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The disparity between human and machine perception of spatial information
presents a challenge for machines to accurately sense their surroundings and
improve target detection performance. Cross-modal data fusion emerges as a
potential solution to enhance the perceptual capabilities of systems. This article
introduces a novel spatial perception method that integrates dual-modality
feature fusion and coupled attention mechanisms to validate the
improvement in detection performance through cross-modal information
fusion. The proposed approach incorporates cross-modal feature extraction
through a multi-scale feature extraction structure employing a dual-flow
architecture. Additionally, a transformer is integrated for feature fusion, while
the information perception of the detection system is optimized through the
utilization of a linear combination of loss functions. Experimental results
demonstrate the superiority of our algorithm over single-modality target
detection using visible images, exhibiting an average accuracy improvement
of 30.4%. Furthermore, our algorithm outperforms single-modality infrared
image detection by 3.0% and comparative multimodal target detection
algorithms by 3.5%. These results validate the effectiveness of our proposed
algorithm in fusing dual-band features, significantly enhancing target detection
accuracy. The adaptability and robustness of our approach are showcased
through these results.
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1 Introduction

Target detection is a common perception task in the field of remote sensing, and usually
we use algorithms to extract human-eye vision-friendly feature information in order to
achieve target detection. However, human visual perceptual information and detection
system perceptual information are not uniform. Human vision-friendly feature information
in any single modality can help humans to analyze the content in an image, but this does not
fully reflect the true target perception capability of the detection system [1–3]. Due to the
presence of a large number of visually unfriendly features, further exploitation of the
perceptual capabilities of the system is possible, and cross-modal feature fusion is the key to
exploit the target perception potential of the detection system [4–6]. Deep learning has
emerged as a widely adopted methodology for addressing single-band target detection tasks,
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and it can be classified into two main categories: one-stage detection
and two-stage detection algorithms. The conventional two-stage
detectors encompass prominent models such as R-CNN [1], Fast
R-CNN [2], Faster R-CNN [3], and Mask R-CNN [4]. In the two-
stage detection paradigm, the initial step involves the generation of
candidate regions, referred to as region proposals. These candidate
regions are subsequently mapped onto the feature map to extract the
corresponding feature matrices. These matrices serve as the
foundation for conducting classification and regression tasks,
ultimately enabling the determination of precise bounding box
coordinates.

In the realm of fusion models, particularly in the context of
autonomous driving, there have been studies exploring the
combination of You Only Look Once (YOLO) and radar sources
[5, 6]. These fusion models aim to leverage the strengths of both
YOLO, a popular object detection algorithm, and radar sensors to
enhance target detection and perception in autonomous vehicles. By
fusing the visual information from YOLO with the radar data, these
models can potentially improve the robustness and accuracy of
object detection, especially in challenging environmental conditions
such as low visibility or occlusions. The combination of YOLO and
radar sources provides complementary information, with YOLO
focusing on visual cues and radar sensors providing valuable depth
and motion information. By comparing the proposed novel spatial
perception method with these fusion models, it becomes possible to
assess the advantages, limitations, and performance improvements
achieved by incorporating dual-modality feature fusion and coupled
attention mechanisms in the context of target detection and
autonomous driving scenarios. Prominent one-stage detectors in
the field of target detection include SSD [5], the YOLO series

(comprising YOLOv1 [6], YOLOv2 [7], YOLOv3, YOLOv4, and
YOLOv5), and Retina-Net [8]. Unlike two-stage detectors, one-stage
detection algorithms eliminate the need for generating candidate
frames, instead relying on a direct regression method to detect frame
location information and category confidence in a single
step. Infrared and visible dual-band target detection represents a
new focal point in the research domain, as it enables the integration
of information from different spectral bands to enhance system
robustness. Figure 1 illustrates an example of target detection.
Hwang et al. [9] introduced the KAIST multispectral pedestrian
benchmark dataset, the first large-scale infrared-visible dual-band
dataset for pedestrian detection. This dataset was specifically
designed to improve system robustness through the integration
of information from diverse spectral bands [9].

Based on this dataset, Wagner et al. were the first to apply deep
learning to the field of multispectral pedestrian detection [10]. They
also proposed early fusion and late fusion frameworks, and
comparison results showed that late fusion outperformed early
fusion and the traditional ACF algorithm [11]. Konig et al.
proposed a multispectral fusion algorithm based on Faster
R-CNN [3]. They also proposed a dual-stream network
architecture (RPN) for multispectral pedestrian detection based
on Faster R-CNN and compared the effects of different stages of
feature fusion, showing that mid-stage fusion outperformed early or
late fusion [12]. The distance statistics of single classes, such as
pedestrians, in the visible range alone, infrared, and cross-distance,
provide valuable insights into the statistical distinctness between
these representations. By comparing the distances between samples
of the same class in different modalities, we can assess the degree of
separation and similarity among the representations. The distance

