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The Frenet frame is not suitable for describing the behavior of the curve in the
Galilean space since it is not defined everywhere. In this study, an alternative
frame, the so-called quasi-frame, is investigated in Galilean 4-space.
Furthermore, the quasi-formulas in Galilean 4-space are deduced and quasi-
curvatures are obtained in terms of the quasi-frame and its derivatives. Quasi-
rectifying, quasi-normal, and quasi-osculating curves are studied in Galilean
4-space. We prove that there is no quasi-normal and accordingly normal
curve in Galilean 4-space.
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1 Introduction

The Galilean space is considered to be one of the Cayley–Klein spaces, and Roschel was
the primary contributor to its development. A Galilean space is the limit case of a pseudo-
Euclidean space in which the isotropic cone degenerates to a plane. In this situation, the only
shape left is a plane. The limit transition is similar to that encountered when classical
mechanics replaced special relativity.

The disadvantage of the Frenet frame is that it is not defined everywhere, namely, if the
curve has points where they have zero curvature. At these points, normal and binormal
vectors are not defined. Hence, many mathematicians investigated frames that are defined
everywhere, even if the curve has zero curvature points. Many frames such as the modified
frame, the Bishop frame, the Darboux frame, the equiform frame, and quasi-frame have
been investigated and studied in Euclidean space [1–5], Minkowski space [6–11], and
Galilean space [12–15].

In Euclidean three-space, the osculating curve is defined as the position vector of the
curve residing in the plane consisting of its tangent vector and normal vector. The normal
curve is defined as the position vector of the curve residing in the plane consisting of its
normal vector and binormal vector. The rectifying curve is defined as the position vector of
the curve residing in the plane consisting of its tangent vector and binormal vector. Some
studies have been carried out on normal, osculating, and rectifying curves in Euclidean three
and four spaces [16–20], Minkowski three and four spaces [21–24], Galilean three and four
spaces [12,25–29] and in Sasakian space [30].

In 2015 [1], Dede et al. investigated an alternate adapted frame called the quasi-frame,
which followed a space curve, rather than using the Frenet frame. This frame is easier and
more accurate than the Frenet frame and the Bishop frame, and it is considered a
generalization of the Frenet frame. Many studies have been carried out on the quasi-
frame in Euclidean and Minkowski spaces [2,3,31,32]. Furthermore, more recent research
studies on position vectors in Galilean three and four spaces were performed with the Frenet
frame [33–36].
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Rectifying curves, normal curves, and osculating curves are
found in the Euclidean space E3. These curves meet the fixed
point criterion proposed by Cesaro. It is well known that if all
the normal planes or osculating planes of a curve in E3 pass through
a given point, then the curve either resides in a sphere or is a planar
curve, depending on the two category it falls into. It is also well
known that if all rectifying planes of a non-planar curve in E3 run
through a certain point, then the ratio of the curve’s torsion to its
curvature is a non-constant linear function. For more details, see
[16]. In addition, Ilarslan and Nesovic [17] provided some
characterizations for osculating curves in E3. They also
constructed osculating curves in E4 as a curve whose position
vector always lies in the orthogonal complement of its first
binormal vector field. These characterizations were given for
osculating curves in E3. As a consequence of their findings, they
could classify osculating curves according to the curvature functions
of those curves and provide both the necessary and sufficient
conditions of osculating curves for arbitrary curves in E4.

The research is organized as follows: Section 3 introduces the
quasi-frame, its relation with the Frenet frame, quasi-formulas, and
the quasi-curvatures in Galilean 4-space. Section 4 describes the
study of the position vectors in Galilean 4-space. Section 5
characterizes the quasi-rectifying curves. Section 6 introduces and
describes the quasi-osculating curves. Section 7 finally proves that
there is no normal curve in Galilean 4-space.

