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Ultrasound imaging has a history of several decades. With its non-invasive,
low-cost advantages, this technology has been widely used in medicine and
there have been many significant breakthroughs in ultrasound imaging. Even
so, there are still some drawbacks. Therefore, some novel image
reconstruction and image analysis algorithms have been proposed to solve
these problems. Although these new solutions have some effects, many of
them introduce some other side effects, such as high computational
complexity in beamforming. At the same time, the usage requirements of
medical ultrasound equipment are relatively high, and it is not very user-
friendly for inexperienced beginners. As artificial intelligence technology
advances, some researchers have initiated efforts to deploy deep learning
to address challenges in ultrasound imaging, such as reducing computational
complexity in adaptive beamforming and aiding novices in image acquisition.
In this survey, we are about to explore the application of deep learning in
medical ultrasound imaging, spanning from image reconstruction to
clinical diagnosis.
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1 Introduction

1.1 Brief introduction to medical imaging

Medical imaging relies on various physical phenomena to visualize human body
tissues, internally and externally, through non-invasive or invasive techniques. Key
modalities such as computed tomography (CT), magnetic resonance imaging (MRI),
X-ray radiography, ultrasound, and digital pathology generate essential healthcare data,
constituting around 90% of medical information [1]. Consequently, medical imaging
plays a vital role in clinical assessment and healthcare interventions. Deep learning, as
the cornerstone technology propelling the ongoing artificial intelligence (AI)
revolution, exhibits significant potential in medical imaging. It spans from image
reconstruction to comprehensive image analysis[2–8]. The integration of deep learning
with medical imaging has spurred advancements, with the potential to reshape clinical
practices and healthcare delivery. Empirical evidence has proven that deep learning
algorithms exhibit performance comparable to that of medical professionals in
diagnosing various medical conditions from imaging data [9]. At the same time,
many applications of deep learning in clinics have emerged [10–16]. Consequently,
there is a discernible trend towards certifying software applications for clinical
utilization [17].
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1.2 Literature reviews of deep learning in
ultrasound beamforming

The development of medical ultrasound has a history of
80–90 years now. Medical ultrasound began as an investigative
technology around the end of World War II [18]. With
advancements in electronics, this technology improved.
Ultrasound is being continually refined for better resolution,
more portable devices, and more automated systems that can aid
even in remote diagnostics. The most recent advancement in
medical ultrasound is the incorporation of AI to help diagnosis.

The application of AI in medical ultrasound is long-standing
[19–25]. With the explosion of deep learning, its application in
medicine has become even more widespread. The medical
ultrasound system mainly includes image reconstruction and
image analysis, both of which have seen extensive applications of
deep learning [26]. Deep learning has brought a revolutionary
change in ultrasound beamforming, significantly enhancing
image quality and improving computational efficiency.
Ultrasound beamforming is a process of combining signals from
multiple ultrasound elements to construct a focused image.
Traditional methods rely heavily on user intervention and
predefined parameters, which may limit the image quality and
accuracy. Deep learning, on the other hand, uses neural network
models to learn and generalize from examples. In the context of
ultrasound beamforming, deep learning methods can learn to
extract relevant features from raw ultrasound data and form a
high-quality image without needing explicit instructions or
predefined parameters. The process is relatively autonomous and
adaptable. In training phase, a deep learning model is trained with a
large amount of data (usually raw Radio Frequency (RF) data) which
includes both inputs (ultrasound signals) and outputs (desired
images). The model learns to identify patterns in the data and
how to predict the output from given inputs. Once trained, the
model can be used with new input data to predict the corresponding
output images. The advantage is that this prediction process is
usually faster than traditional beamforming methods as it bypasses
the need for complex signal processing. Deep learning models such
as Convolutional Neural Networks (CNNs) and Recurrent Neural
Networks (RNNs) have been successfully used in ultrasound
beamforming. They have shown promising results in enhancing
image resolution, reducing speckle noise, improving contrast, and
even performing advanced tasks like tissue characterization and
acoustic aberration correction. Around 2017, applications of deep
learning in beamforming began to appear in publications [27,28],
and the interest in this area has been increasing ever since. In plane
wave imaging, if only one plane wave is emitted, a very high frame
rate can be achieved, but this will lead to poor image quality.
Therefore, to improve image quality, a method called coherent
plane wave compounding (CPWC) [29] has been proposed to
solve this problem. However, using this method usually requires
the emission of plane waves at multiple angles, which leads to a
reduction in frame rate. Gasse et al. [27] propose a method using
CNNs that allows for the acquisition of high-quality images even
with the emission of only three plane waves. Luchies and Byram
[28,30] discuss how to use deep neural networks (DNNs) to suppress
off-axis scattering. The study is based on operations in the frequency
domain through short-time Fourier transform. There are also some

studies on bypassing beamforming [31–36]. The principal concept
involves utilizing advanced deep learning methodologies to directly
reconstruct images or conduct image segmentation from raw RF
data. Deep learning has also been used to reduce artifacts in multi-
line acquisition (MLA) and multi-line transmission (MLT) [37,38,
39]. Luijten et al. [35,40] investigate how deep learning can be
applied to the adaptive beamforming process, addressing the
computational challenges and aiming to produce better
ultrasound images. Wiacek et al. [35,42] explore the use of
DNNs to estimate normalized cross-correlation as a function of
spatial lag. This estimation is specifically for coherence-based
beamforming, such as short-lag spatial coherence (SLSC)
beamforming [44]. Using sub-sampled RF data to reconstruct
images can increase the frame rate, but the image quality will
decrease. Some researchers [31,45–47] propose using deep
learning to address this issue. More research is focused on the
application of deep learning in plane wave imaging [48–56]. Some
studies [57–59] discuss the training schemes. In addition, the
ultrasound community also organized a challenge to encourage
researchers to engage in deep learning research [60,61].

1.3 Overview of deep learning in clinical
application of ultrasound

Deep learning plays a significant role in ultrasound clinical
applications as it enhances the efficiency and accuracy of
diagnosis, reducing human errors and paving the way for more
sophisticated applications. Deep learning models can be trained to
automatically detect and segment lesions in ultrasound images. This
reduces the workload for radiologists and increases accuracy, as
human interpretation can be subjective and variable. They can also
be trained to classify diseases based on ultrasound images. Deep
learning helps build more detailed 3D and 4D imaging from 2D
ultrasound images, providing a more comprehensive picture of the
patient’s condition. Deep learning algorithms can be used to predict
clinical outcomes or progression of a disease based on ultrasound
imaging data. From Ref. [19–25], it can be seen that the application
of AI in medical ultrasound analysis predates that of beamforming.
Medical ultrasound analysis mainly includes segmentation,
classification, registration, and localization [62,63]. The
integration of deep learning with ultrasound image analysis has
spurred advancements, with the potential to reshape clinical
practices. Breast cancer is a disease that seriously threatens
people’s health [64]. The application of deep learning in breast
ultrasound can effectively assist radiologists or clinicians in
diagnosis. Becker et al. [65] are attempting to use a deep learning
software (DLS) to classify breast cancer from ultrasound images. Xu
et al. [66] focus on segmenting breast ultrasound images into
functional tissues using CNNs. This segmentation aids in tumor
localization, breast density measurement, and treatment response
assessment, crucial for breast cancer diagnosis. Qian et al. [67]
discuss a deep-learning system designed to predict Breast Imaging
Reporting and Data System (BI-RADS) scores for breast cancer
using multimodal breast-ultrasound images. Chen et al. [68]
introduce a novel deep learning model for breast cancer
diagnosis using contrast-enhanced ultrasound (CEUS) videos.
Jabeen et al. [69] present a novel framework for classifying breast
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cancer from ultrasound images. The method employs deep learning
and optimizes feature selection and fusion for enhanced
classification accuracy. Raza et al. [70] propose a deep learning
framework, DeepBreastCancerNet, designed for the detection and
classification of breast cancer from ultrasound images. Deep
learning is also widely applied in cardiac ultrasound. Degel et al.
[71] discuss a novel approach to segment the left atrium in 3D
echocardiography images using CNNs. Leclerc et al. [72] evaluate
encoder-decoder deep CNN methods for assessing 2D
echocardiographic images. The study introduces the Cardiac
Acquisitions for Multi-structure Ultrasound Segmentation
(CAMUS) dataset, the largest publicly available and fully
annotated dataset for echocardiographic assessment, featuring
images from 500 patients. Ghorbani et al. [73] investigate the
application of deep learning models, particularly CNNs, to
interpret echocardiograms. Narang et al. [74] explore the efficacy
of a deep learning algorithm in assisting novice operators to obtain
diagnostic-quality transthoracic echocardiograms. Ultrasonography
is also a primary diagnostic method for thyroid diseases [75]. Thus,
some studies on the assistance of deep learning in the diagnosis of
thyroid diseases [76–81] emerged. There are also many applications
of deep learning in prostate cancer detection [82–84] and prostate
segmentation [85–91]. In ultrasound fetal imaging, deep learning
also plays an increasingly important role[92–97]. In addition, there
is a constant emergence of deep learning research in ultrasound
brain imaging [98–103].