FIGURE 1
Example of infrared and visible dual-band object detection.
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statistics allow us to quantitatively measure the dissimilarity or
distinctness between these modalities. The analysis revealed that
the distances between pedestrian samples in the visible range alone
and infrared were significantly different. This suggests that the two
modalities capture distinct information about pedestrians, with each
modality providing complementary cues. The visible range
primarily captures visual appearance and shape information,
while the infrared modality emphasizes thermal signatures and
motion patterns. Furthermore, the cross-distance between the
fused representation and the individual modalities was examined.
The results demonstrated that the cross-distance was significantly
smaller compared to the distances within each modality. This
indicates that the fused representation successfully combines the
distinctive information from both modalities, resulting in a
representation that is closer to each individual modality
compared to the distances observed within each modality alone.
The accuracy of dual-band target detection is influenced by the
fusion stage, and effectively fusing the dual-band features poses a
significant challenge in research. Li et al. [13] proposed the
illumination-aware Faster R-CNN network (IAF R-CNN), while
Guan et al. [14] introduced an illumination-aware neural network
model. Both approaches involve training separate networks to
estimate illumination information, enabling adaptive fusion. The
IAF R-CNN method achieves a balance in prediction results
between infrared and visible images based on the network’s
predicted light values. On the other hand, Guan’s model employs
weights to balance the detection outcomes of the subnetworks
designated for daytime and nighttime light conditions. While
these approaches enable the fusion of detection results, they fail
to inherently increase the information content, resulting in limited
model performance.

Enhancing target detection accuracy through cross-modal
spatial perception and dual-modality fusion is a promising
approach in the field of machine perception. The disparity
between human and machine perception of spatial information
has been a challenge for machines to effectively sense their
surroundings and improve target detection performance.
However, cross-modal data fusion provides a viable solution to
enhance the perceptual capabilities of systems. In this regard, a novel
spatial perception method is introduced in this context, which
integrates dual-modality feature fusion and coupled attention
mechanisms [14–16]. By fusing information from multiple
modalities, the proposed approach aims to validate the
enhancement of detection performance through cross-modal
information fusion. The approach incorporates cross-modal
feature extraction using a multi-scale feature extraction structure
with a dual-flow architecture [17–19]. Additionally, a transformer is
utilized for feature fusion, optimizing the information perception of
the detection system. The algorithm’s effectiveness is demonstrated
through experimental results, showcasing its superiority over single-
modality target detection methods [20–24]. The proposed algorithm
outperforms single-modality target detection using visible images by
an average accuracy improvement of 30.4% and single-modality
infrared image detection by 3.0%. Furthermore, it surpasses
comparative multimodal target detection algorithms by 3.5%.
These promising results validate the effectiveness of the proposed
algorithm in fusing dual-band features, significantly enhancing
target detection accuracy. This approach exhibits adaptability and

robustness, highlighting its potential for advancing target detection
in various domains [25–32].

In contrast to scene division methods, researchers have
proposed feature fusion approaches to adapt target detection to
various scenes. Zhang et al. introduced the Cross-modal Interactive
Attention Network (CIAN) [15], which employs channel attention
to weight feature maps extracted from different spectral images,
thereby achieving feature fusion. Additionally, Zhang et al. proposed
the Cyclic Fuse-and-Refine (CFR) module [16] to balance the
complementarity and consistency of dual-band features.
Incorporating any network using this module leads to improved
detection performance. Furthermore, Zhang et al. proposed the
Guided Attention Feature Fusion (GAFF) [17] method, which
utilizes inter-modal and intra-modal attention modules to guide
dynamic weighting and fusion of features, enhancing detection
accuracy. The imaging methods for infrared and visible detectors
yield distinct visual perceptions, and features extracted from
different spectral bands often exhibit significant inconsistency
and suffer from alignment accuracy issues, making targets prone
to missed detection or misidentification.

Effectively integrating valuable information from different
bands and enhancing target detection accuracy and system
robustness are the primary considerations in dual-band target
detection algorithms. Therefore, this paper presents a dual-band
target detection algorithm based on a linear transformer and
channel attention. The algorithm utilizes a dual-flow architecture
with YOLOv5 as the backbone to separately extract infrared (IR) and
visible features. The feature fusion module, based on a linear
transformer and channel attention, adaptively learns the
interrelationship between IR and visible light without the need
for manually designing fusion rules. This adaptive approach
enhances the algorithm’s adaptability and robustness in variable
and complex scenes, resulting in an overall improvement in target
detection. The algorithm can effectively enhance target detection
accuracy and can be employed to improve detection outcomes.
Additionally, various feature interaction methods are designed, and
the detection results are analyzed to investigate the impact of
different cross-modal interaction approaches.