2 Preliminaries

In this section, we introduce some basic concepts of Galilean 4-
space. The Galilean metric g in Galilean 4-space is defined by

g p, q( ) � p1q1, if p1 ≠ 0 or q1 ≠ 0,

p2q2 + p3q3 + p4q4, if p1 � 0 and q1 � 0,

⎧⎪⎨⎪⎩
where p � (p1, p2, p3, p4) and q � (q1, q2, q3, q4). Based on this
metric, the Galilean norm of the vector q is given by

q
��� ��� � q1

∣∣∣∣ ∣∣∣∣, if q1 ≠ 0,












q22 + q23 + q24

√
, if q1 � 0.

⎧⎪⎨⎪⎩
In addition, the Galilean cross-product of p, q and s is defined as

p × q × s �

0 e2 e3 e4
p1 p2 p3 p4

q1 q2 q3 q4
s1 s2 s3 s4

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
, if p1 ≠ 0 or q1 ≠ 0,

e1 e2 e3 e4
p1 p2 p3 p4

q1 q2 q3 q4
s1 s2 s3 s4

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
, if p1 � 0 and q1 � 0,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
where (e1, e2, e3, and e4) are the usual bases of R4 [26,35].

The Galilean G4 adds even more complexity by investigating all
qualities that remain constant despite the spatial motions of objects.
It was further clarified that this geometry may be defined as the
investigation of properties of 4-dimensional space, the coordinates
of which remain unchanged when subjected to a general Galilean
transformation [27,29].

A curve in G4 is a mapping α from an open interval J to G4

defined as

α t( ) � x t( ), y t( ), z t( ), r t( )( ),
where x(t), y(t), z(t) and r(t) are differentiable functions. If the
curve α is parameterized by the arc length, then it takes the form

α s( ) � s, y s( ), z s( ), r s( )( ).
On the other hand, the Frenet frame in G4 consists of four

orthonormal vectors called the tangent, the principal normal, the
first binormal, and the second binormal, and they are denoted,
respectively, by

T s( ) � α′ � 1, y′ s( ), z′ s( ), r′ s( )( ),
N s( ) � 1

κ1
0, y′, z′, r′( ),

B1 s( ) � 1
κ2

0,
y′
κ1

( )′, z′
κ1

( )′, r′
κ1

( )′( ),
B2 s( ) � T s( ) × N s( ) × B1 s( ),

where κ1, κ2 and κ3 are the first, second, and third Frenet curvatures,
respectively. They can be given by

κ1 �











y′2 + z′2, r′2

√
,

κ2 �










g N′, N′( )√

,

κ3 � g B1′, B1′( ).
If the Frenet curvatures are constant, then we say the curve is a
W-curve.The Frenet formulas of the curve α are

T′ � κ1N s( ),
N′ � κ2B1 s( ),
B1′ � −κ2N s( ) + κ3B2 s( ),
B2′ � −κ3B1 s( ).

Let α(s) be a unit speed curve inG4. If its position vector always
lies in the orthogonal complement of B1 or B2, then a curve α is
called an osculating curve in G4. If the position vector of α always
lies in the orthogonal complement of the normal vectorN. Let α(s)
be an admissible curve inG4. We say that α(s) is a rectifying curve if
the position vector of α always lies in the orthogonal complement of
N [26,35].

3 Quasi-frame and quasi-formulas
in G4

In this section, we investigate the quasi-frame and its relation
with the Frenet frame inG4. In addition, quasi-formulas in Galilean
4-space G4 are investigated. Moreover, the quasi-curvatures are
introduced. Let α(s) be a curve in G4.

The quasi-frame is an alternative to the Frenet frame and
involves two fixed unit vectors. We define the quasi frame
depending on four orthonormal vectors, T(s) called the unit
tangent, Nq(s) called the unit quasi-normal vector, B1q(s) called
the unit first quasi-binormal vector, and B2q(s) called the unit
second quasi-binormal vector. The quasi-frame {T(s), Nq(s),
B1q(s), B2q(s)} is defined as
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T � α′
‖α′‖, Nq � T × r1 × r2

‖T × r1 × r2‖, B2q � ϵ T × Nq × α‴
‖T × Nq × α‴‖

and B1q � ϵB2q × T × Nq,

for the projection vectors r1 and r2 and ϵ is ±1, where the
determinant of the matrix is equal to 1. Here, we choose for
simple calculations r1 � (0, 0, 0, 1) and r2 � (0, 0, 1, 0).

