
LogMS: a multi-stage log anomaly
detection method based on
multi-source information fusion
and probability label estimation

Zhongjiang Yu, Shaoping Yang*, Zhongtai Li, Ligang Li, Hui Luo
and Fan Yang

China Tobacco Yunnan Industrial Co., Ltd., Kunming, Yunnan, China

Introduction: Log anomaly detection is essential for monitoring and maintaining
the normal operation of systems. With the rapid development and maturation of
deep learning technologies, deep learning-based log anomaly detection has
become a prominent research area. However, existing methods primarily
concentrate on directly detecting log data in a single stage using specific
anomaly information, such as log sequential information or log semantic
information. This leads to a limited understanding of log data, resulting in low
detection accuracy and poor model robustness.

Methods: To tackle this challenge, we propose LogMS, amulti-stage log anomaly
detectionmethod based onmulti-source information fusion and probability label
estimation. Before anomaly detection, the logs undergo parsing and
vectorization to capture semantic information. Subsequently, we propose a
multi-source information fusion-based long short-term memory (MSIF-LSTM)
network for the initial stage of anomaly log detection. By fusing semantic
information, sequential information, and quantitative information, MSIF-LSTM
enhances the anomaly detection capability. Furthermore, we introduce a
probability label estimation-based gate recurrent unit (PLE-GRU) network,
which leverages easily obtainable normal log labels to construct pseudo-
labeled data and train a GRU for further detection. PLE-GRU enhances the
detection capability from the perspective of label information. To ensure the
overall efficiency of the LogMS, the second-stage will only be activated when
anomalies are not detected in the first stage.

Results and Discussion: Experimental results demonstrate that LogMS
outperforms baseline models across various log anomaly detection datasets,
exhibiting superior performance in robustness testing.

KEYWORDS

log anomaly detection, multi-source information fusion, probability label estimation,
long short-term memory, gate recurrent unit

1 Introduction

Logs are vital for the upkeep of large-scale software systems as they capture crucial data
produced during system operation, documenting essential details regarding server and
application software activities [1–3]. With the rapid development of the information age,
software systems have become increasingly intricate, resulting in a significant surge in log

OPEN ACCESS

EDITED BY

Zhenqiu Shu,
Kunming University of Science and Technology,
China

REVIEWED BY

Kun Cheng,
Beihang University, China
Jun Yu,
Zhengzhou University of Light Industry, China

*CORRESPONDENCE

Shaoping Yang,
yangsp@ynzy-tobacco.com

RECEIVED 16 March 2024
ACCEPTED 05 April 2024
PUBLISHED 22 April 2024

CITATION

Yu Z, Yang S, Li Z, Li L, Luo H and Yang F (2024),
LogMS: a multi-stage log anomaly detection
method based on multi-source information
fusion and probability label estimation.
Front. Phys. 12:1401857.
doi: 10.3389/fphy.2024.1401857

COPYRIGHT

© 2024 Yu, Yang, Li, Li, Luo and Yang. This is an
open-access article distributed under the terms
of the Creative Commons Attribution License
(CC BY). The use, distribution or reproduction in
other forums is permitted, provided the original
author(s) and the copyright owner(s) are
credited and that the original publication in this
journal is cited, in accordance with accepted
academic practice. No use, distribution or
reproduction is permitted which does not
comply with these terms.

Frontiers in Physics frontiersin.org01

TYPE Original Research
PUBLISHED 22 April 2024
DOI 10.3389/fphy.2024.1401857

https://www.frontiersin.org/articles/10.3389/fphy.2024.1401857/full
https://www.frontiersin.org/articles/10.3389/fphy.2024.1401857/full
https://www.frontiersin.org/articles/10.3389/fphy.2024.1401857/full
https://www.frontiersin.org/articles/10.3389/fphy.2024.1401857/full
https://crossmark.crossref.org/dialog/?doi=10.3389/fphy.2024.1401857&domain=pdf&date_stamp=2024-04-22
mailto:yangsp@ynzy-tobacco.com
mailto:yangsp@ynzy-tobacco.com
https://doi.org/10.3389/fphy.2024.1401857
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://www.frontiersin.org/journals/physics
https://www.frontiersin.org/journals/physics#editorial-board
https://www.frontiersin.org/journals/physics#editorial-board
https://doi.org/10.3389/fphy.2024.1401857

data volume [4, 5]. Analyzing log data allows developers to
meticulously assess system status, identify anomalies, and
understand their root causes [6]. Timely detection and resolution
of anomalies serve as a proactive measure to prevent system crashes
and mitigate potential economic losses [7].

In the early stages of log anomaly detection, developers typically
relied on manual methods such as keyword searches or simple alert
rules set by log investigation tools [8, 9]. However, with the prevalence
of large-scale systems today, traditional manual detection methods are
no longer adequate [10]. To meet the demands of modern anomaly
detection in large-scale systems, extensive research has been conducted
on automatic log analysis technology utilizing deep learning [11, 12].
These technologies automate the learning of log patterns and analyze
connections to identify potential anomalies effectively. Examples
include LogRobust [13], DeepLog [14], and LogAnomaly [15].
Nevertheless, most existing methods focus on direct detection of log
data using specific anomaly information in a single stage. This limited
perspective results in lower detection accuracy and model robustness.