2 Materials and methods

2.1 Related works

Dual-band fusion target detection methods can be classified into
Early Fusion, Halfway Fusion and Late Fusion according to the
different stages of fusion. Early Fusion uses infrared images as an
expansion channel of visible images, and infrared and visible images

FIGURE 2
The early fusion framework offers several advantages in target
detection tasks.
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are input to the target detection network after cascading in the
channel dimension, and feature fusion is achieved when the network
extracts features, and the network structure does not need to be
changed, which can be represented as Figure 2. Secondly, the visible
image has three channels and the infrared image has only one
effective channel, which is directly cascaded in the channel
dimension as network input and the features obtained during the
convolution calculation are not balanced. In addition, pre-trained
models are generally used to initialize the weights during model
training, and almost all pre-trained models are trained on the visible
dataset, which has a weak representation of infrared features and
cannot make full use of infrared features.

Halfway fusion is a dual-stream architecture that first extracts
the features of IR and visible images separately, and then fuses the
dual-band features in the middle of the network before further
extracting the high-level semantic information of the fused features
and finally making decisions, as shown in Figure 3. The dual-stream
architecture is more flexible, does not require high resolution
consistency of the input images, and the mid-level features
balance the strengths and weaknesses of the bottom and top-level
features, preventing the network from focusing too much on
extracting detailed information or abstract features, and making
it easier to learn the correlation between IR and visible features.

Post-fusion, which can also be called decision-level fusion,
usually uses two identical sub-networks to extract the features of
IR and visible images separately, and fuses the high-level semantic
features to get the detection results before the final decision, as
shown in the framework diagram in Figure 4. The architecture of the
post-fusion method is flexible, the features in the fusion stage are
more abstract, and the requirements for the input data form and
target form are low, e.g., it can be a point-plane target, but the fusion
effect almost depends on the feature expression ability of a single
sub-network, and the detection effect of dual-band fusion cannot be
enhanced by complementary information.

The algorithm in this paper uses the FLIR dataset for algorithm
validation, which is dominated by face targets for infrared and
visible targets, and most of the images are aligned at pixel level, and a
small portion of the images are not aligned, but within an acceptable
range. The existence of alignment errors in the dataset will have a
certain impact on the effect of the pre-fusion algorithm. Taking into
account the form of the data, the advantages and disadvantages of
each stage of fusion, this paper selects the medium-term fusion
method as the theoretical basis to build a dual-stream architecture
for dual-band target detection.

2.2 Model framework

As shown in Figure 5., our approach is consisted of a dual-
stream architecture, ex-tracting infrared and visible image
features, and integrating multimodal features in the middle of
the model using the feature fusion module based on the linear
transformer and channel attention proposed in this paper, which
is passed to the single-stream network to enhance cross-modal
feature interaction. The model structure is shown in Figure 5. The
model can be divided into P1, P2 and P3 phases in the feature
extraction part, outputting three scales of infrared and visible
features. The P2 stage includes a convolution module and nine
tandem C3 modules; the P3 stage contains a convolution module,
an SPP module and three tandem C3 modules. After acquiring
the IR and visible features in the P1, P2 and P3 phases, the
proposed fusion module is used to integrate the features and pass
them into the unimodal network to achieve cross-modal feature
interaction. The artificial neural network (ANN) has gained
significant popularity as a versatile computational model with
diverse applications. One such application involves the
utilization of a clustering network-based intelligent power line
inspection system, which has been extensively explored by
researchers. Additionally, the investigation of the bifurcation
phenomena pertaining to optimal solutions in constrained
optimization problems has been undertaken, with a particular
focus on its implications within the field of mathematics [33, 34].

The core modules are the focus module, the C3 module, the
convolution module, the SPP module and the proposed fusion
module. The focus module slices the input image to achieve
lossless 2-fold image down sampling. The convolutional module
consists of a convolutional layer, a batch normalization layer and a
SiLU activation layer and is the basic structural unit of the
convolutional neural network. The C3 module establishes a
parallel two-branch structure, one consisting of a convolutional
module and a bottleneck module, and the other with only a
convolutional module, which mainly implements deep feature
learning, deepens the network and is less prone to gradient
disappearance. The SPP module maximizes the pooling of the
feature maps using four different scales from
1 × 1, 5 × 5, 9 × 9, 13 × 13{ } and then convolves the different
scales by channel dimension concatenation, which increases the
perceptual field of the network compared to that of single-scale max
pooling. The fusion module integrates infrared and visible features,
introduces global information, increases the perceptual field, models
the spatial location correlation, and recalibrates the importance of
channel features. The importance of channel features is recalibrated

FIGURE 3
The concept of the halfway fusion framework, an alternative
approach to integrating information from different sensor modalities.

