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Decontaminating food packaging surfaces is a crucial step in the food processing
industry to ensure the quality and safety of the product. Decontamination is
intended as a procedure aimed to reduce the microbial load present on
contaminated packaging to a safe level. Several techniques are traditionally
employed, but the industry is seeking innovative methods that could offer
economic and environmental benefits. Cold plasma is emerging as a
promising solution among the range of possibilities. The present review aims
to assess the effectiveness of plasma-assisted systems for decontaminating
packaging materials. A systematic collection of inherent records was carried
out, and the study outcomeswere extracted using the protocol formeta-analysis.
The synthesis of the results demonstrates the efficacy of this sanitation technique,
since the average logarithmic reduction of the pathogen charge on the packaging
was above 4. This outcome is promising since it alignswith standard requirements
for traditionally employed antiseptics. Future research should focus on the
optimization of processes from the perspective of industrial applications.
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1 Introduction

1.1 Foodborne diseases

Foodborne diseases, caused by contaminated food contact or ingestion, pose a
significant global health concern. Contamination with bacteria, viruses, parasites, or
chemicals can result in various illnesses, with over 200 identified, predominantly
affecting the gastrointestinal tract but also leading to neurological, gynecological, and
immunological issues [1]. Annually, nearly one in 10 individuals worldwide suffer from
foodborne illnesses, resulting in over 420,000 deaths. While foodborne diseases affect all
countries, low- and middle-income nations bear a disproportionate burden. Factors such as
poverty, international trade, longer food chains, urbanisation, climate change, migration,
and increased travel exacerbate these challenges, increasing the risk of contamination and
the spread of infections across borders. In the European Union alone, over 5,000 foodborne
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outbreaks are reported annually, causing approximately 45,000 cases
[2]. In 2022, foodborne outbreaks increased significantly compared
to the previous year, highlighting the need for stringent hygiene
standards and HACCP (Hazard analysis and critical control points)
protocols throughout the food production chain to mitigate
contamination risks and safeguard consumers.

1.2 Food packaging

According to the Food Packaging Forum [3], the most used
packaging materials and food contact surfaces are:

• Ceramics;
• Glass;
• Metal (mainly aluminum and steel);
• Paper and Board;
• Plastics (in particular polyethylene, High-Density
polyethylene, polyethylene terephthalate, polyvinyl chloride,
polystyrene, and polycarbonate);

• Wood.

The Codex Alimentarius specifies that the primary requirement
for packaging is to avoid being a source of contamination [4].
Established in 1963 by the Food and Agriculture Organization
(FAO) and the World Health Organization, the Codex sets
international standards, guidelines, and codes of practice for food
safety, quality, and fairness in international food trade,
encompassing 99% of the global population. Food packaging is
pivotal in maintaining food quality and safety by acting as a
protective shield against external contaminants, prolonging
product shelf life, and preventing spoilage. However, packaging
itself can introduce contaminants, jeopardising food safety and
integrity. Contaminated food packaging poses health risks,
foodborne illnesses, allergenic reactions, and economic
consequences, such as costly recalls and reputational damage for
producers [5, 6]. Preventive measures include stringent quality
control throughout the production process, using high-quality
packaging materials, adhering to good practices and standards,
and implementing rigorous hygiene and health risk analyses,
notably through the Hazard Analysis and Critical Control Points
(HACCP) method. While not explicitly mandated by legislation,
adopting the HACCP methodology is widely recognised and
demanded by the national and international market to ensure
food safety and prepare for certification schemes. HACCP
facilitates both contamination prevention and compliance with
industry standards, aligning with market expectations and
enhancing consumer confidence in food safety [7].

1.3 Hygiene standards and consolidated
decontamination techniques

A crucial yet often overlooked aspect is the biological
contamination level of packaging materials, influenced by factors
like handling frequency and exposure to air. Different materials
exhibit varying propensities for microbial proliferation and require
distinct sanitation methods. Production processes vary widely

among packaging materials, presenting opportunities for both
contamination and decontamination Metals, glass, and plastics
manufacturing involve temperatures incompatible with microbial
survival. Conversely, cellulosic materials present contamination
risks due to source contamination, processing in humid
environments conducive to microbial growth, and lower
processing temperatures that sustain resilient microbial forms.
Paper and board production may involve biocidal agents. Post-
production contamination risks persist across all materials due to
handling, non-sterile air drafts, insect presence, and machine
contact. Acceptable hygienic conditions are indicated by cell
counts below 104 cells/cm2, while values exceeding 107 cells/cm2

denote unsatisfactory conditions [8].
Microbial growth on packagingmaterials depends on factors like

nutrient presence, moisture, and surface biofilm formation. Effective
decontamination, typically targeting a 5-log reduction in microbial
load, employs various thermal, chemical, and physical methods.

