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A regular calligraphy script of each calligrapher has unique strokes, and a script’s
authenticity can be identified by comparing them. Hence, this study introduces a
method for identifying the authenticity of regular script calligraphy works based on
the improved YOLOv7 algorithm. The proposedmethod evaluates the authenticity of
calligraphy works by detecting and comparing the number of single-character
features in each regular script calligraphy work. Specifically, first, we collected
regular script calligraphy works from a well-known domestic calligrapher and
divided each work into a single-character dataset. Then, we introduced the
PConv module in FasterNet, the DyHead dynamic detection header network, and
the MPDiou bounding box loss function to optimize the accuracy of the
YOLOv7 algorithm. Thus, we constructed an improved algorithm named
YOLOv7-PDM, which is used for regular script calligraphy identification. The
proposed YOLOv7-PDM model was trained and tested using a prepared regular
script single-character dataset. Through experimental results, we confirmed the
practicality and feasibility of the proposed method and demonstrated that the
YOLOv7-PDM algorithm model achieves 94.19% accuracy (mAP50) in detecting
regular script font features, with a single-image detection time of 3.1 m and 31.67M
parameters. The improved YOLOv7 algorithm model offers greater advantages in
detection speed, accuracy, andmodel complexity compared to current mainstream
detection algorithms. This demonstrates that the developed approach effectively
extracts stroke features of regular script calligraphy and provides guidance for future
studies on authenticity identification.
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1 Introduction

Calligraphy, as a unique form of artistic expression, has a long history in China and
stands out in the progression of human civilization [1]. Due to their significant collection
value and potential for appreciation, calligraphy works are highly sought after by collectors
both domestically and internationally, particularly those created by renowned ancient
calligraphers [2]. However, genuine works by master calligraphers are becoming
increasingly scarce, leading to abundant forgeries in the market. Consequently, there is
an urgent need for calligraphy authenticity identification.
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Traditional methods of calligraphy identification mainly involve
three approaches [3]. One relies on experienced calligraphy experts
with solid skills and substantial experience for empirical
identification [4]. However, subjective factors often influence this
method, biasing the identification results. An alternative approach
utilizes physical techniques to determine authenticity by examining
the presence of seals and analyzing the composition of paper used in
the calligraphy work. Nevertheless, as technology advances, forgery
techniques have become increasingly sophisticated, with the ability
to replicate seals and paper, resulting in identification biases [5]. The
third method uses computer-assisted techniques to detect the
authenticity of calligraphic works. With the further development
of computer science and technology in recent years, many
researchers have employed computer-assisted methods to detect
the authenticity of calligraphic works. However, computer-assisted
methods can be further categorized into two types: one is based on
traditional image processing algorithms, such as the calligraphic
work authentication method proposed by Zeng [6] based on image
recognition and the computer-assisted calligraphy authenticity
identification proposed by Pang [7]. The other type employs
novel image processing methods based on deep learning, such as
Li’s [8] evaluation and detection of calligraphic copying based on
deep learning.

To address the challenge of the identification bias, this study
develops an authenticity identification method for calligraphy
regular script based on an improved YOLOv7 algorithm.
Specifically, first, we manually annotate the features of individual
characters in authentic calligraphy regular script works, followed by
feature extraction using deep learning networks. The authenticity of
calligraphy works is determined by comparing the number of
extracted features from genuine works with the forged ones. This
method aims to enhance the accuracy and reliability of calligraphy
regular script authenticity identification by combining manual
annotation and deep learning techniques.

The traditional algorithmic approach involves image processing,
and after conducting feature extraction on the works of a single
calligrapher, this approach exhibits relatively high detection
accuracy. However, the detection algorithm cannot be directly
applied to the works of another calligrapher, thus posing
significant limitations. Unlike simplistic image processing
schemes, deep learning can automatically learn features and
exhibits strong robustness and adaptability, enabling accurate
detection and recognition in complex environments.
Furthermore, deep learning approaches demonstrate high
generalization and are suitable for detecting the works of most
calligraphers using the same font style [9]. Deep learning has
experienced extensive application and has recently advanced
significantly in diverse domains. For instance, Wang [10]
employed an improved EfficientNet algorithm to authenticate
calligraphic works, efficiently categorizing genuine from fake
calligraphic pieces using the two-class classification property of
the EfficientNet algorithm. The corresponding experimental
results demonstrated significant effectiveness. Xu [11] proposed
an improved YOLOv4-Tiny algorithm that effectively detects
boats on rivers and lakes, ensuring waterway safety. Hu [12]
applied the improved YOLOX algorithm to rapidly detect surface
hole defects on aluminum castings, enhancing casting efficiency.
Mai made a breakthrough in calligraphy font recognition using

