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Evaluating the computational complexity is critical for assessing the time-
domain anti-jamming performance of GNSS receivers. The multiplier is the
core component that contributes to the computational complexity in time-
domain anti-jamming. However, current algorithms aimed at reducing the
complexity of time-domain anti-jamming typically concentrate on shortening
the filter length, which fails to address the high computational complexity
introduced by the use of multipliers. This paper introduces a cascaded
multiplier-free approach for implementing time-domain anti-jamming in
navigation receivers. We propose a numerical power decomposition
technique based on optimal Canonical Signed Digit coding and coefficient
decomposition. By substituting the multiplier with minimal adder and shift
operations, the computational complexity of the anti-jamming filter with a
high quantization bit-width can be considerably decreased. An optimization
strategy is presented, and the low-complexity multiplier-free technique is
applied to the time-domain anti-jamming filter. Compared to the traditional
Canonical Signed Digit multiplier-free technique, our method can reduce the
components required for a 12-bit quantization anti-interference filter by one
adder, 20 shift operations, and five coded word lengths, while maintaining a
pseudo-range measurement deviation below 0.27 ns.
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1 Introduction

The Global Navigation Satellite System (GNSS) offers precise spatial and
temporal reference data, including three-dimensional positioning, velocity, and
timing [1]. Due to the substantial distance between the satellites and the ground,
and the limited satellite resources, the navigation signal is susceptible to being
overwhelmed by jamming [2]. As various electronic systems have advanced,
competition for electromagnetic frequency bands has become intense, leading to
severe jamming [3]. Ensuring anti-jamming capabilities for GNSS receivers is crucial
to navigate through complex electromagnetic and electronic warfare environments,
ensuring the accuracy of positioning, navigation, and timing for navigational
terminals [4].
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Given the spectrum overlap, mutual interference occurs between
satellite navigation, radar, and 5G systems [5]. The low cost of time-
domain anti-jamming makes it a prevalent solution for fixed-band
narrowband jamming suppression, and is crucial for assessing GNSS
receiver performance. Researchers are developing cost-effective
navigation receivers to keep pace with the evolving GNSS
systems and the development of new features. Chien [6] presents
a cost-effective cascaded IIR adaptive notch filter for interference
suppression that significantly reduces complex computations
resulting from Fourier Transforms (FFT), inverse FFT, or wavelet
transformations. Ren et al. [7] proposes a subspace projection
algorithm with a brief projection length for continuous wave and
linear frequency-sweep interference, thereby reducing
computational complexity. Wang et al. [8] introduces an adaptive
narrowband interference (NBI) suppression technique utilizing
coded-aid technology that obviates the need for FFT or matrix
inversion. Additionally, variable tap-length LMS and sparse
algorithms have seen extensive development [9–11]. Nonetheless,
the multiplier continues to impact complexity. The multiplier is a
pivotal component of DSP calculations within the navigation
receiver [12]. Its complexity scales quadratically with the
quantization bit width, thus necessitating considerable
computational resources. Because multiplication operations
influence the jamming suppression performance in hardware, a
multiplier-less implementation has been adopted to reduce costs
and accelerate convergence [13, 14].

Multiplier-less implementation replaces multipliers with other
operations, such as the read-only memory (ROM) lookup table,
distributed arithmetic (DA) algorithm, binary complement,
Coordinate Rotation Digital Computer (CORDIC), multiple
constant multiplication (MCM), and canonic signed digit (CSD)
coding [15–17]. CSD coding components the filter coefficient as the
sum or difference of the power of 2, replacing the multiplier by shift
operation and adder [18]. The coefficient decomposition
decomposes the coefficient into the product of several numbers
by the lookup table, reducing the adder number by cascading.
Methods can be used in conjunction to reduce the adder
number and sampling bit width. There have been optimization
studies on the implementation methods of various filters without
multipliers [19–21].

However, the above multiplier-less implementation methods
are limited in the practical GNSS receiver applications, which are
usually used in fixed-coefficient filters. The anti-jamming filter
coefficient of GNSS receivers is usually considerable, while the
existing multiplication-less implementation scheme is limited by
the quantization bit width, resulting in significant quantization
errors. The anti-jamming filter multiplication-less implementation
method should be further optimized to minimal adders and shift
operations with easy implementation.