To overcome this limitation, we introduce LogMS, amulti-stage log
anomaly detection method based on multi-source information fusion
and probability label estimation. Prior to anomaly detection, logs are
parsed by Drain [16] and vectorized based on TF-IDF to capture
semantic information. A multi-source information fusion-based long
short-term memory (MSIF-LSTM) network is proposed for the first-
stage anomaly log detection, enhancing anomaly detection by fusing
semantic information, sequential information, and quantitative
information. Subsequently, we introduce a probability label
estimation-based gate recurrent unit (PLE-GRU) network, which
leverages easily obtainable normal log labels to construct pseudo-
labeled data and train a GRU for further detection. PLE-GRU
enhances the detection capability from the perspective of label
information. To ensure the overall efficiency of the LogMS, the
second-stage will only be activated when anomalies are not detected
in the first stage. Bymodeling the correlation between log data from two
stages and three perspectives, LogMS effectively mines log data to detect
anomalies. The key contributions of this paper include:

1) Introducing LogMS, a multi-stage log anomaly detection
method employing multi-source information fusion and
probability label estimation to capture deeper relationships
among log sequences, thereby enhancing anomaly detection
performance.

2) Conducting systematic experiments on the HDFS [17] and
BGL [18] dataset to evaluate the LogMS model. The results
demonstrate the method’s effectiveness in detecting various
anomalous logs, showing significant improvements in
accuracy and robustness compared to baseline models.

2 Related work

Anomaly detection techniques based on automated log analysis
can be broadly classified into two categories: supervised methods
and unsupervised methods.

The supervised approach [13] involves training the model with
labeled training data and then applying anomaly detection on log
data. However, in practical scenarios, researchers have noted that
many existing log anomaly detection studies have not met

expectations [19]. Most models assume a closed-world
assumption, which includes the stability of log data over time
and a known set of log events for training and testing [20]. Yet,
due to the evolving nature of log data, unforeseen log events or
sequences often arise. To tackle such log instability issues, Zhang
et al. [13] introduced a novel log-based anomaly detection method
named LogRobust. This method extracts semantic information from
log events, transforms it into semantic vectors, and employs an
attention-based Bi-LSTM model for anomaly detection. By
capturing contextual information and learning diverse log event
features, LogRobust effectively identifies and manages unstable log
events and sequences. In fact, semantic information is a vital
component in natural language understanding [21, 22], and logs
can be understood as a special form of natural language.
Furthermore, Lu et al. [23] pioneered a detection model based on
Convolutional Neural Network (CNN) [24] in log-based anomaly
detection, showcasing the potential of CNN in this domain. Their
CNN-based method incorporates logkey2vec embedding, three one-
dimensional convolutional layers, a dropout layer, and a max-
pooling layer. Initially, log content is numerically encoded, and
logkey2vec generates embeddings, which are then passed through
convolutional layers with varying filters. The max-pooling layer
selects the maximum feature value, and a fully connected softmax
layer produces probability distribution results. In experiments on
anomaly detection in Hadoop Distributed File System (HDFS) logs,
the CNN-based approach outperformed Long Short-Term Memory
(LSTM) and Multilayer Perceptron (MLP) methods in accuracy.

Supervised methods rely on annotated training data, which
requires high data quality. However, in real-world scenarios, log
data is very extensive, making data annotation impractical.
Furthermore, log data also suffers from class imbalance issues,
where abnormal events are usually of relatively small scale, while
normal events dominate the vast majority, leading to uneven data
distribution. When dealing with such imbalanced data situations,
supervised learning algorithms may tend to predict normal events
while ignoring abnormal events.

In contrast to supervised methods, unsupervised methods offer
the advantage of not requiring annotated data [25]. This
characteristic makes them well-suited for real-world
environments with abundant unlabeled log data. Essentially,
unsupervised methods aim to establish a baseline of normal log
data by analyzing internal data correlations such as sequential
relationships and quantitative associations. Any data that deviates
from this established baseline is classified as anomalous. For
instance, Du et al. [14] introduced the DeepLog model, which
treats system logs as natural language sequences and employs
Long Short-Term Memory (LSTM) networks for unsupervised
log anomaly detection. The model initially learns log patterns by
examining sequential relationships between log events and then uses
these patterns for log prediction. This pioneering approach to
anomaly detection has since been widely embraced in subsequent
research. Another noteworthy model, LogAnomaly developed by
Ma et al. [15], also represents log streams as natural language
sequences and introduces a simple yet effective semantic
information extraction method called template2vec. This method
can simultaneously identify sequential and quantitative log
anomalies. LogAnomaly comprises offline learning and online
detection components. In the offline learning phase, templates

Frontiers in Physics frontiersin.org02

Yu et al. 10.3389/fphy.2024.1401857

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2024.1401857

are extracted from historical logs using FT-Tree, and the logs are
matched with these templates. Subsequently, log sequences are
converted into template vector sequences through template2vec.
LSTMmodels are then used to extract sequential and quantitative
features from log sequences to determine anomalies based on
these features. Periodic offline learning, such as weekly updates,
ensures the integration of newly emerged log templates into the
updated offline models. In the online detection component of
LogAnomaly, real-time logs are matched with existing templates.
If a match is found, the log is converted into a template vector.
Otherwise, based on template vector similarities, the real-time
log’s “temporary” template vector is approximated to an existing
template vector. Consequently, each real-time log is associated
with a template vector, and real-time logs are converted into
template vector sequences. By leveraging the LSTM model
trained in the offline learning phase, LogAnomaly can identify
anomalous log sequences. Additionally, Farzad et al. [26]
proposed a novel unsupervised log anomaly detection model
that integrates Isolation Forests with two deep autoencoder
networks. Autoencoders facilitate feature learning for
subsequent anomaly detection, while Isolation Forests are
employed for positive sample prediction.

Unsupervised methods struggle to determine the threshold
range of abnormal logs, and log data typically exhibit complex
data distributions, containingmultiple categories and patterns, some
of which may represent normal behavior while others may indicate
anomalous behavior. Therefore, in unsupervised learning, without
explicit labels to guide the learning process, models find it difficult to
accurately discern whether logs are abnormal.