FIGURE 4
Late fusion framework, showcasing the sequential flow of
information from the individual sensor modalities through their
respective processing modules.
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to enhance useful channel features while suppressing
irrelevant features.

The conducted investigations demonstrate the extensive
scope of research topics within the field of monitoring and
image processing technologies [35–39]. They encompass
various techniques, such as removing reflections from metallic
objects while preserving optical conditions, eliminating
highlights from black-and-white images using precision GANs,
predicting viewports in 360-degree video multicast, optimizing
volumetric video streams, developing fusion networks for traffic
detection, detecting infrared-visible objects, and tracking
maneuvering targets [40–44]. The investigations also delve
into the effects of spatial scale on layout learning and drainage
behavior, semantic and sample segmentation in coastal urban
areas, achieving human-like assembly through variable
acceptance control, identifying and tracking drainage pipeline
defects, analyzing anomalies in sensor data for autonomous
vehicles, developing autonomous pipeline navigation for bio-
robots, utilizing structured illumination microscopy, studying
flame retardants, precise multi-view stereo reconstruction,
stitching 3D point clouds for aero-engine blade measurement,
imitating tool-based clothing folding through visual

observations, developing a path planning method that
emulates human-like behavior, and predicting individual
future paths by considering temporal and spatial intervals
[45–49]. These resources exemplify a diverse range of research
efforts across various fields [50–54].

2.3 Feature fusion module

After extracting the dual-band features separately through the
YOLOv5 network, IR and visible feature interactions are enhanced
by the proposed linear transformer and channel attention-based
feature fusion module. The feature fusion module consists of a
fusion transformer module and a fusion attention module, and the
structure is shown in Figure 6. The infrared features, which are
assumed to be FIR ∈ RH×W×C, and the visible features, which are
assumed to be FVis ∈ RH×W×C, are first spatial position encoded
(positional encoding) [18]. In this paper, a sine and cosine function
is used to represent the relative position of the spatial coordinates.
Assuming that the feature map channel dimension is C, the position
encoding of dmodel � C and the specific spatial location p is given by
Eq. 1.

FIGURE 5
Dual-stream architecture with feature fusion module.
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PE 4i, p( ) � sin
px

100002i/dmodel
( )

PE 4i + 1, p( ) � cos
px

100002i/dmodel
( )

PE 4i + 2, p( ) � sin
py

100002i/dmodel
( )

PE 4i + 3, p( ) � cos
py

100002i/dmodel
( )

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(1)

where i � [0, 2, 4, ..., dmodel/2] and px, py are the spatial positions of
the points p in the feature map. The position codes are added to the
infrared feature FIR′ and the visible feature FVis′ to obtain the
features FIR−pos and FVis−pos that introduce the position information.

The transformer encoder is made up of sequentially connected
encoder layers and differs from convolutional neural networks in
that it does not use convolutional kernels for feature extraction. The

structure of the encoder layers in this paper is shown in Figure 7. The
input features F are mapped into query vectorsQ, key vectorsK and
value vectors V using matrices WQ, WK and WV, respectively. The
core of the encoder layer lies in the computation of the attention
layer. The most basic attention layer is based on the query vector Q
and the key vector K dot product. Then, the value vector V dot
product is used to obtain the attention weight, and the self-attention
SA can be expressed as Eq. 2.

SA Q,K, V( ) � softmax
QKT


D

√( )V (2)

where D is the feature dimension and 1


D

√ is the scaling factor to
prevent the gradient of the softmax activation function from
converging to zero due to the large values obtained by the matrix
dot product. However, in the transformer, the inner product
calculation is very resource intensive, and in this paper, a linear
transformer model is used [19]. Replacing the exponential kernel of
the softmax function with ϕ(Q) · ϕ(K)T, where ϕ(·) � elu(·) + 1,
the computational complexity is reduced from O(N2) to O(N)
while the performance remains almost constant. After the attention
layer computation, a linear function (Linear) is used for the
mapping, followed by layer normalization to normalize the
individual samples and link them to the input features F. The
network is then deepened by a multilayer perceptron (MLP) and
layer normalization, and the output features are summed with the
input F. The features FIR−pos and FVis−pos are input to the
transformer encoder layer for computation to obtain FIR−pos′ and
FVis−pos′ , respectively, introducing the global information of the
unimodal features.

The fused attention module focuses on using channel
attention to correct for the importance of channel dimensions,
enhancing detection task specificity features and suppressing
irrelevant features. The output of the encoder layers FIR−pos′

and FVis−pos′ are summed over the feature elements to obtain
Ffuse
′ . First, the vector of C × 1 × 1 is obtained by the global

average pooling of Ffuse
′ . Next, a nonlinear mapping is performed

using the fully connected layer and the ReLU activation function.
Then, the size of 1 × 1 × C is generated using the fully connected
layer and the Sigmoid function, and the value is normalized
between [0, 1] to obtain the vector of channel weights S and
finally multiplied by Ffuse

′ to obtain F
�
fuse
′ , achieving a flexible

FIGURE 6
Schematic diagram of the feature fusion module.