Building on previous work, this paper proposes a cascaded
multiplier-free implementation method for GNSS receiver time-
domain anti-jamming filters. This method is applied to the static
time-domain anti-jamming of satellite navigation receivers,
optimizing the design of high-gain filter coefficients without
multipliers. It reduces the number of adders, shift operations,
and the coding word length of filter coefficients, thereby
decreasing the computational complexity of the anti-
jamming filters.

2 System model

2.1 GNSS receiver model

The GNSS system consists of the space segment, ground segment,
and user segment. Figure 1 illustrates the GNSS receiver structure. The
user terminals process the received radio frequency (RF) signals in RF
front-end (RFFE). The baseband digital signal processing (DSP)
suppresses the unexpected interference after the digital down
conversion (DDC), and applies the multiplier-free anti-jamming
filter based on the LMS adaptive algorithm. After the anti-jamming
data is captured and tracked, it finally enters terminal’s back-end (BE)
for realizing positioning, navigation and timing (PNT) functions [22].

Satellite navigation signals include the carrier, pseudo-random
(PRN) code, and message data. The satellite navigation signal can be
expressed by the carrier modulated with the spread spectrum signal
of PRN code and data in Eq. 1:

s t( ) � ∑ ���
2Pt

√
x t( )D t( )( ) sin 2πft + θ( ) (1)

where, Pt is the average power of navigation signal, x(t) is the PRN
code level, D(t) is the satellite broadcast message data, f is the
central frequency of RF signal, θ is the initial phase of the carrier.

Suppose that the receiver thermal noise is u[n], the interference
signal is j[n], such as continuous wave interference or narrowband
Gaussian noise interference. Continuous wave interference (CWI)
aims at the central frequency of satellite navigation signals by the
continuous high-power single-frequency signal [23]. Narrowband
interference (NBI) is generated by band-limited Gaussian white
noise [24]. The CWI and NBI can be expressed as Eqs 2, 3
respectively:

JCWI �
���
2PJ

√
cos 2πfJt + φ0( ) (2)

JNBI � AnG t( ) p Sa t( ) (3)
where, PJ is the interference power, fJ is the interference frequency,
φ0 is the initial phase, An is the narrowband interference amplitude,
G(t) is the Gaussian white noise, G(t) is convoluted with the finite
band-pass gate function Sa(t) to generate narrowband interference.

The resultant input signal before the anti-jamming module can
be expressed in Eq. 4 [25]:

x n[ ] � s n[ ] + j n[ ] + u n[ ] (4)

2.2 Multiplier-free time-domain adaptive
anti-jamming model

The time-domain anti-jamming algorithm utilizes the adaptive
filter to suppress interference. The iterated filter coefficients should
be implemented to be multiplier-free and then assigned to the
weight storage module. Figure 2 illustrates the flow chart of the
multiplier-free time-domain adaptive anti-jamming algorithm.

Suppose that the input vector of the N-long filter at time n is as
Eq. 5:

x � x n( ), x n − 1( ),/, x n −N + 1( )[ ]T (5)

Suppose the filter quantization bit width is L. The filter weight
vector is as Eq. 6:
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W � fix Norm ω1,ω2, ...,ωN[ ] · 2L[ ] � w1, w2, ..., wN[ ] (6)
where, fix[·] is the rounding function to round off the input signal,
Norm[·] is the normalized function.

Define the multiplier-free implementation method as Φ[·].
With the iterated coefficients implemented multiplier-free, the
anti-jamming output signal can be expressed as:

y n( ) � x ·W � ∑N
k�1

x n − k + 1( )Φ wk[ ] (7)

The error signal e(n) is defined as the difference between the
anti-jamming output signal y(n) and the desired signal d(n), where
the desired signal is generally considered to be navigational signal, as
shown in Eq. 8:

e n( ) � d n( ) − y n( ) ≈ s n( ) − y n( ) (8)
The iterative formula of LMS algorithm can be expressed as

Eq. 9 [26]:

Wn+1
M � Wn

M + μxp n( )e n( )
� Wn

M + μxp n( ) s n( ) − y n( )[ ] ≈ Wn
M − μxp n( )y n( ) (9)

where [·]p represent the conjugation.

The multiplier-free implementation of GNSS time-domain anti-
jamming is applicable to satellite navigation receivers with limited
hardware resources. For instance, mobile phones require the
development of miniaturization capabilities and maintaining anti-
interference capabilities, and spaceborne receivers’ functionality is
expanded within the constraints of limited resources. Figure 3
depicts a ground-test module of a satellite-borne receiver in its
practical application.