3 Proposed method

To address the above issues, this paper introduces a multi-stage
log anomaly detection method named LogMS, which relies on
multi-source information fusion and probability label estimation.
The architecture of LogMS is depicted in Figure 1, which comprises
the following components: Log Parsing and Semantic Vectorization,
MSIF-LSTM, and PLE-GRU.

3.1 Log parsing and semantic vectorization

3.1.1 Log parsing
Raw log messages are commonly unstructured as developers

have the flexibility to create free-text log messages within the source
code. Hence, the initial phase in log anomaly detection involves log
parsing, which aims to convert unstructured log messages into
structured events. With the deepening of research on log
anomaly detection, there have been many ready-to-use parsing
tools that have emerged, such as Spell [27], Drain [16], Brain
[28], and DivLog [29]. In this study, we have selected Drain as
our log parsing tool due to its proven effectiveness and accuracy.
Upon receiving a new raw log message, Drain initiates preprocessing
using basic regular expressions guided by domain expertise.
Subsequently, the tool searches for a log group (referred to as a
leaf node of the tree) by following the specific rules embedded in the
internal nodes of the tree. If an appropriate log group is identified,
the incoming log message is compared with the stored log event in
that group. If no suitable log group is found, a new log group is
created based on the incoming log message. An illustration of log
message parsing using Drain is provided in Figure 2. For instance, in
the case of the initial line of the raw unstructured log message
“Receiving block blk_579248908079 sc:/10.251.215.16:33145 dest:/
10.251.30.6 . . . ,”Drain extracts the data block name, source address,
and destination address by replacing them with wildcards, resulting
in the structured log event “Receiving * src: * dest:*.”

3.1.2 Preprocessing and semantic vectorization
In this section, we will preprocess and vectorize the parsed log

events following a structured workflow as depicted in Figure 3. This
process encompasses preprocessing, word vectorization, and TF-
IDF-based semantic vectorization.

Preprocessing: The parsed log events often contain non-
character tokens (such as separators, operators, and punctuation),
stop words (like “a” and “the”), and compound words (e.g.,
“TypeDeclaration” composed of “type” and “declaration,” or
“isCommitable” composed of “is” and “Commitable”). These
elements can impede subsequent processes such as vectorization
and anomaly detection, necessitating further preprocessing of log

FIGURE 1
The overall architecture of LogMS.

Frontiers in Physics frontiersin.org03

Yu et al. 10.3389/fphy.2024.1401857

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2024.1401857

events. Specifically, all non-character tokens and stop words will be
eliminated, and compound words will be segmented into
individual words.

Word Vectorization: Following the preprocessing steps, each
word in the log events will be vectorized with the objectives of
ensuring high discriminability among different log events and
identifying log events with similar semantics. To achieve this, we
will utilize FastText [30] to convert words in log events into semantic
vectors. FastText, pretrained on the Common Crawl corpus dataset,
effectively captures intrinsic word relationships in English sentences,
including semantic similarities. Implementation involves invoking
the “get_word_vectors” function of FastText to acquire word
vectors. The vector representation of the j-th word in the i-th log
event is denoted as vij.

TF-IDF-based Semantic Vectorization: The word vectors will be
combined using TF-IDF to derive the semantic vector for each log
event. In TF-IDF, the Term Frequency (TF) component gauges

word importance within a sentence, promoting high
discriminability. For instance, a frequently occurring word like
“Block” indicates its significance. The TF calculation is defined as:

TF vij() � #vij
#totali

(1)

Here, #vij denotes the count of the j-th word in the i-th log event,
while #totali represents the total word count in the log event.

Conversely, if a term like “Receiving” is prevalent across all
log events, its ubiquity may reduce event distinctiveness. To
address this, the Inverse Document Frequency (IDF) in TF-
IDF decreases the weight of frequently occurring terms,
enhancing the weighting scheme’s discriminative power. IDF
calculation is as follows:

IDF vij() � N

Nvij

(2)

FIGURE 2
Log parsing by Drain.

FIGURE 3
Preprocessing and semantic vectorization.

Frontiers in Physics frontiersin.org04

Yu et al. 10.3389/fphy.2024.1401857

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2024.1401857

Here, N denotes the total log event count andNvij
is the count of

log events containing the word vij. The TF-IDF weight of word vij is
calculated by:

wi
j � TF vij() × IDF vij() (3)

Finally, the semantic vector vi of the i-th log event is
determined as:

vi � 1
N

∑
N

j�1
wj

i · vji (4)

3.2 MSIF-LSTM for the first-stage dection

As mentioned above, existing methods mainly focus on directly
detecting log data in a single stage using specific anomaly
information, such as log sequential information or log semantic
information. Therefore, we propose a multi-source information
fusion-based long short-term memory (MSIF-LSTM) network for
the initial stage of anomaly log detection. This method can integrate
multiple information such as semantic information, sequential
information, and quantitative information through multi-source
information fusion. Specifically, we utilize semantic vectors
representing semantic information and train the model using
both sequential information and quantized information to
achieve the fusion of information. We will first introduce the
structure of MSIF-LSTM, and then discuss how to obtain the two
information to train MSIF-LSTM. During the training process, we
update the model parameters using backpropagation.