1.4 Other review articles on deep learning in
ultrasound imaging

There are already some review articles about deep learning in
medical ultrasound imaging. van Sloun et al. [104] presents an
inclusive examination of the potential and application of deep
learning strategies in ultrasound systems, spanning from the
front end to more complex applications. In another article
[105], they specifically discussed deep learning in
beamforming. They introduce the potential role that deep
learning can play in beamforming, as well as some of the
existing achievements of deep learning in beamforming, and
also look forward to new opportunities. Ref. [106] discusses
the shortcomings of traditional signal processing methods in
ultrasound imaging. The paper suggests a blend of model-based
signal processing methods with machine learning approaches,
stating that probability theory can seamlessly bridge the gap
between conventional strategies and modern machine/deep
learning approaches. However, these articles mainly focus on
the principles of ultrasound imaging and do not discuss clinical
applications. There are also some articles that provide reviews
from the perspective of image analysis and clinical practices.
Reference [62,63] discuss deep learning in medical ultrasound
analysis from multiple perspectives. Afrin et al. [107] discuss the
application of deep learning in different ultrasound methods for
breast cancer management - from diagnosis to prognosis.
Reference [108] presents an in-depth analysis of the
application of AI in echocardiography interpretation.
Khachnaoui et al. [109] discuss the role of ultrasound imaging
in diagnosing thyroid lesions. In this review, our aim is to

introduce the application of deep learning in medical
ultrasound from the perspective of image reconstruction to
clinical applications. The content seems to be quite broad, we
aim to provide a comprehensive perspective on the application of
deep learning in medical ultrasound and introduce the potential
role of deep learning in ultrasound imaging from a system
perspective.

2 Overview of medical
ultrasound system

A medical ultrasound system consists of various interconnected
modules, each of which is further segmented into numerous smaller
components. Figure 1 illustrates a simplified block diagram of a
medical ultrasound system. The entire signal processing pipeline of
an ultrasound system is relatively complex, with even more detailed
subdivisions for each module. For those interested in a deeper
exploration, please refer to [110]. Here, we are only providing
readers with a high-level overview, and a more in-depth
introduction to the modules we are interested in will be covered
subsequently. The dashed box in Figure 1 represents the analog
signal processing module, which is not within the scope of
discussion in this survey. We will focus on the discussion of the
transmit and receive beamforming and introduce the post-
processing as well. The transmit and receive beamforming are
actually two distinct parts; however, in Figure 1, we categorize
both under beamforming. In subsequent discussions, we will
address these two parts separately. The categorization of post-
processing here may be overly broad. In fact, after beamforming,
there is a series of intermediate processing steps before the final post-
processing. However, in this context, we refer to all these processing
steps collectively as post-processing.

2.1 Transmit processing

In ultrasound systems, transmit beamforming is a technique that
involves controlling the timing of excitation of multiple transducer
elements to produce a directional beam or focus the beam within a
specific area. By precisely adjusting the phase and amplitude of each
element, an ultrasound beam with a specific direction and focal
depth can be formed [111].

It can be seen from Figure 2, which illustrates the process of
transmit beamforming, that the distance from each element on the
transducer to the focal point is different. To ensure the beam
ultimately focus at the point, it is necessary to control the
emission timing of each element. It is noteworthy that in the
typical transmission focusing, only a subset of elements are
involved. In plane wave imaging, all elements on the transducer
need to transmit, and the direction of the plane wave is controlled by
adjusting the transmission timing of each element.

2.2 Receive processing

The receive beamforming is a crucial signal processing
technique used to construct a high quality image from the echoes
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returning from the scanned tissue or organs in ultrasound imaging.
When an ultrasound probe emits high-frequency sound waves, they
travel through the body, echolocate off structures, and are then
reflected back to the receiver. The reflected echoes are captured by
multiple transducer elements arranged in an array on the probe. The
schematic is illustrated in Figure 3.

Receive beamforming involves combining the signals received
by each of these elements in an intelligent way to construct a
coherent and high-resolution representation of the scanned
region. The most fundamental beamforming technique is the
delay-and-sum (DAS) [112] method where the received signals
from different transducer elements are delayed relative to each
other to account for the different times of flight from the
reflecting structure. They are then summed together, enhancing
the signal from a specific direction or focal point while attenuating
the signals from other directions. While the transmitted beam can be

focused at a certain depth, receive beamforming allows dynamic
focusing at various depths on receive. The delays are continuously
adjusted as the echoes return from different depths, effectively
focusing the beam at multiple depths in real-time. The
apodization process involves weighting the received signals before
they are summed, reducing side lobes and improving the lateral
resolution. Advanced beamforming techniques use adaptive
methods like Minimum Variance (MV) [113] to improve the
image quality further by adapting to the signal environment,
hence reducing the impact of off-axis scattering and noise. The
result of receive beamforming is a narrow, well-defined beam that
can accurately locate and display the internal structures of the body,
thus providing detailed images for diagnosis. Advances in digital
signal processing and hardware technology have significantly
improved beamforming techniques, making them more
sophisticated and effective.

FIGURE 1
Schematic of ultrasound imaging system.

FIGURE 2
Schematic of transmit beamforming. By controlling the emission time of each element on the transducer, the waves emitted by each element can
ultimately be focused on one point.
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2.3 Post processing

Ultrasound imaging can be roughly divided into pre-processing
and post-processing [114]. Beamforming, as a key part of pre-
processing, plays an important role in imaging quality, but post-
processing is also an indispensable step. The post-processing is a
research field that involves applying several steps after the channel
data are mapped to the image domain via beamforming. These steps
include further image processing to improve B-mode image quality,
such as contrast, resolution, despeckling. It also involves
spatiotemporal processing to suppress tissue clutter and to
estimate motion. For 2D or 3D ultrasound data, post-processing
is crucial for automatic analysis and/or quantitative measurements
[115]. For instance, the recovery of quantitative volume parameters
is a unique way of making objective, reproducible, and operator-
independent diagnoses.

Medical ultrasound image analysis involves the use of diagnostic
techniques, primarily those leveraging ultrasound, to create an
image of internal body structures like blood vessels, joints,
muscles, tendons, and internal organs. These images can then be
used to measure certain characteristics such as distances and
velocities. Medical ultrasound image analysis has extensive
applications in various medical fields, including fetal, cardiac,
trans-rectal, and intra-vascular examinations.

Common practices in the analysis of medical ultrasound
images often encompass techniques such as segmentation and
classification. Segmentation separates different types of organs
and structures in the image, especially for regions of interest.
Segmentation often uses edge detection, region growing,
thresholding techniques, and more advanced techniques such
as cascade classifiers, random forests, deep learning, etc.
Classification is also a key part of image analysis. It classifies
the images into normal images and abnormal images based on the
previously extracted features, or further, performs disease
classification. Common classification methods include neural
networks, K-nearest neighbors (K-NN), decision trees, Support
Vector Machines (SVM), etc. In recent years, deep learning-
based classification models, such as CNNs, have been widely

used, and with their powerful performance and accuracy, are
extensively applied in the field of medical image analysis.

3 Deep learning in medical
ultrasound imaging

We will discuss the application of deep learning in medical
ultrasound imaging from several perspectives. First is the
improvement of different beamforming techniques via deep
learning, followed by a discussion on clinical application, and
then the analysis of the application of deep learning in portable
ultrasound devices and training schemes. Finally, we will briefly
introduce the CNNs and transformer.

3.1 Image reconstruction

3.1.1 Bypass beamforming
Beamforming plays a crucial role in enhancing image quality.

DAS algorithm, as a classic beamforming technique, is widely used
in ultrasound imaging systems. Despite its operational simplicity
and ease of implementation, this method also presents certain
limitations and drawbacks. DAS beamforming generates relatively
high side lobes and grating lobes, which are unwanted beam
directions that may capture reflected signals from non-target
areas, reducing image contrast and resolution. To suppress the
side lobes, a common method is to use apodization, which is the
application of weighting windows.

Usually, beamforming synthesizes the signals received by an
array of elements to form a directional response or beam pattern, but
this process can be computationally intensive. Deep learning
approaches can potentially learn to perform the beamforming
operation more efficiently, leading to faster image reconstruction
without compromising quality. Simson et al. [31] address the
challenge of reconstructing high-quality ultrasound images from
sub-sampled raw data. Traditional beamforming methods, although
adept at generating high-resolution images, impose considerable

FIGURE 3
Schematic of receive beamforming. In order to align the echo received by each transducer element that is reflected from a certain point, it is
necessary to properly delay the signal received by each element.
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computational demands and their efficacy diminishes when dealing
with sub-sampled data. To overcome this issue, the authors propose
“DeepFormer,” an end-to-end, deep learning-based method
designed to reconstruct high-quality ultrasound images in real-
time, using sub-sampled raw data. Traditional beamforming
algorithms often ignore the information between scan lines. Yet,
a fully convolutional neural network (FCNN) is capable of capturing
this information and utilizing it effectively; thus, enabling cross-scan
line interpolation in sub-sampled data. As shown in Eq. 1 [31], the
loss function used in DeepFormer is a combination of ℓ1 loss and
Structural Similarity Imaging Metric (SSIM) [116].