3 Problem formulation

3.1 CSD coding

The signed number is one of the essential non-standard fixed-point
number in computer algorithm implementation, and its digital range is
1, 0{ }. Since it is not unique, the system with the least nonzero elements
is called the regular signed digit system.

The CSD coding expresses the filter coefficients as the sum or
difference of the power of 2, which is realized by shift operation and
adder. The optimal CSD coding can also reduce the adder number
and the maximum encoding lord length [27].

The mathematical expression of the FIR-filter anti-jamming can
be simplified as shown in Eq. 10 [28]:

FIGURE 1
GNSS receiver structure.

FIGURE 2
Anti-jamming flow chart with multiplier-free implementation.
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yi � ∑N−1

i�0
hixi � ∑N−1

i�0
xi ∑M−1

j�0
hi j( )

� ∑N−1

i�0
xi 2M−1hi M − 1( ) + 2M−1hi M − 1( ) +/ + 21hi 1( ) + 20hi 0( )( )

(10)
where, hi represents the i − th weight of the filter, xi is the input data
to the i − th weight, hi(j) � 0, 1,−1 represents the binary
representation of the i − th weight, M is the binary bit length.

CSD coding replaces all 1 sequences greater than 2 with 10...01
from the lowest bit, where 1 represents the negative 1 bit. The best CSD
coding has minor nonzero elements and the least subtraction times.
Starting from the highest significant bit, replace 101 with 011 [29].

Suppose that the word length of the binary complement-on-two
of value ω is Lbin then the Binary expression is as Eq. 11:

Abin � a″Lbin−1a″Lbin−2/a1
″a0

″ (11)
where, ai � 0, 1, i � 0, 1, ..., Lbin − 1

The word length of CSD encoding of value A is LCSD then the
CSD expression is as Eq. 12:

ACSD � a′LCSD−1a′LCSD−2/a1
′a0

′ (12)
where, a′j � −1, 0, 1, j � 0, 1, ..., LCSD − 1. Usually, the relationship
between CSD code word length and binary complement word length
is as shown in Eq. 13:

LCSD � Lbin +1( ) (13)

The binary complement is updated to CSD coding as shown
from Eqs 14–16:

θi � ai ∧ ai−1 (14)
ζ i � �ζ i−1θi (15)

a′j � 1 − 2ai+1( )ζ i (16)

where, [·]∧ is the exclusive OR operation, the initial value can be
expressed as ai−1 � 0, ζ i−1 � 0, an � an−1.

Then optimize the CSD coding that may have storage waste by
Eq. 17:

A � aL−1aL−2/a1a0 (17)
where, ak � −1, 0, 1, k � 0, 1, ..., L − 1. Usually, the relationship
between CSD code word length and binary complement word
length is as shown in Eq. 18:

L � LCSD −1( ) (18)
Its update process can be expressed from Eqs 19–21:

FIGURE 3
Practical application: ground-test module of spaceborne receiver. (A) Ground testing architecture. (B) Hardware development board.

FIGURE 4
Optimal CSD coding schematic.
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ak � ceil
a′j + aj−2′

2
⎛⎝ ⎞⎠ (19)

ak−1 � a′j ⊕ ak (20)
ak−2 � 1 − 2 aj−1′ ⊕ ak−1( )[ ]aj−2′ (21)

where, ⊕ is the logical AND operation.
The number of adders is expressed as Eq. 22:

Sadd � ∑n−1
k�0

ak| | − 1 (22)

The number of shift operations is expressed as Eq. 23:

Sshift � ∑n−1
k�0

k| ak| |�1 (23)

The figure shows the best CSD coding schematic. The value
211 is taken as an example in Figure 4, the multiplier-free design
based on the optimal CSD coding is composed of 5 values of the
power of 2, and the multiplication operation is realized by four
adders and 18 shift operations.

3.2 Numerical power decomposition

Numerical power decomposition is achieved by cascading
several values to reduce the hardware cost of multiplier-less
implementation [30]. For example, the traditional binary
encoding of the value 231 is 11100111bin, the best CSD
encoding is 100101001, and the original multiplier
implementation can be reduced from 5 adders to 3. If 231 is
factorized into the 7 × 33 cascade, the adders’ number can be
reduced to 2. Figure 5 is the example diagram of numerical power
decomposition.