3.2.1 The structure and training of MSIF-LSTM
MSIF-LSTM extends the traditional LSTM architecture to

handle multiple information simultaneously. The key
components include the cell state (Ct), the hidden state (ht), and
multiple sets of gates - forget gates (fk

t), input gates (ikt), and output
gates (okt) for each information k. The formulas for computing these
components at time step t for each information k are as follows:

(1) Forget Gate:

fk
t � σ Wk

f · ht−1, xt[] + bkf() (5)

(2) Input Gate:

ikt � σ Wk
i · ht−1, xt[] + bki() (6)

(3) Candidate Cell State:

~C
k

t � tanh Wk
C · ht−1, xt[] + bkC() (7)

(4) Update Cell State:

Ck
t � fk

t pC
k
t−1 + ikt p~C

k

t (8)

(5) Output Gate:

okt � σ Wk
o · ht−1, xt[] + bko() (9)

(6) Hidden State:

ht � ∑
k

okt ptanh Ck
t()() (10)

where xt denotes the input log event at time step t, ht−1 represents the
previous time step’s hidden state, Wk

f, W
k
i , W

k
C, and Wk

o stand for
the weight matrices for each information gate k, and bkf, b

k
i , b

k
C, and

bko are the bias vectors associated with information k. The symbol σ
denotes the sigmoid activation function, and p signifies element-
wise multiplication. The training of MSIF-LSTM involves leveraging
both sequential and quantitative information. This training process
not only effectively integrates multiple sources of information but
also preserves the specific characteristics of each information source.
This contributes to enhancing the representation capability of
the model [31].

3.2.2 Sequential information
Logging procedures are typically executed in accordance with

well-defined processes, resulting in the natural emergence of
sequential patterns within normal logs. In essence, when
observing a sequence of log events, it becomes possible to
forecast the subsequent log event in the absence of anomalies.
Therefore, we utilize the sequential information to train LSTM.
The input of LSTM is a log event sequence (e.g., {vi−3, vi−2, vi−1}), the
output is the probability of the next log event.

3.2.3 Quantitative information
In addition to sequential information, log event sequences

(i.e., sequences formed by multiple log events occurring in order)
also contain quantitative information. Typically, during normal
program execution, certain invariants and quantitative
relationships persist within the logs, regardless of varying inputs
and workloads. For example, it is an invariant fact that every opened
file will eventually undergo closure at some point. Therefore, in
normal scenarios, the frequency of logs indicating“open file” should
be equivalent to the frequency of logs denoting “closed file.” These
quantitative relationships embedded within the logs serve as
valuable indicators of standard program execution behavior.
Deviation from these established invariants by a new log event
signals an exception within the system’s execution. Therefore, we
utilize the quantitative information to train LSTM. First, the we need
to calculate the count vector Ak of k-th log event sequence as:

Ak � ak v1(), ak v2(), . . . , ak vn()() (11)
where n denotes the total count of unique log event vectors, ak (v

i)
signifies the occurrence of vi in the k-th log event sequence.
Subsequently, A1, A2, . . ., Ak, . . . are fed into LSTM for the
acquisition of quantitative insights.

3.3 PLE-GRU for the second-stage dection

In the first stage, the focus is onmodeling some characteristics of
the log data itself. The MSIF-LSTMmethod construct in this stage is
unsupervised, lacking the utilization of label information, especially
readily available normal log labels, thereby limiting the detection
capability. To tackle this problem, we design a semi-supervised

Frontiers in Physics frontiersin.org05

Yu et al. 10.3389/fphy.2024.1401857

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2024.1401857

learning method called PLE-GRU, which will only be activated when
anomalies are not detected in the first stage, aiming to ensure the
overall efficiency of the LogMS algorithm. PLE-GRU consists of
three parts: log sequence clustering, label probability evaluation, and
the structure and training of PLE-GRU. The first two steps entail
creating pseudo-labels by utilizing annotated labels from a portion
of normal log sequences within the training dataset.

3.3.1 Log sequence clustering
Based on the idea that log sequences that have similar meanings

are expected to be assigned identical labels, PLE-GRU utilizes
advanced clustering techniques to group log sequences with
comparable meanings. In this study, we utilize HDBSCAN [32]
to cluster both labeled and unlabeled log sequences within the
training set. The reason for this choice is that HDBSCAN is a
data clustering technique that does not necessitate predefining the
cluster count, unlike approaches such as K-means, and it has fewer
parameters and is robust to parameter settings. The implementation
of log sequence clustering is achieved through the hdbscan (https://
hdbscan.readthedocs.io/en/latest/) package.

3.3.2 Label probability estimation
Given the complexity of achieving perfect clustering results,

PLE-GRU adopts a strategy of assigning probabilistic labels to
unlabeled log sequences instead of deterministic ones. This
method involves evaluating the probability that an unlabeled
log sequence corresponds to each label, thereby reducing the
impact of noise introduced during clustering. Specifically, we
compute the probability of an unlabeled log sequence belonging
to each label based on clustering outcomes. Using HDBSCAN,
each log sequence in a cluster receives a score indicating the
uncertainty of its cluster membership. This score, ranging from
0 to 1, serves as a measure of confidence in clustering the log
sequence with its respective group; a lower score indicates higher
confidence. Despite potential uncertainty, assigning a
probabilistic label is crucial to align with the initial label
estimation framework. By leveraging these principles and the
scores from HDBSCAN clustering, each preliminary label is
converted into a probabilistic label where P (anomalous) = 1 −
score/2 and P (normal) = score/2.

3.3.3 The structure and training of PLE-GRU
The pseudo-labels derived from the training dataset by

estimating label probabilities will be utilized for training a Gated
Recurrent Unit (GRU) neural network, establishing a robust and
efficient anomaly detection model. GRU is a type of recurrent neural
network (RNN) architecture devised to combat the vanishing
gradient problem encountered in traditional RNNs. It bears
resemblance to LSTM but boasts a simpler structure featuring
two primary gates: the update gate and the reset gate. GRU is
renowned for its ability to capture long-term dependencies in
sequential data effectively, requiring fewer parameters
compared to LSTM.