DenseNet networks [13]. The advantages of deep learning methods
lie in their ability to learn features automatically and possess strong
robustness and adaptability in accurate detection and recognition in
complex environments. Therefore, utilizing deep learning methods
for calligraphy regular script authenticity identification holds great
potential and feasibility. Hence, building upon these successful
research achievements, we leverage deep learning methods to
authenticate calligraphy regular script works. Indeed, by
constructing a deep learning model suitable for regular
calligraphy script works, we extract and analyze the features of
each character and compare these features with those of authentic
works to determine the degree of authenticity. However, additional
datasets and annotations may be required for training and validating
the algorithm model. The proposed authenticity identification
method is based on the improved YOLOv7 algorithm evaluating
the authenticity of regular calligraphy scripts by detecting and
comparing the features in each character.

2 Calligraphy regular script stroke
feature detection algorithm based on
YOLOv7-PDM

2.1 YOLOv7 algorithm

The YOLOv7 algorithm [14], introduced by the YOLOv4 [15]
team, is another significant breakthrough in the YOLO series. Since its
proposal at the end of 2022, the YOLOv7 algorithm has received
considerable attention from the academic community, as it
demonstrates excellent performance with a detection speed ranging
from 5 to 160 FPS and exhibits higher detection accuracy and speed
levels than current mainstream object detection algorithms. Figure 1
illustrates the structure of the YOLOv7 model [16].

The YOLOv7 algorithm comprises four main components:
Input, the feature extraction network known as Backbone, the
feature fusion network identified as Neck, and the detection head
network referred to as YOLO-Head. Compared to prior YOLO
algorithms, YOLOv7 presents innovative improvements in its
Backbone, Neck, and YOLO head. The feature extraction
network comprises CBS, ELAN, and MP1 convolution modules.
The CBSmodule is a conventional convolution module consisting of
regularization and activation functions, whereas the ELAN module
is a layer aggregation network that improves efficiency. Additionally,
dilation and transformation methods are used to enhance the
learning performance of the algorithm model, boosting the
model’s computational capability while maintaining the original
gradient path intact. The MP1 convolution module is formed by
adding a Maxpool layer after the CBS module, which forms two
branches combined with a Concat module to integrate the
characteristics of both branches and enhance the network’s
ability to extract features. YOLOv7 has modified the SPP module
in the Neck to the SPPCSPC module, a revised adaptation of Spatial
Pyramid Pooling, to accommodate inputs of varying sizes. This
modification reduces the image distortion caused by image
processing and overcomes the feature re-extraction problem
during convolution. In 2021, Megvii Technology published the
PAFPN model, which incorporates the same feature pyramid
network structure as YOLOX. Feature fusion between layers is
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achieved by passing deep features from bottom to top. Additionally,
the Neck network includes the ELAN-H and MP2 modules, where
the ELAN-H module aggregates more layers than the ELAN
module. The only variation between the MP1 and MP2 modules
is the number of channels. In the YOLO-Head, YOLOv7 combines
the RepConv module’s re-parameterized convolutions with the
network structure, balancing speed and accuracy during training.

2.2 PConv module

To enhance the detection accuracy of the YOLOv7 algorithm, we
replace the Conv layer in the CBSmodule with the PConvmodule from
FasterNet [17]. The modified module has been renamed the PBS
module. The PConv module plays a vital role in FasterNet, a novel
image classification algorithm introduced in CVPR2023, which attains
an exceptional TOP-1 accuracy of 83.5% on ImageNet-1k. The
structure of the PConv module is illustrated in Figure 2.

PConv addresses higher memory access and reduces the overall
computational complexity caused by depthwise separable convolution
(DWConv), particularly on I/O-bound devices. DWConv can reduce
the computational complexity of Conv by a factor of (number of
channels), but the detection accuracy decreases as a result of the cost
incurred. To mitigate the accuracy loss, the channel width must be
increased to compensate for the decrease in parameter quantity.

However, when DWConv is applied with an increased channel
width, it introduces higher memory access and generates more
computational redundancy. Considering these limitations, PConv
performs regular Convolution on a specific group of input channels
to extract spatial features while keeping the rest unaltered. The first or
last consecutive channels represent the entire feature map for
computation with consecutive or regular memory access. Without
any loss of generality, it is assumed that the input and output
feature maps have the same number of channels. Therefore, Eq. 1
defines the FLOPs of PConv, while Eq. 2 depicts the memory access.