The transformation matrix M keeps the tangent vector T
unchanged. Then, we consider three possible planes of rotations.
The first rotation M1 is in the plane spanned by B1 and B2 with an
angle θ. The second rotationM2 in the plane is spanned byN and B2

with an angle ϕ. The third rotationM3 in the plane is spanned byN
and B1 with an angle ψ as in Figure 1. The quasi-frame can be
written in terms of the Frenet frame as

M1 �
1 0 0 0
0 1 0 0
0 0 cos θ sin θ
0 0 −sin θ cos θ

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠,

M2 �
1 0 0 0
0 cos ϕ 0 sin ϕ
0 0 1 0
0 −sin ϕ 0 cos ϕ

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠,

M3 �
1 0 0 0
0 cosψ sinψ 0
0 −sinψ cosψ 0
0 0 0 1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
T
Nq

B1q

B2q

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ � M1M2M3

T
N
B1

B2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠,

The transformation matrix M � M1M2M3 can be written as

M �
1 0 0 0
0 cos θ cosψ cos θ sinψ sinϕ
0 −cos θ sinψ − cosψ sin θ sinϕ cos θ cosψ − sinψ sin θ sin ϕ 0

sin θ sinψ − cosψ cos θ sin ϕ −cosψ sin θ − cos θ sinψ sinϕ 0 0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠.

Let the matrix of the quasi-frame be Q and the matrix of the
Frenet frame be F. In addition, let the curvature matrix of the quasi-
frame be KF and the curvature matrix of the Frenet frame be KQ.
Then, we can write

Q �
T
Nq

B1q

B2q

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠, F �
T
N
B1

B2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠,

KF �
0 κ1 0 0
0 0 κ2 0
0 −κ2 0 κ3
0 0 −κ3 0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠.

Then, we can write

MF � Q, (1)
F � M−1Q (2)
F′ � KFF, (3)
Q′ � KQQ. (4)

By differentiating Eq. 1 with respect to s, we have

M′F +MF′ � Q′ (5)
By substituting Eqs 2–4 into Eq. 5, we have

KQ � M′ +MKf( )M−1.

Therefore,

KQ �
0 K1 K2 K3

0 0 K4 K5

0 −K4 0 K6

0 −K5 −K6 0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠. (6)

K1 � κ1 cos ϕ cosψ,
K2 � −κ1 cos θ sinψ + cosψ sin θ sin ϕ[ ],
K3 � −κ1 cos θ cosψ sin ϕ + κ1 sin θ sinψ,
K4 � cos θ cos ϕψ′ + cos θ κ2 cos ϕ − κ3 cosψ sin ϕ[ ]

+sin θ ϕ′ + κ3 sinψ[ ],
K5 � −ψ′ cos ϕ sin θ + ϕ′ cos θ − κ2 cos ϕ sin θ+κ3 cos θ sinψ + κ3 cosψ sin θ sin ϕ
K6 � θ′ + ψ′ sin ϕ + κ2 sin ϕ + κ3 cosϕ cosψ

Corollary 3.1. The quasi-frame is considered a generalization to
the Frenet frame by putting θ � ϕ � ψ � 0. In addition, the quasi-
formulas are considered generalizations to the Frenet formulas by
putting K1 � κ1, K2 � K3 � K5 � 0, K4 � κ2, K6 � κ3.

Corollary 3.2. The quasi-curvatures K1, K2, K3, K4, K5, K6 of the
curve are given, respectively, by

K1 � g T′, Nq( ),
K2 � g T′, B1q( ),
K3 � g T′, B2q( ),
K4 � g Nq′, B1q( ),

FIGURE 1
The rotation of the Frenet frame.
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K5 � g Nq′, B2q( ),
K6 � g B1q′ , B2q( ).