For a log sequence represented as S = {v1, v2, . . ., vt}, where vt (1 <
t < T) denotes the t-th log event, and T signifies the total log events in
S, the input to the GRU at time step t is the semantic vector of vt

designated as xt. The GRU cell computation involves two key
elements: the hidden state (ht) and the update gate (zt) along

with the reset gate (rt). The computations for these components
at time step t are expressed by the following formulas:

(1) Update Gate:

zt � σ Wz · ht−1, xt[]() (12)

(2) Reset Gate:

rt � σ Wr · ht−1, xt[]() (13)

(3) Candidate Hidden State:

~ht � tanh Wh · rtpht−1, xt[]() (14)

(4) Update Hidden State:

ht � 1 − zt()pht−1 + ztp~ht (15)
At each time step t, xt denotes the input log event, ht−1 stands for

the hidden state from the preceding time step, and Wz, Wr, Wh

represent weight matrices. The function σ signifies the sigmoid
activation, with p indicating element-wise multiplication. The
ultimate hidden state is leveraged to predict whether the input
log sequence is anomalous.

4 Experimental results and analysis

4.1 Dataset

To evaluate the performance of LogMS, experiments were
carried out on the Hadoop Distributed File System (HDFS)
dataset and the Blue Gene/L supercomputer (BGL) dataset,
followed by a comprehensive analysis of the outcomes. These
datasets are commonly utilized in log anomaly detection, with
their characteristics outlined in Table 1. The HDFS dataset,
generated by over 200 Amazon EC2 nodes, comprises a total of
11,175,629 log messages. These log entries are segmented into
distinct log windows based on their corresponding block_id,
representing the program execution status within the HDFS
system. Among the log entries, 16,838 log blocks (2.93%) indicate
system anomalies. On the other hand, the BGL dataset encompasses
4,747,963 log messages from the “Blue Gene/L” supercomputer,
which houses 128 K processors at Lawrence Livermore National

TABLE 1 Statistics of HDFS and BGL.

Dataset HDFS BGL

Event Collection/day 2 215

Size/GB 1.490 0.708

Number of Logs 1,175,629 4,747,963

Number of Anomalies 16838 (blocks) 348460 (logs)

Total Number of Templates 30 378

Number of Training Sequences 5,000 7,500

Number of Training Templates 15 185

Frontiers in Physics frontiersin.org06

Yu et al. 10.3389/fphy.2024.1401857

https://hdbscan.readthedocs.io/en/latest/
https://hdbscan.readthedocs.io/en/latest/
https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2024.1401857

Laboratory. This dataset spans over 7 months, with experts in the
BGL domain manually categorizing each log entry as abnormal or
normal. Notably, there are 348,460 abnormal log messages in the
BGL dataset. Unlike HDFS, the BGL dataset lacks explicit labels like
block_id, making it challenging to extract log sequences effectively.

After log parsing, a total of 30 HDFS log templates and 378 BGL
log templates are obtained. For HDFS, the logs are divided into
sequences based on block_id. For BGL, as the logs do not record
identifiers for each sequence, a fixed window size of 150 is used to
segment the logs into sequences.

4.2 Evaluation metrics

In this study, precision, recall, and F1-score are employed as
evaluation metrics, commonly utilized in log anomaly detection

research [13–15]. Precision measures the proportion of accurately
identified abnormal log sequences among all sequences flagged as
anomalies by the model, calculated as:

Precision � TP

TP + FP
(16)

Recall gauges the proportion of correctly identified abnormal log
sequences among all actual anomalies, expressed as:

Recall � TP

TP + FN
(17)

F1-score, the harmonic mean of precision and recall, is
calculated as:

F1 � 2 × Precision × Recall

Precision + Recall
(18)

Here, TP (True Positive) indicates the count of abnormal
log sequences correctly identified by the model, FP (False
Positive) represents the number of normal log sequences
inaccurately classified as anomalies, and FN (False Negative)
denotes the count of abnormal log sequences overlooked by
the model.

4.3 Experimental setting

We implement LogMS based on Python 3.8.3 and PyTorch 1.5.1.
All experiments are conducted on a single RTX 3090Ti 24 GB GPU.
In MSIF-LSTM, we set the weight decay to 0.0001, momentum to
0.9, initial learning rate to 0.01, use cross-entropy as the loss
function, set the mini-batch size to 128, and train for 10 epochs.
In PLE-GRU, we set the min_cluster_size parameter in HDBSCAN
to 100, min_samples to 100, and train for 20 epochs.

TABLE 2 Comparison of the model structures of the baseline methods and LogMS.

Models Backbone Label information Semantic information Sequential information Quantitative information

DeepLog LSTM × × ✓ ×

LogAnomaly LSTM × × ✓ ✓

LogRobust Bi-LSTM ✓ ✓ × ×

Lu et al. CNN ✓ × × ×

LogMS LSTM + GRU ✓ ✓ ✓ ✓

TABLE 3 The results of comparative experiments on HDFS and BGL.

Models HDFS BGL

Precision Recall F1 Precision Recall F1

DeepLog 0.945 0.899 0.922 0.900 0.960 0.929

LogAnomaly 0.860 0.897 0.877 0.970 0.940 0.960

LogRobust 0.961 0.999 0.980 0.994 0.942 0.967

Lu et al. 0.966 0.998 0.982 0.994 0.963 0.978

LogMS 0.997 0.998 0.998 0.994 0.987 0.984

TABLE 4 The results of ablation experiments on HDFS and BGL.

Models Metrics HDFS BGL

MSIF-LSTM Precision 0.865 0.970

Recall 0.903 0.940

F1 0.882 0.960

PLE-GRU Precision 0.950 0.965

Recall 0.963 0.999

F1 0.957 0.982

LogMS Precision 0.997 0.994

Recall 0.998 0.987

F1 0.998 0.984

Frontiers in Physics frontiersin.org07

Yu et al. 10.3389/fphy.2024.1401857

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2024.1401857

4.4 Comparative experiments

We compare LogMS with the following four widely used
methods, and the comparison of the model structures are shown
in Table 2.