FLOPs � h × w × k2 × c2p, (1)
h × w × 2cp + k2 × c2p ≈ h × w × 2cp, (2)

In this case, the width and height of the feature map are
represented by h and w, respectively. The size of the convolution
kernel is denoted by k, and cp indicates the number of channels
affected by regular convolution. This cp value is equivalent to the
change from cin to cp in conventional convolution. However, in
practical scenarios, PConv uses only one-fourth of the channels
present in cp which leads to a reduction of FLOPs by 1/16 and
memory access by 1/4 compared to conventional convolution.

2.3 DyHead dynamic detection head

The DyHead dynamic detection head network proposed by
Microsoft [18] aims to enhance the detection accuracy of the
YOLOv7 algorithm. DyHead is a dynamic detection network that
introduces attention mechanisms to consolidate different object
detection heads innovatively. The core idea of this method is to
leverage attention mechanisms to enable interaction among scales
(referred to as πL), spatial (referred to as πS), and task (referred to as
πC) awareness based on a given feature tensor, denoted as
F ∈ RL×S×C. Specifically, the πL attention mechanism facilitates

FIGURE 1
Structure of the YOLOv7 algorithm model.

FIGURE 2
Structure of the PConv module.
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scale awareness between different feature levels, the πS attention
mechanism enables spatial awareness between spatial positions and
the πC attention mechanism promotes task awareness within the
output channels. These πL, πS, and πC attention mechanisms are
combined to form the DyHead dynamic detection head module, as
illustrated in Figure 3. By introducing the DyHead dynamic
detection head module, we effectively utilize attention
mechanisms to improve the performance and accuracy of object
detection. The novelty of this method lies in applying attention
mechanisms to different levels of perception and achieving a unified
object detection head network through modular design.

The general form of self-attention is presented by Eq. 3.

W F( ) � π F( ) · F, (3)

This form has many parameters and directly learns the attention
function through fully connected layers across all dimensions. In order
to enhance efficiency and reduce the number of parameters, we
transformed this attention function into three separate attentions,
each concentrating on a specific dimension, as presented in Eq. 4.

W F( ) � πC πS πL F( ) · F( ) · F( ) · F, (4)
where πL combines the characteristics from various scales while
considering their semantic significance, πS focuses on the
discriminative capacity between different spatial positions and πC

FIGURE 3
Structure of the DyHead module.

FIGURE 4
Model structure diagram of YOLOv7-PDM.
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promotes joint learning and generalizability of target representation
by dynamically switching feature channels to assist different tasks.
Stacking the DyHead dynamic detection head module multiple
times yields better performance improvement, which peaks after
stacking more than six modules. By introducing the DyHead
dynamic detection head module, the expressiveness of the
YOLOv7 algorithm’s YOLO-Head is significantly enhanced
without substantially increasing the computational complexity.

2.4 MPDioU bounding box loss function

As an improvement, we introduce the MPDIoU bounding box
loss function [19] to address the instability in expressing the aspect
ratio penalty of the CIoU loss function when the aspect ratio of the
predicted bounding box matches that of the ground truth bounding
box in the original YOLOv7 algorithm. The latter bounding box
initially utilizes the CIoU loss function for bounding box regression.
The proposed MPDioU bounding box loss function, which relies on
the minimum point distance, assesses the similarity between
predicted and ground truth bounding boxes, acting as a criterion
for comparison. It should be noted that the YOLOv7 algorithm’s
convergence speed and detection accuracy are constrained because
the CIoU and EIoU lose their effectiveness when the predicted and
ground truth bounding boxes have varying width and height values
but the same aspect ratio. This issue is overcome by combining the
benefits of CIoU and EIoU. Besides, MPDIoU takes inspiration from
the geometric characteristics of bounding boxes by directly
minimizing the distances between the top left and bottom right
points of the predicted and ground truth bounding boxes. The
specific implementation is presented in Eq. 5.

MPDioU � A ∩ B

A ∪ B
− d2

1

w2 + h2
− d2

2

w2 + h2
, (5)

where A and B are two bounding boxes, d1 is the distance between
their top left points, d2 is the distance between their bottom right
points, and w and h represent the width and height of the input
image. This design simplifies the similarity comparison between two
bounding boxes and applies to overlapping and non-overlapping
bounding box regression. Consequently, by leveraging the benefits
of the MPDIoU bounding box loss function, the accuracy of the
YOLOv7 algorithm in detecting objects is enhanced.