The value ω can be decomposed into the product of Θ values
and realized by cascading [31] as shown in Eq. 24:

ω � Ω1Ω2/ΩΘ (24)
where, Ωp is the p-th power factor, which consists of the addition
and subtraction of the power of 2 as shown in Eq. 25:

Ωp � 2k1 ±/± 2k2 (25)

The numerical value will affect the device cost of the filter. The
total adder number can be expressed as the sum of the number of
adders required for different decomposition factors, as shown from
Eqs 26–28:

Nadd � ∑Θ
p�1

Spadd (26)

Nshift � ∑Θ
p�1

Spshif t (27)

Nbit � max Lp (28)

where, Spadd, S
p
shift, Lp are the number of adders, the number of shift

operations, and the maximum word length required for the optimal
CSD encoding of the decomposition factor Ωp, respectively.

3.3 Motivations and optimization object

Static anti-jamming filters are usually used in power-sensitive
terminals, and computational complexity is one of the most critical
design elements. The effect of CSD optimal coding to reduce
complexity is limited, and the existing numerical power
decomposition is mainly the lookup table method. The accessible
decomposition results are limited, creating difficulties for the
multiplier-less implementation of large values.

Based on the disadvantages of optimal CSD coding and coefficient
decomposition, in order to solve the problem of high gain in the actual
filter coefficients, this paper proposes a cascaded multiplier-less
implementation. The multiplier-less filter is implemented with
minimum adders, reducing the shift operation and memory word
length. The optimization objective is shown in Eq. 29:

minimizeNadd subject to
Nadd ≤ Sadd
Nshift ≤ Sshift
Nbit ≤ L

⎧⎪⎨⎪⎩ (29)

4 Proposed approach

To design a multiplier-less anti-jamming filter, the numerical
power decomposition of the filter coefficients is first performed to
obtain each decomposition factor. The multiplier-less coding of all

FIGURE 5
Numerical power decomposition schematic.
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decomposition factors is designed according to the optimal CSD
coding method. The flowchart is shown in Figure 6.

Firstly, the numerical power decomposition of the filter
coefficient wi is carried out, and four kinds of decomposition
factors are obtained. The decomposition matrix can be expressed
as is shown in Eq. 30:

Ρ � Ρ1 Ρ2 Ρ3 Ρ4[ ] (30)
where, Ρi is the i-th decomposition factor:

Assume that 2j is a zero-order power factorϒj
0, and the first type

of decomposition factor Ρ1 is the divisor ϒj
0 that can divide wi at

most. Divide wi by Ρ1 to get w1
i , as shown in Eqs 31, 32:

P1 � max ϒj
0 mod wi,ϒ

j
0( ) � 0

∣∣∣∣∣( ), j � 1, 2, ..., floor
B

2
( ) (31)

w1
i � wi/P1 (32)

where, mod(·) is the residue function, B is the binary length of wi,
and floor(·) is the down-integer function. The cascade of the first
type of decomposition factor is realized by a j-th forward
shift operation.

Assume that 2l + 1 or 2l − 1 is a one-order power factor ϒj
1, the

second decomposition factor Ρ2 is the divisor ϒ
j
1 that can divide wi′

at most. Divide w1
i by Ρ2 to get w2

i as shown in Eqs 33, 34:

P2 � max ϒj
1 mod w1

i ,ϒ
j
1( ) � 0

∣∣∣∣∣( ), j � 1, 2, ..., floor
B′
2

( ) (33)

w2
i � w1

i /Πϒj
1 (34)

where, B′ is the binary length of w1
i . The second decomposition

factor Ρ2 is realized by an l-bit forward shift operation and an adder.
Assume that 2m + 2n + 1 or 2m + 2n − 1 or 2m − 2n + 1 or 2m −

2n − 1 is the second-order power factorϒj
2, The third decomposition

factor Ρ3 is the divisor ϒ
j
2 that can divide w2

i at most. Devide w2
i by

Ρ3 to get ϒj
2, as shown in Eqs 35, 36:

P3 � max ϒj
2 mod w2

i ,ϒ
j
2( ) � 0

∣∣∣∣∣( ), m, n � 1, 2, ..., floor
B″
2

( )
(35)

w3
i � w2

i /Πϒj
2 (36)

where, B″ is the binary length of w2
i . The third type of

decomposition factor is realized by 1 m displacement bit
operation, 1 n displacement bit operation and 2 adders.

The fourth decomposition factor Ρ4 is the remainder w3
i divided

by the third decomposition factor as shown in Eq. 37:

Ρ4 � w3
i (37)

Define the multiplier-free implementation matrix is a cellular
matrix as Eq. 38:

Θ �
a1,B1
a1,B2
..
.

a1,BM1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

a2,B1

a2,B2

..