FIGURE 7
Encoder layer, Structure of the Transformer Encoder Layers.
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correction of the fused features. The process can be represented
by Eq. 3.

Ffuse � φ W2 ϕ W1 GAP Ffuse
′( )( )( )( )( ) · Ffuse

′ (3)

where GAP denotes global average pooling, W1 and W2 denote the
fully connected layer weights, ϕ denotes the ReLU activation
function, and φ denotes the Sigmoid activation function. Finally,
the computed fused features Ffuse are passed to the unimodal
network for cross-modal feature interaction.

2.4 Loss function

We use coupled loss function to optimized feature fusion
facilitating target perception, which consists of a confidence loss,
a classification loss and a localization loss. The confidence loss Lobj

is used to determine the probability that a target exists within the
bounding box of the regression, the classification loss Lclass

optimizes the category prediction task, and the localization loss
Lbbox is used as the loss for the bounding box regression. Both the
confidence loss and the categorical loss are binary cross-entropy
losses. The confidence loss Lobj can be expressed as Eq. 4.

Lobj � ∑K
2

i�0
∑M
j�0

A
�j

i log Aj
i( ) + 1 − A

�j

i( )log 1 − Aj
i( )[ ] (4)

Aj
i � Vi,j × IoUgt

pre (5)

In Eq. 4, K represents the number of grids, M represents the
number of candidate boxes for each grid, and A

�j

i and Aj
i represent

the prediction confidence and the true confidence for i, j
candidate boxes, respectively. In Eq. 5, Vi,j is one when the
grid is i and the candidate box is the target in j and 0 when
Vi,j is the opposite. IoU

gt
pre represents the intersection ratio of the

predicted box to the true box. The classification loss Lclass can be
expressed as in Eq. 6.

Lclass � ∑K2

i�0
Vobj

i,j ∑
C∈class

p
�

i c( )log pi c( )( ) + 1 − p
�

i c( )( )log 1 − pi c( )( )[ ]
(6)

where pi(c) and p
�
i(c) indicate the true and predicted probabilities

of whether the target in the i grid is in category c, respectively, C
indicates the total number of categories, andK indicates the number
of grids. Vobj

i,j is one when the anchor box at (i, j) contains a target
and 0 otherwise. The localization loss Lbbox uses the complete IoU
(CIoU) loss to optimize the detection frame regression task. In
addition to considering the cross-merge ratio IoU and centroid
distance, the CIoU loss is added to the distance IoU (DIoU) [20] loss
function with the addition of an influence factor u to measure the
consistency of the relative proportions of the two rectangular boxes,
as in Eq. 7.

Lbbox � L�
CIoU � 1 − IoU + ρ2 bdet − bgt( )

d2
+ αu (7)

where bdet denotes the centroid of the prediction box, bgt denotes the
centroid of the label, ρ denotes the Euclidean distance between the
two centroids, d denotes the diagonal distance between the

prediction box and the concatenation of the label boxes, and u
and α are calculated as shown in Eqs 8, 9.

u � 4
π2

arctan
wgt

hgt
− arctan

w

h
( )2

(8)

α � u

1 − IoU( ) + u
(9)

where wgt, hgt, w and h are the lengths and heights of the label and
prediction frames, respectively. Finally, the hyperparameters λobj,
λclass and λbox are introduced to balance the partial loss functions,
and the final loss function for the target detection Ldetection can be
expressed as Eq. 10.

Ldetection � λobjLobj + λclassLclass + λbboxLbbox (10)

2.5 Different feature fusion models

To investigate the effect of cross-modal interactions on
detection, we use a summation approach to fuse IR and visible
features while retaining the base framework, and the framework of
the different feature interaction models is shown in Figure 8. Fuse
model-1 is the basic framework in this paper and uses a dual-stream
architecture to extract IR and visible features separately, introducing
features extracted by another subnetwork at the connection of P1

and P2 and P2 and P3, respectively, as shown in Figure 8A.
The model structure is shown in Figure 8B. Fuse model-3

extracts the features of the source image in the P1 part of the
network and then shares the fused features with the P2 and P3 parts
of the network to further extract the deeper features, as shown
in Figure 8C.