2.5 YOLOv7-PDM algorithm model

Figure 4 overviews the structure diagram of the YOLOv7-PDM
algorithm, which has been optimized by incorporating the PConv
module, DyHead dynamic detection head, and MPDioU bounding
box loss function.

3 Experiment

3.1 Dataset creation

Due to a shortage of publicly accessible datasets for regular script
characters in calligraphy, this research meticulously compiled an

exclusive dataset by utilizing genuine works from Shen, a renowned
calligrapher and member of the China Calligraphers Association,
provided by the Sanpin Art Gallery in Shenzhen City. Regular script
characters in calligraphic works typically exhibit single color and
high contrast characteristics, with most presenting a consistent and
neat writing style. Therefore, the works were first scanned using a
line-scan camera in the data preprocessing stage. Subsequently,
traditional binarization techniques effectively separated the
acquired images into foreground and background. Additionally,
we obtained individual regular script characters by batch
cropping, utilizing fixed spacing between the characters. As a
result, 2,782 black-and-white image samples of regular script
characters were obtained, as depicted in Figure 5.

Following the research on Chinese digital calligraphy
retrieval and authenticity identification by Zhang et al. [20],
the stroke features of regular script characters were
categorized into three basic features: start (qi), turn (zhuan),
and end (shou). The start and end features were further divided
into horizontal start (hengqi), vertical start (shuqi), horizontal
end (hengshou), and vertical end (shushou). The turning feature
was classified into a right-angle turn (zhijiaoze) and an acute-
angle turn (ruijiaoze). Therefore, six-stroke features were
extracted from regular script characters. After obtaining the
images of regular script characters, we annotated them using
the DLtools (MVTec Deep Learning Tool) annotation software.
The annotation process requires careful alignment with every
feature of regular script calligraphy characters. Besides, the
selection of feature boxes should be neither too large nor too
small, and it is necessary to conduct repeated inspections to
ensure the absence of missed annotations, as omitting a single
feature could potentially impact the accuracy of subsequent
model training. The specific annotation quality is illustrated in
Figure 6, representing a favorable annotation standard. Among
them are 5,343 characters with a horizontal starting stroke,
4,545 with a horizontal ending stroke, 7,542 with a vertical
starting stroke, 3,991 with a vertical ending stroke, 1,658 with
right-angle turns, and 3,074 with acute-angle turns. The number
of characters with right-angle and acute-angle turns is small, as
not every character contains these types of turns.

Each calligrapher’s characters exhibit a unique style, with the
most distinctive characteristics being evident in the three
fundamental aspects of “start,” “turn,” and “end,” Where “start”
refers to the starting point of the stroke, signifying the moment the
brush touches the paper. The pressure and angle of initiation vary
among calligraphers. Additionally, “turn” involves the rotation of
the brush, with some characters requiring a subtle adjustment while
others may demand a more pronounced rotation. Finally, “end”
marks the stroke’s conclusion, representing the character’s
completion. Some calligraphers execute the termination process,
while others incorporate personal stylistic elements to showcase
individuality. Therefore, using these six brushstroke features can
effectively encapsulate the unique stylistic characteristics of a
calligrapher’s regular script.

In order to effectively mitigate the overfitting phenomenon
during the algorithm model training process, this study employed
data augmentation techniques on the 2,782 black-and-white images
of individual regular script characters, including spatial
transformation methods and noise addition methods, to expand
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the dataset. Through these methods, the original images of
individual regular script characters were augmented to a total of
5,687 images, significantly enlarging the dataset. Data augmentation
not only significantly enhanced the generalization capability of the
algorithm model but also optimized the training performance of the
model. Concurrently, following the format required by the
YOLOv7 algorithm for training datasets, this study meticulously
constructed the dataset of individual regular script characters for
calligraphy. In order to ensure the scientific and practical validity of
the dataset, we rigorously divided the dataset into training,
validation, and testing sets in a 7:2:1 ratio to guarantee the
reliability and effectiveness of model evaluation. Through the
comprehensive implementation of the steps mentioned above, the
construction of the dataset of individual regular script characters for
calligraphy has been completed, providing a solid data foundation
for the subsequent training and evaluation of algorithm models.

3.2 Experimental setup

The experimental setup for this research involved an Intel i9-
13900K CPU, 128 GB of RAM, and two NVIDIA RTX4090 GPU
cards with 24 GB of VRAM each. We set up the appropriate
operating system (Ubuntu 20.04), Python 3.9, CUDA 11.8,
PyTorch 2.0.0, and related dependencies on the training machine

to conduct training and simulation experiments. By utilizing such
hardware configuration and software environment, we ensured the
smooth progress of the experiments and obtained accurate and
reliable results. Furthermore, these configurations provided
sufficient computational resources and performance to support
the training and evaluation.