DeepLog [14]: This method treats system logs as natural
language sequences and uses LSTM to model the sequential
information of the logs.

LogAnomaly [15]: This method also treats system logs as natural
language sequences, but uses LSTM to model sequential and
quantitative information of the logs.

LogRobust [13]: This method is able to identify and handle
unstable log events and sequences and uses Bi-LSTM to model label
and sematic information.

Lu et al. [23]: This method can automatically learn event
relationships in system logs and uses CNN to model label information.

FIGURE 4
The results of class imbalance experiments in different methods.

FIGURE 5
The results of class imbalance experiments in different component of LogMS.

Frontiers in Physics frontiersin.org08

Yu et al. 10.3389/fphy.2024.1401857

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2024.1401857

Table 3 displays the results of comparative experiments. In
HDFS, LogRobust achieves the highest F1 score, mainly due to
its higher recall rate. LogMS performs second best, with a F1 score
only 0.001 lower than LogRobust, but it has a higher precision by
0.17 compared to LogRobust. The worst performing models are
DeepLog and LogAnomaly, mainly because they both not utilize
label information and belong to unsupervised methods. Although
LogRobust achieves the best results in HDFS, its performance in
BGL is even worse than that of LogAnomaly, which does not utilize
label information. Meanwhile, LogMS obtained the highest F1 score
in BGL. Overall, LogMS performs well in both datasets and exhibited
stable results. Compared to other methods, the key feature of LogMS
lies in its effective fusion of multiple sources of information,
demonstrating that the fusion of semantic, sequential,
quantitative, and label information is an effective way to enhance
the performance of log anomaly detection.

4.5 Ablation experiments

To assess the effectiveness of each improvement in LogMS, we
conduct ablation experiments in HDFS and BGL. We divide LogMS
into two parts: MSIF-LSTM, which integrates semantic, sequential,
and quantitative information; PLE-GRU, which incorporates label
information. LogMS fuses all four types of information. Table 4
presents the results of the ablation experiments.

Based on the experimental results, it is evident that MSIF-LSTM
performs better in terms of precision, while PLE-GRU exhibits
higher recall. LogMS combines the strengths of both, achieving
the best precision and recall simultaneously. It is noteworthy that in
the two-stage process of LogMS, MSIF-LSTM serves as the first
stage, and only when MSIF-LSTM fails to detect anomalies, it
proceeds to the second stage, PLE-GRU. The high precision of
MSIF-LSTM in the first stage ensures a low false negative rate, while
the high recall of PLE-GRU in the second stage minimizes missing
anomalies, thus LogMS effectively integrates the strengths of both
approaches.

4.6 Class imbalance experiments

A significant feature of log data is the substantial class
distribution imbalance between normal logs and anomaly logs, as
observed in datasets like HDFS where anomalies represent only
about 2.9% of the data. Therefore, the ability of a model to deal with
such situation is crucial [33]. In order to systematically assess our
approach, we introduce various imbalanced scenarios by randomly
excluding normal or abnormal log sequences from the HDFS and
BGL dataset. We vary the imbalance ratio from 1% to 15%,
indicating the percentage of anomalies present in the dataset.
This process results in the creation of four synthetic datasets
with imbalance ratios set at 0.1%, 0.5%, 1%, 5%, and 10%. To
comprehensively evaluate our model, we conduct class imbalance
experiments not only across different methods but also on the
various components of LogMS. The experimental results are
illustrated in Figures 4, 5.

From Figure 4, we can observe that as the proportion of
abnormal labels increases, both precision and F1 improve, while

recall remains stable. The reason for this phenomenon is as follows:
due to the scarcity of positive samples, an increase in the number of
positive samples results in an increase in true positives without a
significant rise in false positives, leading to an enhancement in
precision. However, recall is influenced by the imbalance in samples;
when the number of positive samples is low, even with an increase in
true positives, the number of false negatives may also rise, causing
recall to be unstable and unable to consistently improve with an
increase in positive samples. Despite the unstable recall, the
improvement in precision leads to an overall increase in the
F1 score. Overall, LogMS demonstrates robustness to severe class
imbalance, particularly achieving optimal performance at the
anomaly ratio of 0.1%.

We can see a similar phenomenon in Figure 5 as in Figure 4.
However, the two-stage strategy of LogMS enables the effective
integration of both components, thus maintaining the stability of log
anomaly detection performance even under class imbalance
conditions.

5 Conclusion

Deep learning-based log anomaly detection models primarily
adopt a single-stage detection method and mainly focus on a
specific aspect of log information. However, logs contain multiple
sources of information (such as semantic information, sequential
information, quantitative information, and label information).
By focusing solely on a single aspect, the detection models are
limited in their understanding of logs, resulting in compromised
detection performance and suboptimal robustness. To address
this issue, the paper introduces a multi-stage log anomaly
detection method named LogMS. This method is based on the
fusion of multiple sources of information (i.e., MSIF-LSTM) and
probability label estimation (i.e., PLE-GRU), allowing for
comprehensive utilization and fusion of various hidden
information embedded in log data from multiple perspectives.
Experimental results demonstrate that LogMS outperforms
baseline models on various log anomaly detection datasets,
demonstrating superior performance in robustness testing. In
future research, we will consider integrating more sources of
information such as system metrics, network traffic, or user
behavior patterns to provide more comprehensive insights into
log anomalies. By integrating these contextual factors into the
detection process, it is possible to improve the accuracy and
robustness of log anomaly detection models.

Data availability statement

Publicly available datasets were analyzed in this study. This data
can be found here: https://github.com/logpai/loghub.