LDF � αLMS−SSIM + 1 − α( )L1 (1)
Their results, which were tested on an in vivo dataset of some
participants, indicate that DeepFormer is a promising approach for
enhancing ultrasound image quality while also providing the speed
necessary for clinical use. In addition, Nair et al. [32–35], introduced
a concept with the objective of achieving high frame rates for
automated imaging tasks over an extended field of view using
single plane wave transmissions. They address the typical
challenge of suboptimal image quality produced by single plane
wave insonification and propose the use of DNNs to directly extract
information from raw RF data to generate both an image and a
segmentation map simultaneously. Unlike traditional beamforming,
which generally only reconstructs images, they have utilized deep
learning to achieve both image reconstruction and segmentation at
the same time. They employed FCNN, the entire network includes
an encoder and two decoders, one for image reconstruction and the
other for image segmentation. As shown in Eq. 2 [35], the loss
function of the entire network also adopts a combination of ℓ1 loss
and Dice similarity coefficient (DSC) loss.

LT θ( ) � ℓ1 θ( ) +DSC θ( ) (2)
The DSC loss is used to measure the overlap between the predicted
and true segmentation masks during the training of their DNN.
Specifically, the DSC loss is utilized to quantify the similarity
between the predicted DNN segmentation and the true
segmentation. The DSC is calculated as a function of the overlap

between these two segmentations, with a value of one indicating
perfect overlap and 0 indicating no overlap. The DSC loss
complements the mean absolute error loss by focusing on the
segmentation performance of the network. While the mean
absolute error provides a pixel-wise comparison between the
predicted and reference images, the DSC loss offers a more
holistic measure of the segmentation quality, especially important
in medical imaging where the precise localization of structures is
vital. This dual-loss approach enables the network to learn both the
image reconstruction and segmentation tasks effectively, ensuring
that the network parameters are optimized to generate accurate
segmentations alongside the reconstructed images. The comparison
between classic beamforming and this method is shown in Figure 4.

3.1.2 Adaptive beamforming
Traditional beamforming typically uses a fixed, predetermined

set of weights applied to the received signals from each transducer
element. These weights are usually uniform (DAS) or they use
simple apodization (windowing) techniques. The resolution is
generally limited by the fixed nature of the weights. The main
lobe width does not adapt to different signal scenarios, which can
lead to a less focused image. Traditional approaches may exhibit
relatively higher side lobes, inducing higher levels of interference
and clutter within the image. However, these methods are simpler to
implement and faster in terms of computation, which makes them
suitable for many real-time imaging applications.

The MV beamforming uses an adaptive approach to determine
the weights applied to the signals. It calculates the weights that
minimize the variance of the noise and interference, essentially
optimizing the signal-to-noise ratio. The adaption of weights allows
to generate a much narrower main lobe in the beam pattern, which
translates to higher spatial resolution and better ability to distinguish
between closely spaced scatterers. As a result of the narrower main
lobe and suppressed side lobes, MV can provide significantly
improved image resolution and contrast. It allows for clearer
delineation of structures within the body, especially beneficial
when visualizing small or closely spaced scatterers. The MV
algorithm uses the data from the transducer elements to estimate
the covariance matrix of the received signals. As shown in Eq. 3

FIGURE 4
A comparison between DAS beamforming (top) and a deep learning method that bypasses the beamforming process [35] (bottom).
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[113], the weights are derived to minimize the output variance while
maintaining the gain in the direction of the signal of interest.

ŵ � min
w

wHRxw

s.t. wHa � 1
(3)

where Rx is the covariance matrix of the received signals and a is a
steering vector of ones. This optimization process, typically solved as
a constrained minimization problem, is more complex than
applying fixed weights as in traditional beamforming methods.
This process involves calculating the correlations between the
signals received at each pair of array elements. As the number of
elements increases, the size of this matrix grows quadratically, thus
increasing the computational burden. To compute the weights that
will minimize the variance of the noise and interference, the MV
algorithm requires the inversion of the covariance matrix. The
inversion of a matrix is considered a process that requires
significant computational resources, especially as the size of the
matrix grows with the number of transducer elements. The
algorithm must dynamically adapt and recalculate the weights for
each focal point in real-time as the transducer moves and steers its
beam. This continuous adaptation requires the algorithm to perform
the above computations for each new set of received signals, which is
computationally demanding.

Luijten et al. [35,40] examine the applicability of deep learning
to augment the adaptive beamforming process, addressing the
computational challenges and aiming to produce better
ultrasound images. They develop a neural network architecture,
termed Adaptive Beamforming by deep LEarning (ABLE), which
can adaptively calculate apodization weights for image
reconstruction from received RF data. This method aims to
improve ultrasound image quality by efficiently mimicking
adaptive beamforming methods without the high computational
burden. The ABLE network consists of fully connected layers and
employs an encoder-decoder structure to create a compact
representation of the data, aiding in noise suppression and signal
representation. The training of ABLE is performed using a
specialized loss function designed to promote similarity between
the target and the produced images while also encouraging unity
gain in the apodization weights. The study demonstrates ABLE’s
effectiveness on two different ultrasound imaging modalities: plane
wave imaging with a linear array and synthetic aperture imaging
with a circular array. Moreover, ABLE’s computational efficiency, as
assessed by the number of required floating-point operations, is
significantly lower than that of Eigen-Based Minimum Variance
(EBMV) beamforming, highlighting its potential for real-time
imaging applications. In the training strategy, the network
employs a total loss function composed of an image loss and an
apodization-weight penalty. The image loss is designed to promote
similarity between the target image and the one produced by ABLE,
while the weight penalty encourages the network to learn weights
that facilitate a distortionless response in the beamforming process.
This penalty is inspired by MV beamforming principles, which aim
to minimize output power while ensuring a distortionless response
in the desired direction. By incorporating this constraint, the
network is guided to learn apodization weights that not only aim
to reconstruct high-quality ultrasound images but also adhere to a
fundamental beamforming criterion, ensuring the network’s

predictions align with the physical beamforming process. The
comparison between MV and ABLE is shown in Figure 5.

3.1.3 Spatial coherence-based beamforming
Spatial coherence-based beamforming is a sophisticated method

employed in ultrasound imaging that focuses on analyzing the
spatial coherence of received echo signals to form diagnostic
images. It improves image clarity by emphasizing echoes that
show consistent phase or time delays across neighboring
transducer elements, which indicates they are coming from a real
reflector-like tissue structure, rather than random noise or
scattering. By harnessing this spatial coherence, the beamformer
can more effectively differentiate between signal and noise, leading
to images with better resolution and contrast.

Typically, the DAS algorithm only utilizes one attribute, the
signal strength, while spatial coherence reflects the similarity of
signals [117]. Therefore, this is another property that can be used to
enhance image quality. There are many studies based on spatial
coherence, such as coherence factor (CF) [118], generalized
coherence factor (GCF) [119], and phase coherence factor (PCF)
[120]. Lediju et al. [44] have proposed a spatial coherence-based
method named short-lag spatial coherence (SLSC). This method
leverages the coherence of echoes that occur at short lags. The
objective of this method is to overcome the limitations of traditional
ultrasound imaging, caused by factors such as acoustic clutter,
speckle noise, and phase aberration. SLSC images demonstrate
improved visualization when compared to matched B-mode
images by addressing these issues. By applying the SLSC imaging,
the researchers aim to enhance ultrasound image quality and
diagnostic accuracy, benefiting the field of medical imaging. The
spatial coherence is calculated by Eq. 4 [44],

R̂ m( ) � 1
N −m

∑N−m

i�1

∑s2
s�s1xi s( )xi+m s( )������������������∑s2

s�s1x
2
i s( )∑s2

s�s1x
2
i+m s( )

√ (4)

where xi is the aligned signal received by the ith element, si
represents the sample index along the axial direction. In addition,
N denotes the receive aperture, and m indicates the lag. From this
equation, it can be seen that its computational complexity is
relatively high. Wiacek et al. [35,42] have proposed a deep
learning approach named CohereNet to estimate the normalized
cross correlation as a function of lag. This network can be used to
replace the SLSC beamforming. They delve into the potential of
FCNNs as “universal approximators” that could learn any function.
In CohereNet, a 7 × 64 input is adopted, which means the axial
kernel chooses seven samples in the axial direction, while the
aperture size is 64. The output is the spatial correlation at
different lag distances. The network structure consists of an input
layer, three fully connected layers using rectified linear unit (ReLU)
as the activation function, followed by a fully connected layer using
hyperbolic tangent (tanh) as the activation function, and an average
pool output layer. In essence, CohereNet aims to utilize the
capability of DNNs to enhance the beamforming process, thereby
improving image quality and computational efficiency. As described
in [43], the CohereNet is faster than SLSC, and this network also has
high generality. The Figure 6 illustrates the comparison between
DAS and CohereNet.
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3.2 Deep learning in clinical applications

Ultrasound imaging, due to its non-invasive characteristic and
real-time imaging capabilities, has seen extensive use across various
medical domains. This section delves into the clinical applications of
deep learning, including breast imaging, cardiology, prostate
imaging, fetal, thyroid, and brain.