3.3 Training parameters and
evaluation metrics

Before training the model, it is necessary to set the evaluation
metrics and initialize the training parameters. This study employed four
metrics to evaluate the model’s performance: Mean Average Precision
(mAP) with an IoU of 0.5, detection speed per image, parameter
quantity, and computational complexity (FLOPs). The evaluation
metrics were selected based on a comprehensive algorithm
performance and efficiency consideration. Specifically, evaluating the
accuracy and precision of the object detection algorithm relies on using
mAP with an IoU of 0.5, while the detection speed per image measures
the algorithm’s efficiency in processing. Additionally, the complexity
and computational requirements of the model are indicated by the
parameter quantity and computational complexity (FLOPs). The
selection of these four evaluation metrics is based on the fact that
the authenticity detection of regular script characters only pursues

FIGURE 5
Segmented grayscale images of regular script characters.
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detection accuracy. Thus, the choice of these four evaluation metrics
already satisfies the requirements.

Table 1 reports the precise configurations used to initialize the
training parameters. Setting the hyperparameters is an important
task impacting the model’s performance and effectiveness.

Moreover, ensuring hyperparameter setting consistency is crucial
for enhancing the YOLOv7 algorithm model. On the one hand,
preserving consistency in hyperparameter settings ensures effective
algorithmic improvements while maintaining consistent
hyperparameters, allowing for accurate evaluation of the

FIGURE 6
Six calligraphic character stroke typeswith their characteristic classification diagramhighlighted: (A) horizontal start (yellow); (B) horizontal end (light
blue); (C) vertical start (purple); (D) vertical end (red); (E) right angle turn (green); (F) acute angle turn (blue).
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enhancements’ effectiveness by comparing the algorithm’s
performance before and after the improvements. However, it is
challenging to differentiate between the improvement effect of the
algorithm itself and the performance changes caused by
modifications to the hyperparameters when adjustments are
made to the hyperparameters during the improvement process.
Hence, the proposed method adopts the hyperparameters
of YOLOv7.

In order to prevent overfitting of the regular script character
dataset during the YOLOv7 algorithm training process, we
measured the loss values of both the validation and training sets.
After analysis, we found that the training set had a loss value (Loss)
of 0.03, while the validation set had a loss value of 0.026, resulting in
a minimal difference of only 0.004. This small difference suggests the
absence of overfitting.

4 Experimental results

4.1 YOLOv7 algorithm with PConv module

We enhanced the Backbone and Neck sections of the
YOLOv7 algorithm while considering the attributes of PConv.
Specifically, the convolutions with a kernel size of 3 × 3 in the
three feature output layers were replaced with PBS modules. The
modified algorithm models in the SPPCSPC module, ELAN-H
module, and the improved MP2 module in the Neck were labeled
as YOLOv7-P, respectively. In order to guarantee the reliability of
the experiments, this study conducted no less than 10 repeated
experimental verifications on the YOLOv7 algorithm and
YOLOv7-P algorithm on the proposed dataset. Table 2 reports
the experimental results obtained by calculating the average of
the experimental values when excluding the best and
worst outcomes.

The experimental results in Table 2 highlight that the YOLOv7-
P algorithm demonstrated a performance increase of almost 2.5% in
mAP0.5 compared to the YOLOv7 algorithm. Additionally, the
YOLOv7-P algorithm reduced the parameter quantity by 4.5M
and FLOPs by one-fifth. Moreover, the single detection time
remained almost unchanged between the two algorithms. By
incorporating the PConv module into the YOLOv7 algorithm,
the experimental results present enhanced detection accuracy and
reduce the model’s parameter quantity and computational
complexity. This demonstrates the positive impact of the PConv
module in the YOLOv7 algorithm without affecting the single
detection time.

4.2 YOLOv7 algorithmwith DyHead dynamic
detection head

In order to evaluate the performance of integrating the DyHead
dynamic detection head into the YOLOv7 algorithm (referred to as
YOLO-Head) and to determine the optimal number of layers to
embed the DyHead module, this study conducted no less than
10 repeated experimental verifications on the YOLOv7 algorithm
and YOLOv7-D algorithm. To guarantee the reliability of the
experiments, the experimental results were obtained by excluding
the best and worst outcomes and averaging the remaining values.
The detailed experimental results are presented in Table 3.