Author contributions

ZY: Data curation, Formal Analysis, Methodology,
Writing–original draft. SY: Methodology, Supervision,
Writing–review and editing. ZL: Data curation, Formal Analysis,

Frontiers in Physics frontiersin.org09

Yu et al. 10.3389/fphy.2024.1401857

https://github.com/logpai/loghub
https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2024.1401857

Writing–review and editing. LL: Investigation, Validation,
Writing–review and editing. HL: Data curation, Formal Analysis,
Writing–review and editing. FY: Formal Analysis, Investigation,
Writing–review and editing.

Funding

The author(s) declare that financial support was received for the
research, authorship, and/or publication of this article. Key
Technology Project of China Tobacco Yunnan Industrial
(2023ZN04). The funder was not involved in the study design,
collection, analysis, interpretation of data, the writing of this article,
or the decision to submit it for publication.

Conflict of interest

Authors ZY, SY, ZL, LL, HL, and FY were employed by China
Tobacco Yunnan Industrial Co., Ltd.

Publisher’s note

All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated
organizations, or those of the publisher, the editors and the
reviewers. Any product that may be evaluated in this article, or
claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

References

1. Landauer M, Onder S, Skopik F, Wurzenberger M. Deep learning for anomaly
detection in log data: a survey. Machine Learn Appl (2023) 12:100470. doi:10.1016/j.
mlwa.2023.100470

2. Chen Z, Liu J, GuW, Su Y, Lyu MR. Experience report: deep learning-based system
log analysis for anomaly detection. arXiv preprint arXiv:2107.05908 (2021).

3. Le V-H, Zhang H. Log-based anomaly detection without log parsing. In: 2021 36th
IEEE/ACM International Conference on Automated Software Engineering (ASE). IEEE
(2021). p. 492–504.

4. Ko J, Comuzzi M. A systematic review of anomaly detection for business process
event logs. Business Inf Syst Eng (2023) 65:441–62. doi:10.1007/s12599-023-00794-y

5. Guo H, Yuan S, Wu X. Logbert: log anomaly detection via bert. In:
2021 international joint conference on neural networks (IJCNN). IEEE (2021). p. 1–8.

6. Breier J, Brani sová J. Anomaly detection from log files using data mining
techniques. Inf Sci Appl (2015) 339:449–57. doi:10.1007/978-3-662-46578-3_53

7. He S, Zhu J, He P, Lyu MR. Experience report: system log analysis for anomaly
detection. In: 2016 IEEE 27th international symposium on software reliability
engineering (ISSRE). IEEE (2016). p. 207–18.

8. Han D,Wang Z, ChenW,Wang K, Yu R, Wang S, et al. (2023). Anomaly detection
in the open world: normality shift detection, explanation, and adaptation. In , doi:10.
14722/ndss.2023.24830NDSS

9. Le V-H, Zhang H. Log-based anomaly detection with deep learning: how far are we?
In: Proceedings of the 44th international conference on software engineering (2022).
p. 1356–67. doi:10.1145/3510003.3510155

10. Nassif AB, Talib MA, Nasir Q, Dakalbab FM. Machine learning for anomaly
detection: a systematic review. Ieee Access (2021) 9:78658–700. doi:10.1109/access.2021.
3083060

11. Guo H, Guo Y, Yang J, Liu J, Li Z, Zheng T, et al. Loglg: weakly supervised log
anomaly detection via log-event graph construction. In: International Conference on
Database Systems for Advanced Applications. Springer (2023). p. 490–501.

12. Lee Y, Kim J, Kang P. Lanobert: system log anomaly detection based on bert
masked language model. Appl Soft Comput (2023) 146:110689. doi:10.1016/j.asoc.2023.
110689

13. Zhang X, Xu Y, Lin Q, Qiao B, Zhang H, Dang Y, et al. Keratin 6, 16 and 17-critical
barrier alarmin molecules in skin wounds and psoriasis. In: Proceedings of the
2019 27th ACM Joint Meeting on European Software Engineering Conference and
Symposium on the Foundations of Software Engineering, 8 (2019). p. 807–17. doi:10.
3390/cells8080807

14. DuM, Li F, Zheng G, Srikumar V. Deeplog: anomaly detection and diagnosis from
system logs through deep learning. In: Proceedings of the 2017 ACM SIGSAC
conference on computer and communications security (2017). p. 1285–98. doi:10.
1145/3133956.3134015

15. Meng W, Liu Y, Zhu Y, Zhang S, Pei D, Liu Y, et al. Loganomaly: unsupervised
detection of sequential and quantitative anomalies in unstructured logs. IJCAI (2019)
19:4739–45. doi:10.24963/ijcai.2019/658

16. He P, Zhu J, Zheng Z, Lyu MR. Drain: an online log parsing approach with fixed
depth tree. In: 2017 IEEE international conference on web services (ICWS). IEEE
(2017). p. 33–40.

17. Xu W, Huang L, Fox A, Patterson D, Jordan M. Largescale system problem
detection by mining console logs. In: Proceedings of SOSP’09 (2009).

18. Oliner A, Stearley J. What supercomputers say: a study of five system logs. In: 37th
annual IEEE/IFIP international conference on dependable systems and networks
(DSN’07). IEEE (2007). p. 575–84.

19. Wang H, Bah MJ, Hammad M. Progress in outlier detection techniques: a survey.
Ieee Access (2019) 7:107964–8000. doi:10.1109/access.2019.2932769

20. Reidemeister T, Jiang M, Ward PA. Mining unstructured log files for recurrent
fault diagnosis. In: 12th IFIP/IEEE International Symposium on Integrated Network
Management (IM 2011) and Workshops. IEEE (2011). p. 377–84.