3.2.1 Breast imaging
Breast ultrasound imaging is commonly utilized to detect

potential breast diseases [121]. Although it falls short in
identifying microcalcifications compared to X-ray
mammography, it is instrumental in distinguishing benign
masses like cysts and fibroadenomas from malignant ones. With
the development of AI, especially the advent of deep learning

FIGURE 5
A comparison among (A)DAS, (B)MV and (C)ABLE [41]. The weights in DAS are typically pre-set fixed values, while the weights in MV and ABLE are
adaptive. ABLE can be seen as an alternative form ofMV. They both adaptively estimate weights through the received signals. The calculation of weights in
MV requires a large amount of computation, while ABLE reduces the computational complexity.

FIGURE 6
A comparison between DAS beamforming (top) and CohereNet [43] (bottom). The DAS algorithm obtains the final result by aligning the received
signals and then weighting and summing them up. On the other hand, SLSC achieves the final result through calculating the spatial coherence.
CohereNet reduces the computational complexity of SLSC.
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technologies, it has also promoted the evolution of ultrasound breast
imaging. Some open-source datasets, such as Breast Ultrasound
Images Dataset (BUSI) [122], have also promoted the widespread
application of deep learning. As depicted in Figure 7, the images
within the BUSI dataset are classified into three distinct categories:
normal, benign, and malignant.

In 2018, Becker et al.[65] reported using generic deep learning
software (DLS) for the classification of breast cancer in ultrasound
images. The study aimed to evaluate the effectiveness of a DLS in
classifying breast cancer using ultrasound images and compare its
performance against human readers with varying levels of breast
imaging experience. They used Receiver Operating Characteristic
(ROC) to assess the accuracy of diagnostic results. The DLS
achieved diagnostic accuracy comparable to radiologists and
performed better than a medical student with no prior experience.
Although they did not discuss the technical details of deep learning, the
study demonstrated that deep learning software could achieve high
diagnostic accuracy in classifying breast cancer using ultrasound
images, even with a limited number of training cases. The fast
evaluation speed of the software supports the feasibility of real-time
image analysis during ultrasound examinations. This indirectly
illustrates the potential of deep learning in improving diagnostic
processes. Xu et al. [66] develop a CNN based method for the
automatic segmentation of breast ultrasound images into four major
tissues: skin, fibroglandular tissue, mass, and fatty tissue, to aid in tumor
localization, breast density measurement, and assessment of treatment
response. They designed two CNN architectures CNN-I and CNN-II.
CNN-I is an 8-layer CNN for pixel-centric patch classification. CNN-II
is a smaller CNN to combine the outputs of three CNN-Is, each trained

on orthogonal image planes, to provide comprehensive evaluation.
CNNs were trained using the Adam optimization algorithm, and
dropout methods were applied to prevent overfitting. The proposed
method achieved high quantitative metrics for segmentation. Accuracy,
Precision, Recall, and F1-measure all exceeded 80%. Jaccard similarity
index (JSI) for mass segmentation reached 85.1%, outperforming
previous methods. The proposed method provided better
segmentation visualization and quantitative evaluation compared to
previous studies. The automated segmentation method can offer
objective references for radiologists, aiding in breast cancer diagnosis
and breast density assessments. Qian et al. [67] have proposed a deep
learning system to assess the breast cancer risk. The system was trained
on a large dataset from two hospitals, encompassing 10,815 ultrasound
images of 721 biopsy-confirmed lesions, and then prospectively tested
on an additional 912 images of 152 lesions. The deep-learning system,
when applied to bimodal (B-mode and color Doppler images) and
multimodal (including elastography) images, achieved high accuracy in
predicting BI-RADS scores. The system’s predictions align with
radiologists’ assessments, demonstrating its potential utility in
clinical settings. It could facilitate the adoption of ultrasound in
breast cancer screening, particularly beneficial for women with dense
breasts wheremammography is less effective. This research underscores
the potential of deep learning in enhancing breast ultrasound’s
diagnostic power, offering a tool that aligns with current BI-RADS
standards and supports radiologists in decision-making processes. Chen
et al. [68] introduce a deep learning model for breast cancer diagnosis.
They leverage the domain knowledge of radiologists, particularly their
diagnostic patterns when viewing CEUS videos, to enhance the model’s
diagnostic accuracy. The model integrates a 3D CNN with a domain-

FIGURE 7
Three examples from BUSI dataset[122]. (A) A normal image and (D) its corresponding mask, (B) a benign image and (E) its corresponding mask, (C)a
malignant image and (F) its corresponding mask.
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knowledge-guided temporal attention module (DKG-TAM) and a
domain-knowledge-guided channel attention module (DKG-CAM).
These modules are designed to mimic the attention patterns of
radiologists, focusing on specific time slots in contrast-enhanced
ultrasound (CEUS) videos and incorporating relevant features from
both CEUS and traditional ultrasound images. The study utilizes a
Breast-CEUS dataset comprising 221 cases, which includes CEUS
videos and corresponding images, making it one of the largest
datasets of its kind. Reference [69] addresses the challenge of breast
cancer, the second leading cause of death among women worldwide. It
highlights the importance of early detection through automated systems
due to the time-consuming nature of manual diagnosis. The study
introduces a new framework leveraging deep learning and feature
fusion for classifying breast cancer using ultrasound images. The
proposed framework comprises five main steps: data augmentation,
model selection, feature extraction, feature optimization, feature fusion
and classification. Operations like horizontal flip, vertical flip, and 90-
degree rotation were applied to enhance the original dataset’s size and
diversity. The pre-trained DarkNet-53 model was modified and trained
using transfer learning techniques. Features were extracted from the
global average pooling layer of the modified model. Two improved
optimization algorithms, reformed differential evolution (RDE) and
reformed gray wolf (RGW), were used to select the best features. The
optimized features were fused using a probability-based approach and
classified using machine learning algorithms. The study concludes that
the proposed framework significantly improves the accuracy and
efficiency of breast cancer classification from ultrasound images. It
highlights the potential of the method to provide reliable support for
radiologists, enhancing early detection and treatment planning. Rzaz
et al. [70] present DeepBreastCancerNet, a new deep learning model
designed for the detection and classification of breast cancer using
ultrasound images. This model addresses the challenges of manual
breast cancer detection, which is often time-consuming and prone to
inaccuracies. The proposed DeepBreastCancerNet framework includes
24 layers, consisting of six convolutional layers, nine inceptionmodules,
and one fully connected layer. It employs both clipped ReLU and leaky
ReLU activation functions, batch normalization, and cross-channel
normalization to enhance model performance. Images were
augmented through random translations and rotations to enhance
the dataset’s size and diversity, thereby reducing overfitting. The
architecture starts with a convolutional layer followed by max
pooling, batch normalization, and leaky ReLU activation. Inception
modules are used for extracting multi-scale features. The model ends
with a global average pooling layer and a fully connected layer for
classification. The proposed model achieved a classification accuracy of
99.35%, outperforming several state-of-the-art deep learning models.
On a binary classification dataset, the model achieved an accuracy of
99.63%. The DeepBreastCancerNet model outperformed other pre-
trained models like AlexNet, ResNet, and GoogLeNet in terms of
accuracy, precision, recall, and F1-score. Ablation studies confirmed
the importance of using both leaky ReLU and clipped ReLU activation
functions and global average pooling for optimal performance.

3.2.2 Cardiology
In cardiology, echocardiography, particularly through

ultrasound imaging of the heart, represents a pivotal area in
medical ultrasound research, with abundant literature focusing
on automated methods for segmenting and tracking the heart’s

left ventricle - a crucial component evaluated in heart disease
diagnosis. Echocardiography is a test that uses high-frequency
sound waves to make pictures of your heart. It can show the size,
shape, movement, pumping strength, valves, blood flow and other
features of the heart. The quality of echocardiographic images can be
influenced by multiple factors such as patient’s body habitus, lung
disease, or surgical dressings, which can make interpretation
difficult. Interpreting the results of an echocardiography exam
requires significant expertise and experience. Sometimes not all
views of the heart can be visualized adequately, which may limit
the amount of information obtained from the test. Deep learning
techniques can solve these problems to a certain extent.

Ref.[71] addressed the challenge of segmenting the left atrium
(LA) in 3D ultrasound images using CNNs. The proposed method
aims to automate this process, which is traditionally time-
consuming and dependent on the observer. The introduction of
shape priors and adversarial learning into the CNN framework
enhances the accuracy and adaptability of the segmentation across
different ultrasound devices. The framework integrates three
existing methods: 3D Fully Convolutional Segmentation Network
(V-Net), Anatomic Constraint via Autoencoder Network and
Domain Adaptation with Adversarial Networks. The V-Net
processes 3D image volumes and creates segmentation masks.
Shape priors are incorporated through an autoencoder network
trained on ground truth segmentation masks. This ensures that the
segmentation masks adhere to anatomically plausible shapes.
Domain adaptation is achieved by training a classifier to identify
the data source, aiming to make the feature maps domain invariant.
The combined approach of using shape priors and adversarial
learning in CNNs significantly improves the segmentation of the
left atrium in 3D ultrasound images. This method not only boosts
accuracy but also ensures the generalizability of the model across
different devices, making it a promising tool for clinical use.