Traditional decontamination approaches include heat
treatments, in particular dry heat (>180 °C), hot water and steam
(130°C–150°C), and the utilisation of chemicals like hydrogen
peroxide, ethylene or propylene oxides [9–11]. A growing interest
is directed to more innovative methods like high-pressure
processing, high-intensity pulsed electric field treatment, pulsed
light, ozone-based treatments and cold-atmospheric plasma,
which holds promise for diminishing harmful microorganisms in
the context of the food industry more safely and sustainably [12–14].

1.4 Cold plasma technology

Plasma is the fourth state of matter, consisting of charged
particles (ions and electrons) and neutral molecules. It can
exploit several actions in many different applications, by tuning
the different active agents that it includes [15]. These agents are the
just-mentioned charged particles, chemically reactive species, such
as free radicals, electromagnetic fields, radiations, and heat. For an
application of interest, it is possible to control the operating
conditions in order to maximise the presence of the active agents
of interest. One main characteristic of plasmas (and the most
relevant one to choose based on the application) is their
macroscopic temperature. Plasmas can be consequently
classified into:

- equilibrium (or thermal) plasmas, having the electron
temperature in equilibrium with the heavy particles
temperature, resulting in a macroscopic temperature higher
than 104 K;

- non-equilibrium (or cold plasmas), in which only the electron
temperature is high, while the heavy particles–mainly
influencing the gas temperature–keep values closer to
ambient air.

Plasmas can also be classified on the basis of the pressure, which
can be atmospheric or lower. Cold plasmas at atmospheric pressure
will be hereinafter referred to as CAP (Cold Atmospheric Plasmas).
Atmospheric pressure is often preferred in the industrial application
perspective, since the arrangement is much simpler and economical.
Furthermore, in-line continuous processes are economically
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sustainable only at atmospheric pressure, while low-pressure
treatments should be carried out as batch processes.

The mechanisms of action related to the microbial inactivation
are various. The active chemical components found in CAP
demonstrate the ability to deactivate microorganisms on food
surfaces due to their antimicrobial characteristics [14]. The
primary effective components in the air plasma process include
reactive oxygen species (ROS, including ozone, singlet oxygen,
superoxide, peroxides, and hydroxyl radical) and reactive
nitrogen species (RNS, mainly nitrogen oxides). The
antimicrobial properties of these oxidative species can be
attributed to lipid peroxidation within cell membranes and the
oxidation of proteins and DNA within microbial cells [16].
Keener and Misra [17] have identified potential drivers for
implementing this technology in the food industry, including
lower energy requirements compared to current technologies,
making it more environmentally friendly, reduced operational
and maintenance costs due to simple systems with minimal
upkeep and sanitation needs, improved chemical safety of foods
through plasma inactivation and removal of pesticide and chemical
residues, and its status as a green technology promoting
environmental sustainability, as it only requires air and electricity
to generate effective plasma.

Plasmas can be generated by a wide range of different sources,
depending on the high voltage generator characteristics and the
configuration of the source electrodes. The most used CAP
sources are:

• Corona, in which a pointy electrode locally intensifies the
electric field and allows the discharge;

• DBD (Dielectric Barrier Discharge), having two parallel
(planar or concentric cylinders) electrodes separated by a
dielectric barrier and a gap, in which the discharge takes place;

• Jets, both in the Corona or DBD configuration, presenting a gas
flux which creates a plasma plume coming out from a nozzle;

• SDBD (Surface DBD), a particular configuration of DBDs with
the ground electrode in the form of a mesh and without a gap,
in order to generate plasma in the holes of the mesh.

2 Methods

This report was drafted following the PRISMA 2020 checklist, as
described in the PRISMA statement and PRISMA explanation and
elaboration [18–20].

A systematic research was carried out on the use of plasma
systems for decontamination of surface packaging. The aim was to
collect all studies that tested plasma’s effectiveness on materials that
could potentially or openly be traced back to packaging. The search
focused on the years from 2000 to 2023, collecting all articles
published in that period that contained terms concerning plasma,
packaging materials and possible biological contaminants or
decontamination-related terms in the title, abstract or keywords.

The search string used in the Scopus database is reported as
Supplementary Material.

Reasons for exclusion from selection could be:

- publication language other than English;

- in-package treatments, i.e., where the plasma is generated
inside a closed package;

- antimicrobial action carried out not directly on contaminated
packaging, but, e.g., on food or test plates;

- low-pressure treatment of the material, as the analysis is
addressed to atmospheric processes (however, studies in
which plasma was produced at low pressure but the
decontamination takes place at ambient pressure
were included);

- removal of chemical contaminants as the analysis is addressed
to the antimicrobial action of plasma);

- reviews.

The last search was done in December 2023. In addition to the
study selected with this systematic search, other inherent papers in
the authors’ knowledge were included.