Table 3 infers that including four DyHead modules in the
YOLOv7-D algorithm results in a performance enhancement of
around 3.1% in mAP0.5 compared to the YOLOv7 algorithm.
Additionally, the parameter quantity of the YOLOv7-D algorithm
increases by 13M, while the FLOPs computational load shows a
slight decrease. Furthermore, the detection time per image remains
almost unchanged between the two algorithms. These experimental
results demonstrate that although including the DyHead dynamic
detection head in the YOLO-Head of the YOLOv7 algorithm leads
to a relatively significant increase in parameter quantity, the FLOPs’
computational load and detection time per image experience have
insignificant changes. Moreover, the YOLOv7-D algorithm exhibits
certain improvements in detection accuracy compared to the
YOLOv7 algorithm. Thus, these findings substantiate the efficacy
of integrating the DyHead dynamic detection head with the
YOLOv7 algorithm.

4.3 YOLOv7 algorithm with MPDioU
boundary box loss function

To assess the impact of replacing the CIoU bounding box loss
function with the MPDioU bounding box loss function on the
YOLOv7 algorithm’s performance, we compared the training

TABLE 1 Training parameters for the algorithm model.

Parameter Value

Initial Learning Rate(Init_Lr) 0.02

Minimum Learning Rate(Min_Lr) 0.0002

Total Training Epochs (Total_Epochs) 1,000

Learning Rate Decay Type (Lr_Decay_Type) cos

Batch Size of Each Training (Batch_Size) 48

Optimizer Type of Network Architecture (Optimzer_Type) SGD

Momentum of Optimization Function (Momentum) 0.937

Weight Decay Coefficient (Weight_Decay) 0.0002

TABLE 2 Experimental verification of PConv module.

Algorithm mAP0.5 (%) Parameter quantity(M) FLOPs(G) Detection time per Image (ms)

YOLOv7 90.19 36.50 105.20 3.1

YOLOv7-P 92.53 32.00 82.96 3.2
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losses of both the regular YOLOv7 and the modified YOLOv7-M
algorithms. The results reveal that the training loss of the YOLOv7-
M algorithm is 0.02, while the training loss of the
YOLOv7 algorithm is 0.03. This indicates that the MPDioU
bounding box loss function is superior to the CIoU bounding
box loss function. Furthermore, to ensure the validity of the
experiments, we conducted no less than 10 repeated experiments
on the YOLOv7 algorithm and the YOLOv7-M algorithm using the
developed dataset. We calculated the average of the remaining
experimental values after excluding the best and worst results to
obtain the experimental results, with Table 4 presenting the
experimental results.

Table 4 reveals that the YOLOv7-M algorithm achieves a boost
of approximately 2.7% in mAP0.5 compared to the
YOLOv7 algorithm. Additionally, the parameter quantity of the
YOLOv7-M algorithm increases by nearly 1M, but there is no
change in the FLOPs computational complexity, while the single
detection time slightly increased. Considering these results, the
YOLOv7-M algorithm model has higher detection accuracy
under almost unchanged FLOPs computational complexity and
single detection time. These results prove that the MPDioU
boundary box loss function significantly enhances the
performance of the YOLOv7 algorithm model.

4.4 Overall experiment analysis

4.4.1 Ablation experiment
This paper proposes three improvement methods, namely, the

PConv module (YOLOv7-P), the DyHead dynamic detection head
(YOLOv7-D), and the MPDioU bounding box loss function
(YOLOv7-M). To ascertain the efficacy and enhancements of
these three methods, comparative experiments were carried out
under the same experimental settings to evaluate the performance

disparities between the YOLOv7 algorithm and the
YOLOv7 algorithm equipped with one, two, and three
enhancement methods. To guarantee the experiments’ validity,
we repeated each experiment 10 times and excluded the most
extreme results. The remaining values from the experiments were
averaged to obtain the experimental outcome, as presented
in Table 5.

Based on the findings in Table 5, the YOLOv7-PDM algorithm
exhibits a 4% enhancement in mAP0.5 compared to the
YOLOv7 algorithm. Furthermore, the YOLOv7-PDM algorithm
has nearly 5M fewer parameters and approximately 27G FLOPs
while maintaining the same detection time for individual images.
These results suggest that the YOLOv7-PDM algorithm model
surpasses the YOLOv7 algorithm model, considering operational
and spatial complexity. Besides, the YOLOv7-PDM algorithm
model, which integrates three enhancement methods, exhibits the
highest performance, as it enhances detection accuracy
(mAP0.5 improvement) and significantly reduces the parameter
count and computational workload without impacting the time
required for single-image detection.