2D echocardiographic image analysis is crucial in clinical
settings for diagnosing cardiac morphology and function. Manual
and semi-automatic annotations are still common due to the lack of
accuracy and reproducibility of fully automatic methods. Challenges
in segmentation arise from poor contrast, brightness
inhomogeneities, speckle patterns, and anatomical variability.
Leclerc et al.[72] evaluate the performance of state-of-the-art
encoder-decoder deep CNNs for segmenting cardiac structures in
2D echocardiographic images and estimating clinical indices using
the CAMUS dataset. CAMUS is the largest publicly available and
fully annotated dataset for echocardiographic assessment,
containing data from 500 patients. The CAMUS dataset enables
comprehensive evaluation of deep learning methods for
echocardiographic image analysis. Encoder-decoder networks,
especially U-Net, demonstrate strong potential for accurate and
reproducible cardiac segmentation, paving the way for fully
automatic analysis in clinical practice. The study confirms that
encoder-decoder networks, particularly U-Net, provide highly
accurate segmentation results for 2D echocardiographic images.
However, achieving inter-observer variability remains challenging,
and more sophisticated architectures did not significantly
outperform simpler U-Net designs. The findings suggest that
further improvements in deep learning methods and larger
annotated datasets are essential for advancing fully automatic
cardiac image analysis.
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Ghorbani et al. [73] have developed a deep learning model
named EchoNet to interpret the echocardiograms. This model could
identify local cardiac structures, estimate cardiac function, and
predict systemic phenotypes like age, sex, weight, and height with
significant accuracy. EchoNet is able to accurately predict various
clinical parameters, such as ejection fraction and volumes, crucial for
diagnosing and managing heart conditions. It also demonstrated the
potential to predict systemic phenotypes that are not directly
observable in echocardiogram images. By automating
echocardiogram interpretation, such AI models could streamline
clinical workflows, provide preliminary interpretations in regions
lacking specialized cardiologists, and offer insights into phenotypes
challenging for human evaluation. The research emphasized the
potential of deep learning to enhance echocardiogram analysis,
offering a step toward more automated, accurate, and
comprehensive cardiovascular imaging diagnostics. Due to the
lack of experience among novices, Narang et al. [74] proposed
the use of deep learning techniques to assist them. The deep
learning algorithm provides real-time guidance to novices,
enabling them to capture essential cardiac views without prior
experience in ultrasonography. The study involved eight nurses
without prior echocardiography experience who used the AI
guidance to perform echocardiographic scans on 240 patients.
These scans were then compared with those obtained by
experienced sonographers. The primary outcome was the ability
of the AI-assisted novices to acquire echocardiographic images of
sufficient quality to assess left and right ventricular size and
function, as well as the presence of pericardial effusion. Results
indicated that the novice-operated, AI-assisted echocardiograms
were of diagnostic quality in a high percentage of cases, closely
aligning with the quality of scans performed by experienced
sonographers. The study suggests that AI-guided echocardiogram
acquisition can potentially expand the accessibility of
echocardiographic diagnostics to settings where expert
sonographers are unavailable, thereby enhancing patient care in
diverse clinical environments.

3.2.3 Thyroid
The thyroid gland, located in the neck and comprising two

interconnected lobes, plays a critical role in hormone secretion,
impacting protein synthesis, metabolic rate, and calcium
homeostasis. These hormones are particularly influential in
children’s growth and development. Despite its small size, the
thyroid is susceptible to various disorders, such as
hyperthyroidism, hypothyroidism, and nodule formation.
Diagnosing these conditions involves a range of techniques,
including blood tests for hormone levels, ultrasound imaging for
gland volume and nodule detection, and fine-needle aspiration
(FNA) for definitive tissue analysis. FNA, the most invasive of
these methods, is being increasingly circumvented by leveraging
ultrasound imaging with advanced deep learning and computer-
aided diagnosis (CAD) systems to enhance diagnostic accuracy and
nodule characterization.

Wang et al. [79] introduce a deep learning method for
diagnosing thyroid nodules using multiple ultrasound images
from an examination. The study proposes an architecture that
includes three networks, addressing the challenge of using
multiple views from an ultrasound examination for a

comprehensive diagnosis. The research involves a dataset with
7803 images from 1046 examinations, employing various
ultrasound equipment. The dataset is annotated at the
examination level, categorizing examinations into malignant and
benign based on ultrasound reports and pathological records. The
method integrates features frommultiple images using an attention-
based feature aggregation network, aiming to reflect the diagnostic
process of sonographers who consider multiple image views. The
model demonstrated high diagnostic performance on the dataset,
showcasing the potential of deep learning in enhancing the accuracy
and objectivity of thyroid nodule diagnosis in ultrasound imaging.
The attention-based network assigns weights to different images
within an examination, focusing on those with significant features,
which aligns with clinical practices where sonographers prioritize
certain image views. Peng et al. [77] have developed a deep learning
AI model called ThyNet. This model was designed to differentiate
between malignant tumors and benign thyroid nodules, aiming to
enhance radiologists’ diagnostic performance and reduce
unnecessary FNAs. ThyNet was developed using 18,049 images
from 8,339 patients across two hospitals and tested on
4,305 images from 2,775 patients across seven hospitals. The
model’s performance was initially compared with 12 radiologists,
and then a ThyNet-assisted diagnostic strategy was developed and
tested in real-world clinical settings. The AI model, ThyNet,
demonstrated superior diagnostic performance compared to
individual radiologists, with an area under the receiver operating
characteristic curve (AUROC) of 0.922, significantly higher than the
radiologists’ AUROC of 0.839. When radiologists were assisted by
ThyNet, their diagnostic performance improved significantly. The
pooled AUROC increased from 0.837 to 0.875 with ThyNet
assistance for image reviews and from 0.862 to 0.873 in a clinical
setting involving image and video reviews. The ThyNet-assisted
strategy significantly decreased the percentage of unnecessary FNAs
from 61.9% to 35.2%, while also reducing the rate of missed
malignancies from 18.9% to 17.0%.

3.2.4 Prostate
Prostate cancer ranks as the most frequently diagnosed

malignancy among adult and elderly men, with early detection
and intervention being crucial for reducing mortality rates.
Transrectal ultrasound (TRUS) imaging, in conjunction with
prostate-specific antigen (PSA) testing and digital rectal
examination (DRE), plays a pivotal role in the diagnosis of
prostate cancer. The delineation of prostate volumes and
boundaries is critical for the accurate diagnosis, treatment, and
follow-up of this cancer [123]. Typically, the delineation process
involves outlining prostate boundaries on transverse parallel 2-D
slices along its length, leading to the development of various (semi-)
automatic methods for detecting these boundaries. In the diagnosis
of prostate diseases, deep learning techniques provide some
additional insights.

Azizi et al. [83] present a deep learning approach using
Recurrent Neural Networks (RNNs), particularly Long Short-
Term Memory (LSTM) networks, for prostate cancer detection
through Temporal Enhanced Ultrasound (TeUS). The study
aimed to leverage the temporal information inherent in TeUS to
distinguish betweenmalignant and benign tissue in the prostate. The
authors utilized RNNs to model the temporal variations in
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ultrasound backscatter signals, demonstrating that LSTM networks
outperformed other models in identifying cancerous tissues. The
study analyzed data from 255 prostate biopsy cores from
157 patients. LSTM networks achieved an area under the curve
(AUC) of 0.96, with sensitivity, specificity, and accuracy rates of
0.76, 0.98, and 0.93, respectively, highlighting the potential of RNNs
in medical imaging analysis. The study also introduced algorithms
for analyzing LSTM networks to understand the temporal features
relevant for prostate cancer detection. This analysis revealed that
significant discriminative features could be captured within the first
half of the TeUS sequence, suggesting a potential reduction in data
acquisition time for clinical applications. The research suggests that
deep learning models, particularly LSTM-based RNNs, can
significantly enhance prostate cancer detection using ultrasound
imaging, offering a promising tool for improving diagnostic
accuracy and potentially guiding biopsy procedures. Karimi et al.
[89] introduces a method for the automatic segmentation of the
prostate clinical target volume (CTV) in TRUS images, which is
crucial for brachytherapy treatment planning. The method employs
CNNs, specifically an ensemble of CNNs, to improve segmentation
accuracy, particularly for challenging images with weak landmarks
or strong artifacts. The method uses adaptive sampling to focus the
training process on difficult-to-segment images and an ensemble of
CNNs to estimate segmentation uncertainty, improving robustness
and accuracy. For segmentations with high uncertainty, a statistical
shape model (SSM) is used to refine the segmentation, utilizing prior
knowledge about the expected shape of the prostate. The method
achieved a Dice score of 93.9% ± 3.5% and a Hausdorff distance of
2.7 ± 2.3 mm, outperforming several other methods and
demonstrating its effectiveness in reducing the likelihood of large
segmentation errors. This study highlights the potential of deep
learning and ensemble methods to enhance the accuracy and
reliability of medical image segmentation, particularly in
applications like prostate cancer treatment where precision
is crucial.