Different categories of information were chosen for the relevant
data extraction from reports. First of all, the data about the plasma
systems were collected, i.e., the type of plasma source and its
dimensions or design characteristics, the operating conditions
(voltage, current, frequency, power and power density, type of
waveforms), the process gas and eventual other synergic agents
such as water vapour, UV, etc. Then, contamination characteristics
were summarised in the categories of pathogen strains, initial
concentrations, and contamination procedure. Packaging sample
material, geometries, and dimensions were reported as well. Finally,
the fundamental data item is presented: the maximum inactivation
achieved in terms of logarithmic reduction of the initial
concentration.

The effect size of the studies, i.e., their outcome, can be presented
differently. In this case, Standardised Mean Difference (SMD) was
chosen as index. SMD is defined as difference in mean outcomes
between groups, as follows:

SMD � Mean outcome of treated group

−Mean outcome of control group

In the specific field of decontamination experiments, SMD could be
identified as the logarithmic reduction of the pathogen charge
(LogR), calculated by means of the following formula:

LogR � LogNt − LogN0

where Nt represents the number of colonies in the treated group
and N0 in the control group.

Every individual study included in the quantitative analysis was
associated with a LogR value for the outcome synthesis.

Averages of logarithmic reductions are also calculated for sub-
groups of studies, by differentiating the pathogens in the main
categories of: Gram-positive bacteria, Gram-negative bacteria, fungi,
and viruses.

3 Results

3.1 Study selection

Subsequently, the flow diagram is presented (Figure 1). The
records were first identified through Scopus database searching, as
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previously illustrated. A few additional papers known by the authors
were included as well. The collection of documents was then
subjected to a preliminary screening on the software ASReview
LAB (Zenodo, Switzerland), which assisted in the selection of
eligible studies employing artificial intelligence tools. An
additional amount was excluded by analysing the full-text articles
for the above-mentioned reasons. A total number of 83 studies was
included in the qualitative synthesis (i.e., the data extraction). Three
papers did not present the data item considered to evaluate the
outcome, i.e., the logarithmic reduction, and were consequently
excluded from the quantitative analysis.

3.2 Summary of data and synthesis of results

The studies outcomes are summarised in the table reported as
Supplementary Material. For each study included in the quantitative

analysis, the outcome indicator, chosen as the logarithmic reduction
of the contaminant concentration, is reported. The effect estimates
of the individual studies are graphically synthesised in the forest
plot, with standard deviation if specified. Each different combination
of factors (plasma source, type of treatment, pathogen, packaging
material) is considered individually and associated with its outcome.
The total number of individual cases is 263. Only the most efficient
case is considered when different operating conditions were
investigated, such as different treatment times, distance between
plasma and the substrate, gas flux or generator electrical settings.
The averages of these results for groups of similar pathogens are also
calculated and reported in Figure 2.

Observing the average reduction rates for the sub-groups, it is
evident that Gram-positive bacteria are usually less sensitive than
Gram-negative bacteria to plasma treatment since the mean
logarithmic reduction is respectively 3.90 ± 1.73 and 4.42 ± 1.76.
This difference is in accordance with the literature and due to their

FIGURE 1
Flow diagram of records identification process.

FIGURE 2
Synthesis of study outcomes: averages of sub-groups logarithmic reductions. Marker sizes represent the relative sub-group size.
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distinctive structure of cell membrane [21]. The anti-viral effect of
plasma on contaminated packaging is a field that needs further
investigation, since only 3 studies were included in the quantitative
analysis. The mean efficacy against fungi, equal to 4.06 ± 1.76 LogR,
reflects the total outcome relative to the whole research. In fact, the
total outcome of the meta-analysis is an average of 4.11 ± 1.75 LogR
over 256 individual cases, which leads to the conclusion that plasma
treatments at atmospheric pressure are effective against
foodborne pathogens.

3.2.1 Investigated pathogens
On the basis of the records collection and data extraction, it was

possible to identify the most investigated pathogens in the field.
Gram-positive bacteria were the subject of study in 136 cases

(51.3% of the total)[ [22–50] [51–74]]; in particular, 32 times the
treatment was against endospores [40–42, 44, 46–49, 52, 54, 57, 58,
62, 70] and 5 times against biofilm of Pseudomonas aeruginosa,
Staphylococcus aureus, Staphylococcus epidermidis (single-species)
[39] and Streptococci strains [44]. The most studied Gram-positive
bacteria are:

- Staphylococcus aureus (50 occurrences, 8 times as Methicillin-
Resistant S. aureus),

- Bacillus subtilis (16 occurrences),
- Listeria monocytogenes (11 occurrences),
- Bacillus atrophaeus (8 occurrences).