4.4.2 Comparison with other mainstream object
detection models

In order to assess the effectiveness of the YOLOv7-PDM
algorithm, we carried out comparative experiments involving
eight popular detection models: YOLOv7, YOLOv6 [21],
YOLOv8 [22], Deformable-DETR [23], RT-DETR [24], Faster-
RCNN [25], SSD [26], and DETR [27] under the same
experimental configuration. To ascertain the experiment’s
validity, a minimum of 10 repetitions of experimental training
and validation were conducted on all data results. The optimal
and worst outcomes were disregarded, and the remaining
experimental values were averaged to derive the final result. The
experimental results are reported in Table 6.

TABLE 3 Experimental verification of DyHead dynamic detection head.

Algorithm Number of DyHead mAP0.5 (%) Parameter quantity(M) FLOPs(G) Detection time per Image (ms)

YOLOv7 \ 90.19 36.50 105.20 3.1

YOLOv7-D 1 90.88 39.27 84.73 3.1

2 91.72 42.44 91.19 3.1

3 92.53 46.03 97.65 3.2

4 93.21 49.51 104.56 3.3

5 93.03 54.14 110.68 3.4

6 92.88 57.82 118.92 3.4

TABLE 4 Experimental verification of MPDioU boundary box loss function.

Algorithm mAP0.5 (%) Parameter quantity(M) FLOPs(G) Detection time per Image (ms)

YOLOv7 90.19 36.50 105.20 3.1

YOLOv7-M 92.85 37.22 105.20 3.4
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According to the results in Table 6, the YOLOv7-PDM
algorithm outperforms the other eight mainstream
algorithms in terms of mAP0.5, achieving 94.19%. The
YOLOv7-PDM performs better in detection accuracy,
showing a nearly 41% improvement in mAP0.5 while having
fewer parameters, computational FLOPs, and detection time
per image than the SSD algorithm. This indicates a significant
advantage for YOLOv7-PDM. Compared with the Faster-
RCNN algorithm, the YOLOv7-PDM outperforms it in all
aspects, including mAP0.5, the number of parameters,
computational FLOPs, and detection time per image.
Moreover, relative to other YOLO series models, the
YOLOv7-PDM achieves the highest levels of performance in
mAP0.5, FLOPs, and detection time per image, with a slight
disadvantage in the number of parameters compared to
YOLOv8 but superior to YOLOv6. Compared with the DETR
series models, the YOLOv7-PDM performs better in mAP0.5,
the number of parameters, computational FLOPs, and detection
time per image, validating the superiority of the proposed
YOLOv7-PDM. In the detection of regular script characters,
detection accuracy is more critical. Compared to the
YOLOv7 algorithm, the YOLOv7-PDM algorithm maintains
the same single-image detection time but substantially

improves detection accuracy, parameter quantity, and
computational FLOPs. This further validates the superiority
of the proposed YOLOv7-PDM algorithm model in this study.
Figure 7 illustrates the detection results of the nine models.

Comparing the graphs in Figure 7 reveals that when the pen
stroke feature is small, the eight algorithm models fail to detect it
correctly. It should be noted that in this paper, the size of the target is
defined as follows, taking the commonly used dataset COCO object
definition in the field of object detection as an example: small targets
refer to objects smaller than 32 × 32 pixels, medium targets refer to
objects ranging from 32 × 32 to 96 × 96 pixels, and large targets refer
to objects larger than 96 × 96 pixels. When a single character has
many strokes, leading to smaller pen stroke features, the SSD
algorithm model fails to detect it. When there is a partial overlap
in the pen stroke features, the YOLOv6, Faster-RCNN, and DETR
algorithm models fail to detect it accurately. On the other hand, the
proposed YOLOv7-PDM algorithmmodel can accurately detect and
recognize most of the pen stroke features, demonstrating superior
performance in bounding box regression and higher confidence
levels compared to the YOLOv7 algorithm model. This further
proves that the YOLOv7-PDM algorithm model is the most
suitable for detecting calligraphy Kai-style characters’ pen
stroke features.

TABLE 5 Ablation experiment comparison of three improvement methods.

Algorithm mAP0.5 (%) Parameter quantity(M) FLOPs(G) Detection time per Image (ms)

YOLOv7 90.19 36.50 105.20 3.1

YOLOv7-P 92.53 32.00 82.96 3.2

YOLOv7-D 93.21 49.51 105.22 3.3

YOLOv7-M 92.85 37.22 105.20 3.4

YOLOv7-PM 92.78 32.00 82.96 2.4

YOLOv7-PD 93.62 31.67 78.20 4.3

YOLOv7-DM 93.47 36.18 98.47 3.6

YOLOv7-PDM 94.19 31.67 78.20 3.1

TABLE 6 Performance comparison of nine detection models.