21. Bai Y, Shu Z, Yu J, Yu Z, Wu X-J. Proxy-based graph convolutional hashing for
cross-modal retrieval. IEEE Trans Big Data (2023) 1–15. doi:10.1109/tbdata.2023.
3338951

22. Li L, Shu Z, Yu Z, Wu X-J. Robust online hashing with label semantic
enhancement for cross-modal retrieval. Pattern Recognition (2024) 145:109972.
doi:10.1016/j.patcog.2023.109972

23. Lu S, Wei X, Li Y, Wang L. Detecting anomaly in big data system logs using
convolutional neural network. In: 2018 IEEE 16th Intl Conf on Dependable,
Autonomic and Secure Computing, 16th Intl Conf on Pervasive Intelligence
and Computing, 4th Intl Conf on Big Data Intelligence and Computing and
Cyber Science and Technology Congress (DASC/PiCom/DataCom/
CyberSciTech). IEEE (2018). p. 151–8.

24. LeCun Y, Bottou L, Bengio Y, Haffner P. Gradient-based learning applied to
document recognition. Proc IEEE (1998) 86:2278–324. doi:10.1109/5.726791

25. Shu Z, Li B, Mao C, Gao S, Yu Z. Structure-guided feature and cluster contrastive
learning for multi-view clustering. Neurocomputing (2024) 582:127555. doi:10.1016/j.
neucom.2024.127555

26. Farzad A, Gulliver TA. Unsupervised log message anomaly detection. ICT Express
(2020) 6:229–37. doi:10.1016/j.icte.2020.06.003

27. Du M, Li F. Spell: streaming parsing of system event logs. In: 2016 IEEE 16th
International Conference on Data Mining (ICDM). IEEE (2016). p. 859–64.

28. Yu S, He P, Chen N,Wu Y. Brain: log parsing with bidirectional parallel tree. IEEE
Trans Serv Comput (2023) 16:3224–37. doi:10.1109/tsc.2023.3270566

29. Xu J, Yang R, Huo Y, Zhang C, He P. Divlog: log parsing with prompt enhanced
in-context learning. In: 2024 IEEE/ACM 46th International Conference on Software
Engineering (ICSE). IEEE Computer Society (2024). p. 983.

30. Joulin A, Grave E, Bojanowski P, Douze M, Jégou H, Mikolov T (2016). Fasttext.
zip: compressing text classification models. arXiv preprint arXiv:1612.03651

31. Shu Z, Li L, Yu J, Zhang D, Yu Z, Wu X-J. Online supervised collective matrix
factorization hashing for cross-modal retrieval. Appl intelligence (2023) 53:14201–18.
doi:10.1007/s10489-022-04189-6

32.McInnes L, Healy J, Astels S. hdbscan: hierarchical density based clustering. J Open
Source Softw (2017) 2:205. doi:10.21105/joss.00205

33. Shu Z, Yong K, Yu J, Gao S, Mao C, Yu Z. Discrete asymmetric zero-shot hashing
with application to cross-modal retrieval. Neurocomputing (2022) 511:366–79. doi:10.
1016/j.neucom.2022.09.037

Frontiers in Physics frontiersin.org10

Yu et al. 10.3389/fphy.2024.1401857

https://doi.org/10.1016/j.mlwa.2023.100470
https://doi.org/10.1016/j.mlwa.2023.100470
https://doi.org/10.1007/s12599-023-00794-y
https://doi.org/10.1007/978-3-662-46578-3_53
https://doi.org/10.14722/ndss.2023.24830
https://doi.org/10.14722/ndss.2023.24830
https://doi.org/10.1145/3510003.3510155
https://doi.org/10.1109/access.2021.3083060
https://doi.org/10.1109/access.2021.3083060
https://doi.org/10.1016/j.asoc.2023.110689
https://doi.org/10.1016/j.asoc.2023.110689
https://doi.org/10.3390/cells8080807
https://doi.org/10.3390/cells8080807
https://doi.org/10.1145/3133956.3134015
https://doi.org/10.1145/3133956.3134015
https://doi.org/10.24963/ijcai.2019/658
https://doi.org/10.1109/access.2019.2932769
https://doi.org/10.1109/tbdata.2023.3338951
https://doi.org/10.1109/tbdata.2023.3338951
https://doi.org/10.1016/j.patcog.2023.109972
https://doi.org/10.1109/5.726791
https://doi.org/10.1016/j.neucom.2024.127555
https://doi.org/10.1016/j.neucom.2024.127555
https://doi.org/10.1016/j.icte.2020.06.003
https://doi.org/10.1109/tsc.2023.3270566
https://doi.org/10.1007/s10489-022-04189-6
https://doi.org/10.21105/joss.00205
https://doi.org/10.1016/j.neucom.2022.09.037
https://doi.org/10.1016/j.neucom.2022.09.037
https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2024.1401857

	LogMS: a multi-stage log anomaly detection method based on multi-source information fusion and probability label estimation
	1 Introduction
	2 Related work
	3 Proposed method
	3.1 Log parsing and semantic vectorization
	3.1.1 Log parsing
	3.1.2 Preprocessing and semantic vectorization

	3.2 MSIF-LSTM for the first-stage dection
	3.2.1 The structure and training of MSIF-LSTM
	3.2.2 Sequential information
	3.2.3 Quantitative information

	3.3 PLE-GRU for the second-stage dection
	3.3.1 Log sequence clustering
	3.3.2 Label probability estimation
	3.3.3 The structure and training of PLE-GRU

	4 Experimental results and analysis
	4.1 Dataset
	4.2 Evaluation metrics
	4.3 Experimental setting
	4.4 Comparative experiments
	4.5 Ablation experiments
	4.6 Class imbalance experiments

	5 Conclusion
	Data availability statement
	Author contributions
	Funding
	Conflict of interest
	Publisher’s note
	References