3.2.5 Fetal
Ultrasonography is a pivotal technology in prenatal diagnosis,

renowned for its safety for both the mother and fetus. This research
area encompasses numerous subfields, often employing
segmentation and classification techniques akin to those used in
adult diagnostics but adapted for the smaller scale of fetal organs.
This miniaturization introduces diagnostic challenges due to less
pronounced signs of abnormalities. Furthermore, ultrasound
imaging must penetrate maternal tissue and the placenta to reach
the fetus, potentially introducing noise, exacerbated by the
movements of both mother and fetus, emphasizing the need for
enhanced automated diagnostic methods. Especially in
underdeveloped areas with a shortage of medical personnel, such
automatic diagnostic methods can provide tremendous help.

Van den Heuvel et al. [94] present a study where a system is
developed to estimate the fetal head circumference (HC) from
ultrasound data obtained using an obstetric sweep protocol
(OSP). This protocol can be taught within a day to any
healthcare worker without prior knowledge of ultrasound. The
study aims to make ultrasound imaging more accessible in
developing countries by eliminating the need for a trained
sonographer to acquire and interpret images. The system uses

two FCNNs. The first network detects frames containing the fetal
head from the OSP data, and the second network measures the HC
from these frames. The HC measurements are then used to estimate
gestational age (GA) using the curve of Hadlock. The study,
conducted on data from 183 pregnant women in Ethiopia, found
that the system could automatically estimate GA with a reasonable
level of accuracy, indicating its potential application inmaternal care
in resource-constrained settings. Pu et al. [96] developed an
automatic fetal ultrasound standard plane recognition (FUSPR)
model. This model is designed to operate in an Industrial
Internet of Things (IIoT) environment and leverages deep
learning to identify standard planes in fetal ultrasound imagery.
The research introduces a distributed platform for processing
ultrasound data using IIoT and high-performance computing
(HPC) technology. The FUSPR model integrates a CNN and an
RNN to learn spatial and temporal features of ultrasound video
streams, aiming to improve the accuracy and robustness of fetal
plane recognition. The system’s goal is to aid in gestational age
assessment and fetal weight estimation by accurately identifying and
analyzing key anatomical structures in ultrasound video frames. The
study demonstrates that the FUSPRmodel significantly outperforms
baseline models in recognizing four standard fetal planes from over
1000 ultrasound videos. The use of deep learning within the IIoT
framework presents a promising approach to enhancing the
efficiency and reliability of fetal ultrasound analysis, particularly
in resource-constrained environments. A study by Xu et al.[124]
introduced a novel segmentation framework incorporating vector
self-attention layers (VSAL) and context aggregation loss (CAL) to
address the challenges of fetal ultrasound image segmentation. The
VSALmodule allows for simultaneous spatial and channel attention,
capturing both global and local contextual information. The CAL
component further enhances the model’s ability to differentiate
between similar-looking structures by considering both inter-class
and intra-class dependencies. On the multi-target Fetal Apical Four-
chamber dataset and one-target Fetal Head dataset, the proposed
framework outperformed several state-of-the-art CNN-based, U-net
[125], methods in terms of pixel accuracy (PA), dice coefficient
(DCS), Hausdorff distance (HD) metrics, demonstrating its
potential for improving fetal ultrasound image segmentation
accuracy. The study showcases the effectiveness of self-attention
techniques in enhancing the accuracy and reliability of fetal
ultrasound image segmentation, offering a promising tool for
improving prenatal diagnostics and care.

3.2.6 Brain
The brain, a pivotal organ in the nervous system, epitomizes

complexity within the human body, orchestrating the functions
of voluntary organs and muscles. Despite its critical role, the full
extent of its operations remains partially elusive, prompting
ongoing research to decipher its mechanisms. Notably, the
brain undergoes a phenomenon termed “brain shift,” a
potential deformation during surgical procedures that could
impact surgical outcomes. Ultrasound technology, particularly
when integrated with magnetic resonance (MR) imaging data,
serves as a crucial aid in neurosurgical contexts. This
integration is instrumental in addressing the challenges
posed by brain shift and enhancing intraoperative navigation
and decision-making.
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Milletari et al.[98] discuss a deep learning approach using CNNs
combined with a Hough voting strategy for segmenting deep brain
regions in MRI and ultrasound images. The study showcases the use
of this method for fully automatic localization and segmentation of
anatomical regions of interest, utilizing the features produced by
CNNs for robust, multi-region, and modality-flexible segmentation.
The method is particularly designed to adapt to different imaging
modalities, showing effectiveness in MRI and transcranial
ultrasound volumes. It demonstrates the potential of CNNs in
medical image analysis, particularly in the challenging context of
brain imaging, where accurate segmentation of anatomical
structures is critical. The study systematically explores the
performance of various CNN architectures across different
scenarios, offering insights into the effective application of deep
learning techniques in medical imaging. Reference [99] presents a
method for segmenting brain tumors during surgery using 3D
intraoperative ultrasound (iUS) images. The technique employs a
tumor model derived from preoperative magnetic resonance (MR)
data for local MR-iUS registration, aiming to enhance the
visualization of brain tumor contours in iUS. This multi-step
process defines a region of interest based on the patient-specific
tumor model, extracts hyperechogenic structures from this region in
both modalities, and performs registration using gradient values and
rigid and affine transformations to align the tumor model with the
3D-iUS data. The method’s effectiveness was assessed on a dataset of
33 patients, showing promising results in terms of computational
time and accuracy, indicating its potential utility in supporting
neurosurgeons during brain tumor resections. Di Ianni and Airan
[102] introduce a deep learning-based image reconstruction method
for functional ultrasound (fUS) imaging of the brain. The method
significantly reduces the amount of data required for imaging while
maintaining image quality, using a CNN to reconstruct power
Doppler images from sparsely sampled ultrasound data. The
approach enables high-quality fUS imaging of brain activity in
rodents, with potential applications in various settings where
dedicated ultrasound hardware is not available, thereby
broadening the accessibility and utility of fUS imaging technology.

3.3 Deep learning in portable
ultrasound system

Due to its portability and low cost, handheld ultrasound devices
have great application prospects in areas such as emergencies, point-of-
care, sports fields, and outdoors. At the same time, it is also suitable for
assisting doctors in diagnosing diseases in remote and medically
undeveloped areas. Portable ultrasound diagnostic devices appeared
in the 1980s. Initially, they were mainly used to scan the bladder to
measure the volume [126–129]. Compared to the common invasive
method of catheterization through a urinary catheter, the bladder
scanner does not cause any harm to the patient. Until now, the
development of bladder scanners has been a direction in the
advancement of portable ultrasound devices [130–132]. However,
besides this field, portable ultrasound devices have many other
applications, such as Color Doppler imaging [133], blood flow
imaging [134], echocardiography [135], skin imaging [136] and so
on. During the outbreak of COVID-19, portable ultrasound devices also
played a positive role in assisting diagnosis [137–139].

Indeed, the compact size of portable ultrasound devices does
present significant challenges for both hardware design and the
development of imaging algorithms [140,141]. Despite its portable
advantages, these challenges need to be meticulously addressed to
ensure the efficient performance and accuracy of the device. With
the advancement of semiconductor technology, technologies such as
Field Programmable Gate Arrays (FPGAs) [142] and Application
Specific Integrated Circuits (ASICs) [143] have been successively
applied to portable ultrasound devices to overcome some of the
challenges in hardware design. From the perspective of algorithm
design, beamforming technology based on compressed sensing
[144] has extensive research in portable ultrasound [145–148].

These methods have promoted the development of portable
ultrasound devices, and with the advancement of artificial
intelligence technology, the corresponding technologies have also
brought new development directions for portable ultrasound
devices. Zhou et al. [149] proposed to apply Generative
Adversarial Network (GAN) to enhance the image quality of
handheld ultrasound devices. They introduce a novel approach
using a two-stage GAN to enhance image quality. The proposed
two-stage GAN framework incorporates a U-Net network and a
GAN to reconstruct high-quality ultrasound images from low-
quality ones. The method focuses on reconstructing tissue
structure details and speckles of the ultrasound images, essential
for accurate diagnostics. The paper presents a comprehensive loss
function combining texture, structure, and perceptual features to
guide the GAN training effectively. The simulated, phantom and
clinical data are used to demonstrate the method’s efficacy, showing
significant improvements in image quality compared to original
low-quality images and other algorithms. In addition, Soleimani
et al. [103] developed a lightweight and portable ultrasound
computed tomography (USCT) system for noninvasive imaging
of the human head with high resolution. The study aims to
compare the effectiveness of a deep neural network combining
CNN and long short-term memory (LSTM) layers against
traditional deterministic methods in creating tomographic images
of the human head. The research shows that the proposed neural
network is more effective in dealing with noisy and synthetic data
compared to deterministic methods, which often require additional
filtering to improve image quality. The findings suggest that the
CNN + LSTMmodel is more versatile and generalizable, making it a
superior choice for medical ultrasound tomography applications.
The study contributes to the advancement of USCT by
demonstrating the potential of deep learning approaches in
improving the accuracy and reliability of noninvasive brain
imaging techniques.