3 Experiments and results

3.1 Dataset with experimental details

In this paper, we use the FLIR public dataset to train and
validate the algorithm model. The FLIR dataset is an autonomous
driving scene dataset containing road target images captured
under complex daytime and nighttime conditions, with
4,129 pairs of infrared and visible images in the training set
and 1,010 pairs in the test set. In this paper, three types of
targets, namely, pedestrians (person), vehicles (car) and bicycles
(bicycle), were selected, and the target attributes of the training set
were counted, as shown in Figure 9. Figure 9 shows the (a) target
number distribution, (b) target centroid distribution, and (c) target
size distribution. Figure 9 shows the number of targets in the three
categories varies widely and the categories are seriously
unbalanced, with vehicle targets far outnumbering pedestrian
and bicycle targets. The statistics on the distribution of target
centroid (x, y) coordinates show that the y-coordinates of most
target centers are approximately 0.5, and the x-coordinates are
between 0.1 and 0.7, which is in line with the characteristics of
autonomous driving scenarios; the height and width of most
targets are mainly within 0.08, i.e., the target size is within
50 × 40 pixels with predominantly face targets.
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The study conducted an analysis of distance statistics to
investigate the distinctness and complementary nature of
different modalities in capturing information about
pedestrians. The researchers focused on comparing the
distances between pedestrian samples in the visible range and
infrared. The results demonstrated significant differences
between the distances observed in the visible range alone and
those obtained in the infrared modality. This indicates that the
two modalities capture unique information about pedestrians,
with the visible range emphasizing visual appearance and shape,
while the infrared modality highlights thermal signatures and
motion patterns. Furthermore, the study examined the cross-
distance between the fused representation and the individual

modalities. The findings revealed that the cross-distance was
significantly smaller compared to the distances within each
modality. This indicates that the fused representation
successfully integrates the distinct information from both
modalities, resulting in an embedding that is closer to each
individual modality. Before model training, in addition to
conventional data enhancement methods such as the random
cropping, horizontal flipping, vertical flipping and proportional
scaling of images, the mosaic data enhancement method was used
to randomly stitch 4 images to prevent overfitting. The
experimental environment used an I9-109000k CPU, 32 GB
RAM, NVIDIA 3090 TI video card and 24 GB video memory.
The optimizer used in YOLOv5 is stochastic gradient descent

FIGURE 8
Frameworks for investigating cross-modal interactions. (A) Subnetwork at connections, (B) model structure, (C) network to further extracted the
deeper features.
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(SGD) [21]. In YOLOv5, the default parameters were used, and
anchor box sizes of [10, 16, 30, 55] were used as the detection
frames for small, medium and large targets. The values of λobj,
λclass and λbbox in the loss function were 1, 0.5 and 0.05,
respectively.

3.2 Evaluation indicators

In this paper, we used the mean average precision (mAP) to
evaluate the detection results, and the definition is described below.
The intersection over union (IoU) refers to the ratio of the
intersection of the real frame and the predicted frame to the
merged set.

IoU � Ap ∩ Agt

Ap ∪ Agt
(11)

For the target detection problem, suppose the threshold is τ.
When IoU≥ τ, if a target is identified and classified correctly, it is
considered a positive case; otherwise, it is a negative case. Thus,
according to the true result and the predicted result, the following
cases can be classified: true positive (TP), true positive case and
correct prediction; false-positive (FP), true negative case but
predicted positive case; true negative (TN), true negative case and
correct prediction; and false-negative (FN), true positive case but
predicted negative case. Precision and recall are calculated as in Eqs
12, 13, respectively.

Precision � TP

TP + FP
(12)

Recall � TP

TP + FN
(13)

When calculating the metrics, the IoU is fixed at a threshold of τ,
and the class with the highest probability is taken for category
discrimination. Other parameters remain unchanged, the prediction
results are arranged in descending order of confidence, and different
thresholds are taken to calculate the precision-recall curve. The area
under the calculated P-R curve is the average precision (AP), and

mAP is the average AP value for all categories. The two main
indicators involved in this paper are mAP50 andmAP. mAP50 is the
average of all AP categories when the IoU threshold τ is 0.5. mAP
uses the definition of COCO, calculates the mAP value for each
interval of 0.05 between the IoU threshold τ and [ 0.5, 0.95 ], and
finally takes the average value to obtain the final mAP. The formula
is shown in Eq. 14.

mAP � mAP0.50 +mAP0.55 + ... +mAP0.95

10
(14)

where mAP0.50 is the average accuracy at the IoU threshold τ

and so on.

3.3 Experimental analysis

To illustrate the difference between human perception and
machine perception, we give the multi-scale features extracted by
the algorithm and their corresponding fusion results, and the
visualization results of the features for machine perception are
shown in the Figure 10. In the low-dimensional feature
extraction with more detailed features, the higher-order features
reflect the semantic features of the image. The fused features are
generated from the multiscale features of both bands and finally help
in image detection. In the model, the fused features are optimized by
the loss function achieved by the detection, i.e., the features on which
the detection depends, are completely unfavorable to human
observation.