4 Quasi-position vector curves in G4

In this section, we study the position vectors in G4.
We consider a curve in Galilean 4-space G4 as a curve whose

position vector satisfies the parametric equation

α s( ) � b1 s( )T + b2 s( )Nq + b3 s( )B1q + b4B2q, (7)

for some differentiable functions, bi(s) and 1 ≤ i ≤ 4, where
T,Nq, B1q, B2q is the quasi-frame. By differentiating Eq. 7
with respect to arclength parameter s and using the quasi Eq. 6,
we obtain

α′ s( ) � b1′T + b1K1 + b2′ −K4b3 −K5b4[ ]Nq

+ b1K2 + b2K4 + b3′ − b4K6[ ]B1q

+ b1K3 + b2K5 + b3K6 + b4′[ ]B2q.

Hence,

b1′ � 0,

b1K1 + b2′ −K4b3 − K5b4 � 0,

b1K2 + b2K4 + b3′ − b4K6 � 0,

b1K3 + b2K5 + b3K6 + b4′ � 0.

Let K5 � K6 � 0 and K1, K2, K3, K4 are constants, so we can find
b1, b2, b3 as

b1 � s + C,

b2 � C1 cosK4s + C2 sinK4s − K2

K4
s − K1

K2
4

+ CK2

K4
,

b3 � C3 cosK4s + C4 sinK4s + K1

K4
s − K2

K2
4

+ C
K1

K4
,

b4 � as + C.

Therefore, we can write completely the curve

α s( ) � b1 s( )T + b2 s( )Nq + b3 s( )B1q + b4B2q.

5 Quasi-rectifying curves G4

In this section, we define the quasi-rectifying curve in the
Galilean 4-space and characterize quasi-rectifying curves G4.

Definition 1. A curve α(s) in the Galilean 4-space is called a quasi-
rectifying curve if it has no component in the quasi-normal
direction, in other words if g(α(s), Nq) � 0. In addition, the
curve α(s) is called a quasi-rectifying curve if the position vector
satisfies the parametric equation

α s( ) � a1 s( )T + a2 s( )B1q + a3 s( )B2q, (8)

for some differentiable functions, ai(s) and 1 ≤ i ≤ 3, where
T,Nq, B1q, B2q is the quasi-frame.

By differentiating Eq. 8 concerning arclength parameter s and
using the quasi Eq. 6, we obtain

α′ s( ) � a1′T + a1K1 − a2K4 − a3K5[ ]Nq + a1K2 + a2′ − a3K6[ ]B1q

+ a1K3 + K6a2 + a3′[ ]B2q

Hence,

a1′ � 1, (9)
/a2K4 + a3K5 � −a1K1, (10)
a2′ − a3K6 � −a1K2, (11)
a3′ + a2K6 � −a1K3. (12)

By solving Eqs 9–12 together, we get

a1 � s + C,

a2 � exp
−∫K4K6

K5
ds ∫ exp∫K4K6

K5
ds

s + C( ) K2 − K1K6

K5
[ ]ds,

a3 � exp∫K5K6
K4 ∫ exp

−∫K5K6
K4

ds
s + C( ) K1K6

K5
−K3[ ]ds.

6 Quasi-osculating curves G4

In this section, we define the quasi-osculating curve in the
Galilean 4-space and characterize quasi-osculating curves G4.

Definition 2. A curve α(s) in the Galilean 4-space is called a quasi-
osculating curve if it has no component in the first quasi-binormal
direction or the second quasi-binormal direction, in other words if
g(α(s), B1q) � 0 or g(α(s), B2q) � 0. In addition, the curve α(s) is
called a quasi-osculating curve if the position vector satisfies the
parametric equation

α s( ) � μ1 s( )T + μ2 s( )Nq + μ3 s( )B2q,

or

α s( ) � λ1 s( )T + λ2 s( )Nq + λ3 s( )B1q,

for some differentiable functions, μi(s), 0 ≤ i ≤ 3, λi(s), and
1 ≤ i ≤ 3.

