagation.

In region II(0.41 < α ≤ 0.75), as λ increases, there is a discontinuous
first-order phase transition. This is because both layers simultaneously
undergo an outbreak, and the outbreak occurs relatively late, indicating
that there is no dominant propagating layer. In region IV(0 < α ≤ 0.05),
there is no growth, indicating the absence of information outbreaks in
this region. Additionally, from the Figures 8A, B, it can be observed that
as β decreases, the propagation becomes slower, indicating a positive
correlation between the hesitation amplitude parameter and the
hesitant population.

6 Conclusion

In real-life, individuals exhibit different social behaviors within
various social networks. To analyze the propagation mechanisms
and investigate heterogeneous adoption behavior in a heterogeneous
network of the same population, this study proposes a dual-layer
heterogeneous adoption information propagation network model
from both simulation and theoretical perspectives. A heterogeneous
threshold function based on realistic psychological research is
designed, and extensive experiments demonstrate the consistent
results between simulations and theory.

This paper focuses on the innovative aspect of heterogeneous
adoption behavior within a dual-layer model and explores the
propagation of heterogeneous behavior within the same population
in a dual-layer heterogeneous network. Through extensive simulation
and theoretical analysis in SF and ER networks, it is observed that when
either layer dominates, the final adoption range exhibits a second-order
continuous phase transition. In the absence of a clear dominant layer, a
first-order discontinuous phase transition occurs with the presence of
cross-propagation phenomena. The propagation process andmodes are
influenced by factors such as hesitation parameters, degree
heterogeneity parameters, and propagation probabilities, ultimately
leading to complete propagation.

The inter-layer adoption heterogeneity in information propagation
networks has a crucial impact, yet there is limited research in this area.

FIGURE 8
The graphs illustrate the relationship between the information outbreak size and the hesitation degree parameter α and the propagation probability λ
in an SF-SF network with v = 4, while the hesitation amplitude parameter β is fixed. In graph (A), the hesitation amplitude parameter β is set to 0.5, while in
graph (B), it is set to 0.8. The remaining parameters are set as ρ0 and γ = 1.
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This paper rigorously models and analyzes the significant influence of
heterogeneous adoption behavior within multi-layer networks on
information propagation. The study also provides a new direction for
information propagation in multi-layer heterogeneous networks.
However, this article has certain limitations. Firstly, it does not use
real datasets, lacks standardized data representing human behavioral
characteristics, and cannot extensively validate the behavior propagation
with real-world data. Secondly, it does not consider several conventional
parameters that may influence the research process, such as weights and
fluctuation-based adoption. To emphasize the influence of
heterogeneous adoption behavior within this model, other parameters
were reduced to better highlight the significance of studying
heterogeneous adoption behavior. It is hoped that more experts and
scholars will pay attention to this field and further expand the research.
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