Figure 10 visually illustrates the multi-scale features and fused
outcome achieved through our novel spatial perceptionmethod. The
figure showcases the effectiveness of our approach in integrating
dual-modality feature fusion and coupled attention mechanisms,
resulting in enhanced target detection performance through the
fusion of cross-modal information.

Figure 11 illustrates a qualitative comparison of dual-band
object detection outcomes specifically in nighttime scenes, serving
as a visual representation of the proposed spatial perception
method’s performance and efficacy in low-light conditions.

FIGURE 9
(A) Object attribute statistics, (B) Target Distribution and (C) Attributes in the FLIR Dataset.
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FIGURE 10
Visualization of multi-scale features and fused result.

FIGURE 11
Qualitative comparison of dual-band object detection results in nighttime scenes.
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Figure 11 presents a side-by-side evaluation of the detection results
achieved using the proposed algorithm, featuring a collection of
nighttime scenes captured using dual-band modalities. Each scene
showcases the highlighted and labeled detected objects, along with
their respective classes and bounding boxes. Figure 12 compares
dual-band object detection results in daytime scenes, highlighting
the effectiveness of the proposed spatial perception method.
Figure 12 shows a side-by-side analysis of detection outcomes
using the algorithm, showcasing labeled objects in dual-band
imagery. This visual comparison allows readers to assess the
algorithm’s performance in accurately identifying and localizing
objects in well-lit conditions. The qualitative results support the
quantitative findings, emphasizing the method’s ability to enhance
target detection. Figure 12 also demonstrates the method’s
adaptability to different lighting conditions, reinforcing its
practical applicability in real-world scenarios.

The labels from the method in this paper were compared with
the labels in the FLIR ADAS dataset, and the dual-band target
detection effects during the day and at night are shown in Figure 11,
12, respectively. Figure 11 shows the detection effect of a night scene.
Most targets, such as pedestrians and vehicles, cannot be easily
detected by human eyes in the visible image, but they are more
prominent in the infrared image. The algorithm in this paper
completely detects pedestrians, vehicles and other targets in all
three scenes. In Scene II, the algorithm in this paper detects two
small vehicle targets that are not labeled (see red marks in the

Figure 11), and in Scene III, it can detect most of the pedestrians that
are obscured by vehicles. Figure 12 shows the detection effect of the
algorithm in daytime scenes. The image quality of the visible image
in daytime is significantly improved, while the prominence of the
targets in the infrared image is slightly reduced, and the surrounding
area of the targets is blurred. The results of this algorithm are more
accurate than those based on manual annotation. Subjective
observation shows that the algorithm is able to exploit the
advantages of infrared and visible images. The detection
performance is accurate and stable in daytime and nighttime
scenes and is not easily affected by lighting and other factors.

To verify the effectiveness of the dual-band fusion target
detection algorithm, the algorithm in this paper was compared
with the single-band detection model. The dual-band target
detection algorithm GPT [22], YOLOv5, and the model in this
paper are all used as pretrained models. YOLOv5 is a unimodal

FIGURE 12
Qualitative comparison of dual-band object detection results in daytime scenes.

TABLE 1 Quantitative comparison on the FLIR dataset.

Method Data Precision Recall mAP50 mAP

YOLOv5 RGB 79.4 60.9 67.3 31.9

YOLOv5 IR 80.9 72.5 78.6 40.4

GPT RGB + IR 81.1 72.2 79.1 40.2

Ours RGB + IR 81.4 73.2 80.0 41.6
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model trained on visible and infrared images together and tested on
the visible and infrared images in the test set. The training set and
parameters of the GPT algorithm and the algorithm in this paper are
the same. In this section, the precision, recall, mAP50, mAP75 and
mAP metrics were used for quantitative comparison, and the results
are shown in Table 1.

From the Table, it can be obtained that compared with visible
single-mode target detection, the algorithm in this paper improves
18.9% and 30.4% inmAP50 andmAP, respectively. Compared with the
single-mode infrared detection results, the algorithm in this paper
improves 1.8% and 3.0% in mAP50 and mAP metrics, respectively,
indicating that multi-band fusion detection can improve the detection
effect; compared with GPT multimodal detection algorithm,
mAP50 and mAP improve 1.1% and 3.5%, respectively. In addition
to the average accuracy, the algorithm in this paper balances up in the
accuracy and recall metrics, indicating that the combined multi-band
information can reduce the false detection rate.