Algorithm mAP0.5 (%) Parameter quantity(M) FLOPs(G) Detection time per Image (ms)

YOLOv7 90.19 36.50 105.20 3.1

YOLOv6 89.87 34.80 85.64 3.4

YOLOv8 89.72 25.80 78.70 4.0

DETR 88.37 36.74 223.62 35.7

Deformable-DETR 87.98 39.83 157.35 36.2

RT-DETR 89.89 32.00 110.53 13.3

Faster-RCNN 85.33 41.38 269.03 27.3

SSD 53.94 13.69 30.71 1.3

YOLOv7-PDM 94.19 31.67 78.20 3.1
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4.4.3 Test of replica calligraphy regular
script works

To further confirm the effectiveness of the proposed method,
tests were carried out using two genuine copies of regular script
characters and their corresponding imitations by the same

calligrapher. The testing procedure involved extracting
individual characters from the two authentic copies and two
imitations separately, following the method mentioned above of
creating the dataset. As a result, four sets of character datasets
were obtained for detection. Subsequently, the regular script pen-

FIGURE 7
(Continued).
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pressure feature detection was performed on each of the four sets
of character datasets. Finally, the total number of pen-pressure
features for each category of regular script characters in the four
datasets was recorded, and the detection results are presented
in Table 7.

Table 7 highlights a significant difference in the total stroke
feature count of different categories of regular script characters
detected using the YOLOv7-PDM algorithm for the authentic and
imitation works of Shen in works one and 2. The total stroke feature
count for each category in the two authentic works is generally above

FIGURE 7
(Continued).
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200, while the total for each category in the two imitation works is
below 25. This demonstrates that the developed method efficiently
differentiates between genuine and counterfeit works of Shen’s

regular script characters. Moreover, this serves as additional
evidence supporting the efficacy of the identification method
introduced in this paper.

FIGURE 7
(Continued). Comparison of the effects of nine algorithm models: (A) YOLOv7; (B) YOLOv6; (C) YOLOv8; (D) DETR; (E) Deformable-DETR; (F) RT-
DETR; (G) Faster-RCNN; (H) SSD; (I) YOLOv7-PDM.
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5 Conclusion

This paper presents an enhanced YOLOv7-PDM algorithm
model for verifying regular calligraphy script works built upon
the YOLOv7 algorithm. Specifically, to avoid the increased
complexity of the improved YOLOv7 algorithm, we replaced the
convolutional layers in the Backbone part with the PConv module.
Reducing the model’s parameter count and computational cost
(FLOPs) enhanced the algorithm’s mAP0.5 and maintained the
same single-image detection time. Furthermore, the DyHead
dynamic detection head was introduced to enhance the detection
accuracy of the YOLOv7 algorithm as much as possible. This
improvement increased the algorithm’s recognition accuracy
without affecting the inference speed. Additionally, to improve
the regression capability of the bounding boxes in the
YOLOv7 algorithm, we incorporated the MPDioU bounding box
loss function. By further improving the overall mAP0.5 value, a
recognition accuracy of 94.19% was achieved. By comparing the
YOLOv7-PDM algorithm model with eight mainstream algorithms
including YOLOv7, YOLOv6, YOLOv8, Deformable-DETR, RT-
DETR, Faster-RCNN, SSD, and DETR, we demonstrated that the
YOLOv7-PDM algorithm achieved the best performance in terms of
mAP0.5 and single-image detection time, accomplishing the
improvement goals of the algorithm.

When applying the YOLOv7-PDM algorithm to the authentication
of calligraphy regular script works, the genuine works and replicas can
be distinguished by comparing the detected feature quantities.
Nevertheless, there is scope for enhancing our algorithm as we
overlooked special cases like overlapping and intersecting characters
in the later stages of calligraphy cursive script works, which directly
impacted the accuracy of the model’s detection. In upcoming studies,
our main goal will be to refine the algorithm and enhance the model’s
resilience.
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TABLE 7 Test results of Shen’s regular script works identification.

Calligraphy Work type Horizontal start Horizontal end Vertical start Vertical end Straight
angle

Fold
angle

Works 1 Genuine 256 354 229 273 215 261

Replica 11 18 10 13 19 20

Works 2 Genuine 266 314 329 203 315 191

Replica 13 19 21 8 17 12
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