3.4 Training scheme

Vienneau et al. [57] discuss the training methods for DNNs in
the context of ultrasound imaging. They address the issues with
traditional ℓp norm loss functions when training DNNs, where lower
loss values do not necessarily translate to improved image quality.
Ref. [57] presents an effort to better align the optimization objective
with the relevant image quality metrics. The authors suggest that
their novel training scheme can potentially increase the maximum
achievable image quality for ultrasound beamforming using DNNs.
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Luchies and Byram [58] investigate practical considerations of
training DNN beamformers for ultrasound imaging. They discuss
the use of combinations of multiple point target responses for
training DNNs, as opposed to single point target responses. It
also examines the impact of various hyperparameter settings on
the quality of ultrasound images in simulated scans. The study
demonstrates that DNN beamforming exhibits robustness when
confronted with electronic noise, and it points out that mean
squared error (MSE) validation loss is not a reliable predictor for
image quality. Goudarzi and Rivaz [52] used real photographic
images as the ground-truth echogenicity map in their simulations to
provide the network with a diverse range of textures, contrasts, and
object geometries during the training phase. This approach not only
enhances the variety in the training dataset, which is crucial for
preventing overfitting but also aligns the simulation settings more
closely with the real experimental imaging settings of in vivo test
data, thus minimizing unwanted domain shifts between training and
test datasets.

3.5 Transformer/attention mechanism
and CNN

CNNs have been the backbone of medical image analysis for
years. It can be seen from our previous review that a larger number
of architectures are based on the CNNs.They excel in extracting local
features through convolutional layers, pooling, and activation
functions. Networks such as U-Net[125] and its variants
[150–153] have been particularly successful in medical image
segmentation tasks due to their encoder-decoder architectures,
which capture detailed spatial hierarchies. However, CNNs face
limitations inmodeling global context and long-range dependencies.
This shortfall can lead to suboptimal performance in tasks where the
relationship between distant regions in the image is crucial. In
ultrasound imaging, this limitation manifests in difficulties
handling speckle noise and artifacts, which require broader
contextual understanding to be effectively mitigated. On the
other hand, the advent of Transformer models and their self-
attention mechanisms [154] has introduced new opportunities
for enhancing ultrasound image analysis. The integration of
U-net with transformer has also become a new direction for
current research [155–159]. This section delves into the
application of Transformers and attention mechanisms in
medical imaging focusing on ultrasound, comparing their
performance with traditional CNNs.

Transformers, originally designed for natural language
processing, utilize a self-attention mechanism that allows the
model to weigh the importance of different input elements
dynamically [154]. This capability is particularly beneficial for
medical image analysis [124,156,160–167], where different
regions of an image may hold varying levels of significance for
accurate diagnosis. The self-attention mechanism operates by
creating attention scores between all pairs of input elements,
which in the context of images, correspond to pixels or features.
These scores determine how much attention each element should
receive from the others. This global consideration enables the
Transformer to capture long-range dependencies and contextual
information that CNNs might miss due to their localized receptive

fields [154]. In the realm of medical imaging, the Transformer
models have been adapted to handle the unique challenges posed
by this modality. For instance, TransUNet [156] architecture
integrates CNNs and Transformers into a unified framework,
where CNNs are employed to extract initial feature maps from
medical images, and Transformers encode these features into
tokenized patches to capture global context. This hybrid
approach enables the model to retain detailed spatial information
while benefiting from the global attention provided by
Transformers; the GPA-TUNet[162] model integrates Group
Parallel Axial Attention (GPA) with Transformers to enhance
both local and global feature extraction. This hybrid approach
leverages the strengths of Transformers in capturing long-range
dependencies and the efficiency of GPA in highlighting local
information. Another segmentation method specific to ultrasound
images is the integration of a Vector Self-Attention Layer (VSAL)
[124], which performs long-range spatial and channel-wise
reasoning simultaneously. VSAL is designed to maintain
translational equivariance and accommodate multi-scale inputs,
which are critical for handling the variability in ultrasound
images. This layer can be seamlessly integrated into existing
CNN architectures, enhancing their performance by adding the
benefits of self-attention. Studies [124] have shown that
Transformer-based models significantly improve the accuracy of
ultrasound image segmentation tasks. For example, in the
segmentation of fetal ultrasound images, models incorporating
VSAL and context aggregation loss (CAL) demonstrated superior
performance compared to traditional CNNs.

The adaptive multimodal attention mechanism [160] is another
advanced approach used in deep learning models to improve the
generation of descriptive and coherent medical image reports. Yang
et al. propose a novel framework for generating high-quality medical
reports from ultrasound images using an adaptive multimodal
attention network (AMAnet). This framework addresses the
challenges of tedious and time-consuming manual report writing
by leveraging deep learning techniques to automate the process. The
core innovation of AMAnet lies in its adaptive multimodal attention
mechanism, which integrates three key components: spatial
attention, semantic attention, and a sentinel gate. The spatial
attention mechanism focuses on the relevant regions of the
ultrasound images, ensuring that the model captures essential
visual details. Meanwhile, the semantic attention mechanism
predicts crucial local properties, such as boundary conditions and
tumor morphology, by using a multi-label classification network.
These predicted properties are then used as semantic features to
enhance the report generation process. The sentinel gate is a pivotal
element in the AMAnet framework, designed to dynamically control
the attention level on visual features and language model memories.
This gate allows the model to decide whether to focus on current
visual features or rely on the learned knowledge stored in the Long
Short-Term Memory (LSTM) when generating the next word in the
report. This adaptive mechanism is particularly beneficial in
handling fixed phrases commonly found in medical reports,
ensuring that the model can generate coherent and contextually
appropriate text. The incorporation of semantic features and the
adaptive attention mechanism contribute to the model’s superior
performance, highlighting its potential for practical clinical
applications. In practical terms, consider a scenario where the
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model is generating a report for an ultrasound image showing a
tumor. The spatial attention mechanism might focus on the region
where the tumor is located. The semantic attention mechanism will
consider properties such as “irregular morphology” and “unclear
boundary” predicted by the multi-label classification network. The
sentinel gate will dynamically balance between these features and the
language model’s internal memory to generate a sentence like “The
ultrasound image shows an irregularly shaped tumor with unclear
boundaries.” This adaptive attention mechanism ensures that the
model generates accurate and contextually appropriate reports,
enhancing its utility in clinical settings, which CNNs alone might
struggle to achieve.

Chi et al. [168] propose a unified framework that combines the
2D and 3D Transformer-UNets into a single end-to-end network.
This novel method enhances the segmentation of thyroid glands in
ultrasound sequences, addressing several key limitations of existing
deep learning models. The proposed Hybrid Transformer UNet
(H-TUNet) integrates both intra-frame and inter-frame features
through a combination of 2D and 3D Transformer UNets,
significantly improving segmentation accuracy and efficiency. The
framework is designed to exploit both the detailed intra-frame
features and the broader inter-frame contextual information,
resulting in a more accurate and robust segmentation of the
thyroid gland in ultrasound images. The proposed method
outperforms state-of-the-art CNN-based models, such as 3D
UNet, in terms of segmentation accuracy, demonstrating the
effectiveness of hybrid Transformer-2D-3D models in ultrasound
image analysis. Wang et al.[169] presents a groundbreaking method
for enhancing the safety and efficiency of robot-assisted prostate
biopsy through advanced force sensing techniques. This method
addresses the limitations of existing VFS techniques, particularly in
accurately sensing the interaction force between surgical tools and
prostate tissue. The core innovation of TransVFS is the spatio-
temporal local–global transformer architecture. This model captures
both local image details and global dependencies simultaneously,
which is crucial for accurately estimating prostate deformations and
the resulting forces during biopsy. The architecture includes efficient
local–global attention modules that reduce the computational
burden associated with processing 4D spatio-temporal data. This
makes the method suitable for real-time force-sensing applications
in clinical settings. The proposed method was extensively validated
through experiments on prostate phantoms and beagle dogs. The
results demonstrated that TransVFS outperforms state-of-the-art
VFS methods and other spatio-temporal transformer models in
terms of force estimation accuracy. Specifically, TransVFS provided
significantly lower mean absolute errors in force estimation
compared to the most competitive model, ResNet3dGRU. The
paper highlights the practical benefits of TransVFS in improving
the safety and efficacy of robot-assisted prostate biopsies. By
providing accurate real-time force feedback, TransVFS can help
reduce the risk of tissue damage and improve the precision of biopsy
procedures, thereby enhancing patient outcomes. Ahmadi et al.[170]
integrate a spatio-temporal architecture that combines anatomical
features and the motion of the aortic valve to accurately classify AS
severity. The Temporal Deformable Attention (TDA) mechanism is
specifically designed to capture small local motions and spatial
changes across frames, which are critical for assessing AS
severity. The model incorporates a temporal coherent loss

function to enforce sensitivity to small motions in spatially
similar frames without explicit aortic valve localization labels.
This loss helps the model maintain consistency in frame-level
embeddings, enhancing its ability to detect subtle changes in the
aortic valve’s movement. An innovative attention layer is introduced
to aggregate disease severity likelihoods over a sequence of
echocardiographic frames, focusing on the most clinically
informative frames. This temporal localization mechanism
enables the model to identify and prioritize frames that are
critical for accurate AS diagnosis. The model was tested on both
private and public datasets, demonstrating state-of-the-art accuracy
in AS detection and severity classification. On the private dataset, the
model achieved 95.2% accuracy in AS detection and 78.1% in
severity classification. On the public TMED-2 dataset, the model
achieved 91.5% accuracy in AS detection and 83.8% in severity
classification. By reducing the reliance on Doppler measurements
and enabling automated AS severity assessment from two-
dimensional echocardiographic data, the proposed framework
facilitates broader access to AS screening. This is particularly
valuable in clinical settings with limited access to expert
cardiologists and specialized Doppler imaging equipment.