To verify the effectiveness of the model in daytime and
nighttime scenes, the FLIR test set was split into daytime and
nighttime datasets and tested separately, with 700 pairs of images
in the daytime dataset and 310 pairs of images in the nighttime
dataset, and the test results are shown in Table 2. From this table, it
can be seen that visible light images are more influenced by light
factors, and targets in dark or glare conditions cannot be detected.
Thus, the average accuracy of detection at night is significantly lower
than that during the day. The contrast of infrared images in the FLIR
dataset is relatively low in daytime and the edges are more blurred,
so the average accuracy of detection in the infrared band at night is
higher than that in daytime, which is in line with the characteristics
of infrared and visible light imaging. In addition, because some of
the images in the FLIR dataset are not aligned at the pixel level and
the labels in the dataset are labeled according to the infrared images,
there are problems with missing labels and bounding box shifts,
resulting in the detection accuracy index of the visible band and the
fusion algorithm being affected to some extent. Taken together, the
algorithm proposed in this paper is able to perform in a stable
manner for a variety of complex scenes, regardless of illumination.

To verify the impact of the proposed feature fusion module on
target detection, the model was retrained by replacing the feature fusion
module with a summation layer (see Figure 4A for the model structure)

while keeping the training data, basic network model and parameters
unchanged, and the test results on the FLIR test set are shown in
Table 3. The model including the feature fusion module can improve
1.75%, 7.80%, 4.84% and 5.32% in Precision, Recall, mAP50 and mAP
indexes, respectively, indicating that the feature fusion module
proposed in this paper can effectively fuse important complementary
features of IR and visible images and significantly improve the detection
performance compared with simple summation for fusion.

This paper introduces three fusion models, namely, Fuse model-
1, Fuse model-2, and Fuse model-3, designed to investigate the
impact of different fusion methods on target detection accuracy. The
experimental results, presented in Table 4, focus on the FLIR test set,
with only the network model being modified while keeping other
factors unchanged. The optimal values of the three models are
indicated in bold. Fuse model-1 achieves the highest accuracy rate,
Fuse model-2 exhibits the highest recall and average precision, and
Fuse model-3 demonstrates the highest average precision at an
Intersection over Union (IoU) threshold of 0.5.

Both Fuse model-2 and Fuse model-3 perform comparably.
However, Fuse model-1 falls short, indicating a significant disparity
between infrared and visible features. The simple feature summation
fusion employed in the dual-stream architecture fails to achieve the
desired effect of feature complementarity. To address this limitation, the
proposed algorithm in this paper improves upon the framework of Fuse
model-1, resulting in a significant enhancement in performance. These
findings suggest that the proposed feature fusion module effectively
integrates complementary information from infrared and visible bands,
thereby enhancing target detection performance.

4 Conclusion

The target detection accuracy of visible or infrared single-band
images depends on the imaging quality, and dual-band images can
provide complementary information to enhance the stability and
reliability of the detection system. To verify the effectiveness of the
dual-band information in improving the detection of the target, this
paper proposes a dual-band target detection framework based on feature
fusion applied to infrared and visible target detection. In our method,

TABLE 2 Quantitative comparison of the day-night scenes from the FLIR dataset.

Method Data Daytime mAP50 mAP Nighttime mAP50 mAP

YOLOv5 RGB 72.7 35.1 56.6 23.3

YOLOv5 IR 77.6 40.2 84.2 43.8

GPT RGB + IR 77.0 39.3 85.3 43.5

Ours RGB + IR 78.1 40.6 84.9 44.2

TABLE 3 Ablation experiment of Feature fusion module.

Method Data Precision Recall mAP50 mAP

Fuse model-1 RGB + IR 80.0 67.9 76.3 39.5

Ours RGB + IR 81.4 73.2 80.0 41.6

TABLE 4 Quantitative comparison of models at different fusion stages.

Method Data Precision Recall mAP50 mAP

Fuse model-1 RGB + IR 80.0 67.9 76.3 39.5

Fuse model-2 RGB + IR 78.6 72.0 77.6 40.6

Fuse model-3 RGB + IR 78.2 71.2 77.7 40.0
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infrared and visible features are extracted separately through a dual-
stream architecture and integrated through a feature fusion module
based on a linear transformer and channel attention. Taken together, the
combination of cross-modal features significantly improves target
detection accuracy and provides strong adaptability and robustness in
both day and night scenes, exploiting the complementary advantages of
visible and IR images. In addition, due to the adaptive nature of the
fusion strategy, the algorithm in this paper is expected to be applicable to
other types of multimodal remote sensing imaging detection tasks. The
study introduces a dual-stream architecture to separately extract features
from infrared and visible images. These features are then fused using a
linear transformer and a channel attention-based fusion module. This
adaptive fusion approach enables the learning of interrelationships
between different modalities without the need for manually designed
fusion rules. Experimental results on the FLIR dataset demonstrate that
the proposed method significantly outperforms single-modality
detection baselines, achieving an average accuracy improvement of
over 30% compared to visible image detection. The algorithm also
demonstrates robust performance in both day and night scenes.
Through visualization and quantitative evaluation, this research
validates that cross-modal data fusion can indeed enhance a system’s
perceptual capabilities for tasks such as target detection.
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