6.1 Quasi-osculating curve of type 1

We consider a curve α(s) in Galilean 4-space G4 to be a quasi-
osculating curve of type 1 if the position vector satisfies the
parametric equation

α s( ) � μ1 s( )T + μ2 s( )Nq + μ3 s( )B2q, (13)

for some differentiable functions, μi(s) and 0 ≤ i ≤ 3, where
T,Nq, B2q is the quasi-frame. By differentiating Eq. 13
concerning arclength parameter s and using the quasi Eq. 6,
we obtain

α′ s( ) � μ1′T + μ1K1 + μ2′ − μ3K5[ ]Nq + μ1K2 + μ2K4 − μ3K6[ ]B1q

+ μ1K3 + μ2K5 − μ3′[ ]B2q.

Hence,
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μ1′ � 1, (14)
μ2′ − μ3K2 � −μ1K1, (15)

μ2K4 − μ3K6 � −μ1K2, (16)
μ3′ + μ2K5 � −μ1K3. (17)

By solving Eqs 14–17 together, we get

μ1 � s + C1,

μ2 � exp∫K2K4
K6

ds ∫ exp
−∫K2K4

K6
ds

s + C1( ) K2
2

K6
− K1[ ]ds,

μ3 � exp∫K5K6
K4

ds ∫ exp
−∫K5K6

K4
ds

s + C1( ) K2K5

K4
− K3[ ]ds.

6.2 Quasi-osculating curve of type 2

We consider a curve α(s) in Galilean 4-space G4 to be a quasi-
osculating curve of type 2 if the position vector satisfies the
parametric equation

α s( ) � λ1 s( )T + λ2 s( )Nq + λ3 s( )B1q, (18)

for some differentiable functions, λi(s) and 1 ≤ i ≤ 3, where
T,Nq, B2q is the quasi-frame. By differentiating Eq. 18 with respect
to arclength parameter s and using the quasi Eq. 6, we obtain

α′ s( ) � λ1′T + λ1K1 + λ2′ − λ3K4[ ]Nq + λ1K2 + λ2K4 + λ3′[ ]B1q

+ λ1K3 + λ2K5 + λ3K6[ ]B2q.

Hence,

λ1′ � 1, (19)
λ2′ − λ3K4 � −λ1K1, (20)
λ3′ + λ2K4 � −λ1K2, (21)
λ3K6 + λ2K5 � −λ1K3 (22)

By solving Eqs 19–22 together, we get

λ1 � s + C2,

λ2 � exp
−∫K4K5

K6
ds ∫ exp∫K4K5

K6
ds

s + C2( ) K1 − K3K4

K6
[ ]ds,

λ3 � exp∫K4K6
K5

ds ∫ exp
−∫K4K6

K5
ds

s + C2( ) K3K4

K5
−K2[ ]ds.

7 Quasi-normal curves in G4

In this section, we prove that there is no quasi-normal curve
in G4.

Definition 3. A curve α(s) in the Galilean 4-space is called a quasi-
normal curve if it has no component in the tangent direction, in
other words if g(α(s), T) � 0. In addition, the curve α(s) is called a
quasi-normal curve if the position vector satisfies the
parametric equation

α s( ) � f1 s( )Nq + f2 s( )B1q + f3 s( )B2q,

for some differentiable functions, fi(s) and 1 ≤ i ≤ 3, where
T,Nq, B1q, B2q is the quasi-frame.

Theorem 7.1. In the Galilean 4-space, there is no quasi-
normal curve.

Suppose that α(s) � (s, y(s), z(s), w(s)) is any curve in the
Galilean 4-space. Then, the tangent T is given by

T � α′ � 1, y′, z′, w′( ).
Thus,

g α s( ), T( ) � s ≠ o, ∀s.

Therefore, there is no quasi-normal curve in G4.

Corollary 7.1. In the Galilean n-space, there is no normal curve.
Therefore, all results in Refs. [27,28] concerning normal curves
are not true.

8 Conclusion

In this study, we investigate the definition of the quasi-frame in
Galilean 4-space G4 and obtain its relation with the Frenet frame in
G4. In addition, the quasi-formulas and the quasi-curvatures are
investigated. Furthermore, the quasi-rectifying curves G4 and the
quasi-osculating curvesG4 are studied according to the quasi-frame
in G4. Finally, we proved that there is no quasi-normal curve and
accordingly normal curve in G4.
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