.

a2,BM2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

a3,B1

a3,B2

..

.

a3,BM3

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

a4,B1

a4,B2

..

.

a4,BM4

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭ (38)

Based on complexity, a better multiplier-free implementation
method is selected. In the decomposition process of any power factor
Pp, it should be ensured that the cumulative number of adders and
the cumulative number of shift operations do not exceed the total
number of CSD codes, as shown in Eqs 39, 40:

∑Λ
p�1

Spadd ≤ Sadd (39)

∑Λ
p�1

Spshift ≤ Sshift (40)

When Eqs 39, 40 is violated in any numerical power
decomposition process, the numerical decomposition should be
stopped. The decomposition process takes the last decomposition
factor as the penultimate factor, and the remainder divided by the
penultimate factor is recorded as the last factor. When the complexity
of the cascaded multiplier-less implementation is higher than that of
the traditional optimal CSD coding, the optimal CSD coding method
is still used to achieve multiplication-free coefficients.

According to Eqs 7, 38, the logic circuit flow of anti-jamming
output signal is derived in Eq. 41:

FIGURE 6
Cascaded multiplier-free implementation method flowchart.
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y n( ) � ∑N
k�1

∏4
i�1

∑Mi

j�1
x n − k + 1( ) · 2Bj (41)

5 Performance analysis

5.1 Algorithm complexity comparison

Table 1 presents the complexity comparison between the proposed
method and the traditional multiplier-free implementation method,
considering the number of adders, shift operations, and maximum
word length. The table displays the number of devices for various values

under both multiplier-free implementation methods, highlighting the
less complex approach. Compared to the traditional optimal CSD
coding, the proposed method significantly reduces complexity in
multiplier-free implementation. The number of adders is reduced by
0 or 1, while the number of shift operations and the maximum word
length are reduced significantly by 13 and 2, respectively.

In order to verify the universal adaptability of the cascaded
multiplier-less algorithm, the application rate and complexity
optimization performance of the new algorithm with 1~1,000 values
is analyzed, respectively. Figure 7A shows the usage proportion of the
proposed method. The total integer value of the coefficient is 1~1,000,
the smoothing point is set to 500, and the percentage of the cascade
multiplier-less implementation is selected for each 400-point data

TABLE 1 Algorithm complexity comparison.

Coefficient Traditional method Proposed method

Adder Shift
operation

Maximum code
length

Decomposition
structure

Adder Shift
operation

Maximum code
length

14 1 5 5 2*7 1 4 4

27 2 7 6 3*9 2 4 4

38 2 8 6 2*19 2 6 5

85 3 12 7 5*17 2 6 5

90 3 14 7 2*3*15 2 6 5

153 3 14 8 9*17 2 7 5

170 3 16 8 2*5*17 2 7 5

231 3 16 9 7*33 2 8 6

372 3 21 9 3*4*31 2 8 6

524 2 14 10 4*131 2 10 8

FIGURE 7
Universal adaptability analysis. (A) Usage proportion of the proposed method. (B) Complexity optimization performance.
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calculation optimization method. The results show that as the
coefficient increases, the optimization effect of the cascaded
multiplier-less implementation method is better. Figure 7B
demonstrates the smoothing result of the device reduction after
using the proposed algorithm. Since the device complexity
optimization results are relatively scattered, 59 is used as the
smoothing unit to smooth the optimization data of adder, shift
operation, and maximum coding word length, respectively. The
results show that the cascade multiplier-free implementation method
significantly reduces the number of the three devices on the graph.
Among them, the number of shift operations decreases the most, and
the maximum reduction reaches 19.

The digital filters with lengths of 31 and 59 are designed by
software. The filter quantization bit width is 12, and the initially
designed filter is quantized. The optimization effect of the proposed

method on the device complexity is verified based on the designed
anti-jamming filter to ensure the effectiveness of the cascaded
multiplier-free method in the GNSS receiver. Figure 8 shows that
the optimal CSD coding method based on cascaded multiplier-free
implementation reduces the multiplier and shift operations
compared with CSD coding. After filter coefficient
decomposition, the number of adders optimized by CSD coding
is reduced by 0–2, and the shift operation is reduced by 0–5.