Gram-negative bacteria were the subject of study in 93 cases
(35.1% of the total)[ [24, 25], [28–34], [36–38], [43–45], [48, 50, 51],
[61–64], [69, 71] [75–93]]; in particular, 7 times in the form of
biofilm of Escherichia coli (single-species) [78, 90, 94], Pseudomonas
aeruginosa (single-species) [79, 83, 91] and Salmonella strains [88].
The most studied Gram-negative bacteria are:

- Escherichia coli (53 occurrences),
- Staphylococcus typhimurium (15 occurrences),
- Pseudomonas aeruginosa (8 occurrences),
- Acinetobacter baumannii (8 occurrences).

Fungi were investigated in 28 cases (10.6%) [23, 26, 31, 32, 45,
68, 73, 89, 95–99], 2 times as biofilm of Candida albicans [97, 100].
Among the total number of cases counted as “fungi,” thrice the
contaminants were spores [26, 31, 57]. The most studied fungi are:

- Candida albicans (10 occurrences),
- Aspergillus niger (6 occurrences).

Only 6 experiments considered viruses [52, 62, 101–103]. It is
meaningful that 4 out of 5 cited papers were published between
2021 and 2022, suggesting an increasing interest developed after the
COVID-19 outbreak. This deduction is corroborated by the fact that
the specific contaminant virus was a coronavirus in three studies
[101–103]. The contaminant was a bacteriophage in the other two
cases [52, 62].

3.2.2 Investigated packaging materials
Polymeric materials were treated in 58% of the cases. The most

treated polymeric materials were:

- Polyethylene Terephthalate (36 cases),
- Polypropylene (34 cases),
- Polyethylene (24 cases.

Among the non-polymeric materials (occurred in 42% of the
cases), very frequently used substrates were:

- Glass (52 cases),
- Stainless Steel (35 cases),
- Paper (12 cases).

3.2.3 Plasma sources
The following occurrences are referred to a total of 77 specified

sources. The most frequently used are:

- DBD (29 times—38%),
- SDBD (18 times—23%),
- Jets (13 times—17%),
- Corona (7 times—9%).

In 3 out of the 84 selected studies, the plasma source was not
specified at all, while it was just mentioned as a generic CAP in
5 articles. In 2 papers, 2 different sources were tested in the
same paper.

3.2.4 Treatment methods
Different treatment methods are available when CAP are used.

Their conventional classification is adopted in this
systematic review:

- Direct treatment, in which plasma is in direct contact with
the substrate,

- Indirect treatment, in which the anti-microbial action is
exerted mainly by the reactive species, since plasma does
not occupy the substrate area,

- Plasma-activated water or air, as media carrying the reactive
species previously generated by plasma; air or water are
subsequently conveyed in contact with the substrate.

Among the selected studies, direct treatment occurred 46 times
(56.8%), indirect treatment 31 times (38.3%) and plasma-activated
water/air 4 times (4.9%).

A final observation regards the possibility of exploiting synergies
with other biocidal agents. Some attempts dealt with the
combination of plasma and i) ultraviolet rays [23, 27, 31], ii)
hydrogen peroxide [33, 96], iii) water in the form of water
vapour [57], water spray [44] or water layer deposited onto the
substrate [87].

4 Discussion and conclusion

According to the literature, plasma systems are proven effective
in decontaminating packaging materials and food contact surfaces.
The antimicrobial efficacy is demonstrated for various operating and
environmental conditions, for different plasma source
configurations and treatment methods from the direct treatment
to the indirect one to the PAW (Plasma-Activated Water) or PPA
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(Plasma-Processed Air) exposure. The plasma action inactivated a
wide range of different microorganisms. The average inactivation
was satisfactory according to European standards for the traditional
chemical disinfectants BS EN 13697:2015+A1:2019 and BS EN
14885:2022 [104, 105], which state that the minimum LogR
should be at least a 4 LogR for bacteria and at least a 3 LogR for
fungi. In practical packaging industry scenarios, it will be crucial to
evaluate the impact of initial microbial concentration on the plasma
treatment efficacy. Notably, a study conducted by Fernández et al.
[106] revealed an inverse relationship between initial concentration
and treatment effectiveness since, for high concentrations,
significant clumps, and multilayered structures form, potentially
offering physical protection against CAP treatment.

In conclusion, future research should consider the proof-of-
concept of the process and focus on optimisation, in particular,
reducing treatment time and increasing effectiveness. An up-scaling
is wished, considering the requirement of industrial facilities as well.
In fact, the treatment time is often of the order of minutes, which is
not compatible with typical industrial constraints. Furthermore,
most of the plasma sources used for the purpose can treat only a
limited portion of the surface, of the order of a few square
centimeters. Only 3 studies [26, 30, 53] were able to conduct
experiments as in-line processes, while all the others were
performed statically. The transition from laboratory prototypes to
industrial in-line systems should be the main aim of future research
in the field.
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