Figure 9 compares the anti-jamming filter complexity based on
the cascaded multiplier-free implementation and the traditional
method to verify the method availability. The results show that
the adder reduction of the proposed method is greater than
0 compared with the traditional method, and the complexity
reduction of the shift operation and the maximum code length is
more pronounced. When the middle tap coefficient of the 58-order

FIGURE 8
Complexity optimization comparison of different CSD codes based on factor cascade. (A) 30-order filter. (B) 58-order filter.

FIGURE 9
Comparison of device count between the proposed and traditional multiplier-free method. (A) 30-order filter. (B) 58-order filter.
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filter is 1,024, the number of shift operations is reduced by 20, and
the maximum code length is reduced by 5.

Debugging and verification were performed on the test platform
illustrated in Figure 3. By minimizing the number of effective
operations, cascading multiplication-free processing was applied
to the constant multiplier. The anti-jamming module achieved a
52% reduction in its effective circuit area.

5.2 Anti-jamming performance

The carrier-to-noise ratio (CNR) after interference mitigation is
a quantitative assessment metric for evaluating time-domain

interference resistance [32]. It is defined as the ratio of the
carrier power to the power spectral density of the baseband
signal noise. A too low carrier-to-noise ratio can severely affect
the receiver’s ability to correctly capture and track. Carrier-to-noise
ratio loss is the difference between the carrier-to-noise ratio under
no-interference conditions and the carrier-to-noise ratio after
interference mitigation defiened as Eq. 42.

ΔCNR � C/N[ ]0 − C/N[ ]ajm
� 10 lg

Bn · ∫∞
−∞Ss f( )df · ∫∞

−∞Sy f( )df − ∫∞
−∞ H f( )∣∣∣∣ ∣∣∣∣2Ss f( )df( )

∫∞
−∞Sn f( )df · ∫∞

−∞ H f( )∣∣∣∣ ∣∣∣∣2Ss f( )df
⎧⎪⎨⎪⎩

⎫⎪⎬⎪⎭
(42)

FIGURE 10
Interference suppression performance. (A) Spectrum diagram before and after anti-jamming. (B) Anti-jamming output CNR.

FIGURE 11
Measurement accuracy analysis. (A) The correlation function of the output and local signals. (B) SCB curve bias.
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Where, Ss(f), Sn(f) and Sy(f) are the power spectral densities of
navigation signal, noise signal and anti-interference signal
respectively, H(f) is the filter frequency response, and Bn is the
noise bandwidth.

A static filter with the navigation signal frequency as the
stopband center frequency is designed, and the filter quantization
bit width is set to 12. The carrier-to-noise ratio (CNR) of the
BD3 signal is set to 50 dB·Hz, the interference bandwidth is
2MHz, the jamming-to-signal ratio (JSR) is 40dB, and the
sampling rate of the software receiver is 25 MHz. The
narrowband interference suppression performance based on
the BD3 signal is shown in Figure 10. Figure 10A shows the
spectrum before and after anti-jamming. The results show that
the cascaded multiplier-free method can achieve anti-
interference. The adaptive filter forms a null at least 30 dB in
the interference frequency band. Figure 10B shows the navigation
signal CNR after suppressing interference. The maximum CNR
loss is less than 2 dB·Hz.

Figure 11 analyzes the ranging accuracy of the cascaded
multiplication-free anti-interference method. Figure 11A displays
the correlation function between the anti-interference output and
the local signals. By observing the 10 chips surrounding the
correlation peak, the correlation function of the output signal
remains symmetric with the local signal, and the correlation peak
position shows no obvious distortion. Figure 11B measures the
symmetry of the correlation peak by the SCB curve bias and
quantitatively analyzes the ranging deviation of the receiver [30].
Control the convergence step to reduce the influence of the time-
varying filter on the ranging accuracy. Under a 31-order anti-
interference filter, the pseudo-range measurement deviation is
kept within 0.27 ns, which can ensure the ranging accuracy.

6 Conclusion

This paper introduces a cascaded multiplier-free implementation
method and enhances the corresponding implementation scheme.
This method is applied to the static time domain anti-jamming of
GNSS receivers by replacing multipliers with a minimal number of
adders and shift operations, utilizing optimal CSD coding and
numerical power decomposition. Simulation results demonstrate
that interference occupying 20% of the navigation signal
bandwidth can be effectively suppressed, optimizing the anti-
jamming filter structure. The number of adders, shift operations,
and maximum code length are significantly reduced, with the
maximum number of shift operations decreased by 20. The
pseudo-range measurement accuracy has been verified to be within
0.27 ns, ensuring adequate ranging performance.
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