Transformers address the limitations of CNNs by incorporating
self-attention mechanisms that consider the entire input sequence
(or image) simultaneously. This allows for a more comprehensive
understanding of the image, capturing both local and global features
effectively. Transformers can capture long-range dependencies and
relationships across the entire image, which is essential for
accurately interpreting ultrasound images that may contain
complex structures and subtle differences. By dynamically
adjusting the attention weights, Transformers can focus on the
most relevant parts of the image, enhancing feature extraction
and reducing the impact of irrelevant or noisy regions. Recent
methods further develop the advantages via Integration with
CNNs: Hybrid models, such as GPA-TUNet[162], combine the
strengths of CNNs and Transformers, using CNN layers for
initial feature extraction and Transformers for global context
modeling. This integration leads to superior performance in
segmentation tasks, particularly for images with large axial spans.
Adaptive Attention Mechanisms: Models like AMAnet[160]
incorporate adaptive attention mechanisms that dynamically
control the focus on visual features and language model
memories. This enables the model to generate coherent and
contextually appropriate reports, enhancing its utility in clinical
settings. Efficient Spatio-Temporal Processing: Methods like
TransVFS[169,170] introduce factorized spatio-temporal
processing strategies that significantly reduce computational
complexity, making them suitable for real-time force-sensing
applications in clinical settings. These advanced techniques
demonstrate the potential of Transformers and attention
mechanisms in enhancing the accuracy and reliability of medical
ultrasound image analysis, offering a promising solution for
improving diagnostic outcomes and patient care.

The integration of Transformer models and attention
mechanisms into ultrasound image analysis represents a
significant advancement over traditional CNN-based approaches.
The ability of Transformers to capture long-range dependencies and
model global context enhances the accuracy and reliability of
medical image segmentation tasks. As research continues, these
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models [160,162,169,170] are likely to play an increasingly vital role
in improving diagnostic accuracy and patient outcomes in
medical imaging.

4 Discussion

With the rapid development of deep learning, its range of
applications has also expanded into more fields. In this paper, we
summarize the applications of deep learning in medical ultrasound
imaging, focusing on its promoting effect on beamforming
algorithms and clinical applications. We compared the classic
beamforming algorithm and its corresponding deep learning
alternatives. For both adaptive beamforming and SLSC
beamforming algorithms, the use of deep learning can reduce
computational complexity and enhance efficiency. Deep learning
can enhance beamforming algorithms in medical ultrasound
imaging in several ways. Data-Driven Optimization: Deep
learning models can be trained on large datasets of ultrasound
images to learn optimal beamforming parameters for different
imaging conditions. This can result in better image quality
compared to traditional beamforming techniques that use preset
parameters. Feature Extraction: Neural networks, especially CNNs,
are highly efficient at automatically extracting relevant features from
ultrasound data. These features can then be employed to improve
the spatial and contrast resolution of the images. Reducing Artifacts:
Deep learning can help identify and reduce artifacts in ultrasound
images, such as speckle noise, which can interfere with the clarity of
the images and the diagnosis. Speeding Up Processing Time: Deep
learning can significantly reduce the computational time required
for beamforming, making real-time imaging more feasible and
efficient. Advanced Reconstruction Techniques: Through the use
of deep learning, more advanced beamforming algorithms, such as
synthetic aperture and plane wave imaging, can be optimized for
better resolution and frame rates. In summary, deep learning can
play a crucial role in the advancement of beamforming algorithms
by enhancing image quality, reducing noise, and improving the
overall efficiency of medical ultrasound imaging.

In the section on “clinical applications”, we reviewed the
application of deep learning in some clinical scenarios. The
specific applications of deep learning in medical image analysis
include the following aspects. Image registration and orientation:
Deep learning can align the spatial orientation and adjust the pixel
intensity of multiple images from different sources, times, directions,
or modalities to increase the effective sample size and reduce non-
biological differences. Tissue segmentation: Deep learning
technology can achieve precise segmentation of target structures
in medical images, which helps to improve the speed and accuracy of
medical image analysis. Disease prediction and diagnosis: Deep
learning can assist doctors in diagnosing various diseases,
including tumors, inflammations, injuries, etc. For example, it
has been successfully used in the diagnosis of many diseases such
as lung cancer and breast cancer. Medical image feature learning:
Intelligent calculations of medical imaging based on deep learning
can automatically learn excellent feature expressions from large
sample data.

Deep learning, as an advanced machine learning technique, has
significant potential in improving the performance of beamforming

algorithms in medical ultrasound. Deep learning may have a positive
impact on beamforming algorithms in medical ultrasound in the
future. Deep learning can improve the quality of ultrasound images
by denoising, enhancing edges and contrast, and reconstructing
details more finely. Accelerating the beamforming computational
process through deep learning models could significantly reduce the
time required to acquire high-quality ultrasound images. Deep
learning models can optimize beamforming algorithms based on
different patient characteristics and scanning conditions to achieve
more personalized imaging. Deep learning models can increase the
dynamic range of images, making it possible to display both high
and low signal areas in the same image, and enhance resolution. It
can also identify and reduce artifacts in ultrasound imaging, such as
sidelobe contamination and Doppler artifacts. Beamforming
algorithms integrated with deep learning can assist in real-time
detection of lesions and measurement of biomarkers, providing
more diagnostic information. Deep learning can be used for
rapid reconstruction of three-dimensional and four-dimensional
data, providing clinicians with a more comprehensive view. Deep
learning can help performmore accurate tissue quantitative analysis,
such as the measurement of tissue stiffness, which is particularly
important for certain diagnoses. By continuously learning from
clinical data, deep learning models can improve their
performance over time, enhancing the accuracy and reliability of
beamforming technology. Deep learning can be used to
automatically determine the optimal beamforming parameters,
simplifying clinical operations and reducing the workload of
physicians.

The integration of AI in portable ultrasound devices with remote
servers is also helpful. AI algorithms can analyze ultrasound images
in real-time, helping to identify patterns, anomalies, or specific
conditions. This can assist healthcare professionals in making
more accurate and faster diagnoses. AI can enable remote
monitoring of patients, analyzing ultrasound data transmitted to
the remote server and alerting healthcare professionals to any
concerning changes or findings that require immediate attention.
AI can generate preliminary reports based on the ultrasound data,
highlighting key findings and suggesting possible diagnoses. This
can expedite the review process by healthcare professionals. AI also
can help in organizing and managing vast amounts of ultrasound
data, making it easier for healthcare professionals to access and
retrieve patient information when needed.

Meanwhile, based on the Segment Anything (SA) project [171],
Kirillov et al. developed a new segmentation model (SAM). The SAM
demonstrates impressive zero-shot performance across various tasks,
often matching or exceeding fully supervised methods. This indicates
themodel’s generalizability and potential applicability to awide range of
segmentation challenges. Numerous studies have adopted the SAM in
the medical image segmentation [172,173]. With the continuous
development of large language models (LLMs), AI technology based
on these models can also be applied to medicine [174–178]. Based on
these studies, it can be seen that LLMs can play a significant role in
medical ultrasound imaging. It can be used to generate preliminary
reports of ultrasound imaging by analyzing the textual descriptions
provided by the sonographer or the data obtained from the ultrasound
device. The reports will not only save time but also reduce the workload
of radiologists. LLMs can generate descriptive annotations for the
images based on the features identified through image processing
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techniques. By working through complex medical language and jargon,
LLMs can translate these into more patient-friendly language. This
helps patients better understand their medical condition and the
significance of their ultrasound results. LLMs can be utilized in
creating interactive training material for medical students and
professionals. This can assist them in learning the nomenclature,
understanding complex medical conditions, and being updated with
the latest medical research associated with ultrasound imaging. LLMs
can assist in data collection, research conduction, and generating
insights from large bodies of medical texts or research papers,
offering valuable contributions to the field of medical ultrasound
imaging. LLMs can also be integrated with AI and machine learning
algorithms aimed at identifying and diagnosing diseases from
ultrasound imagery. The LLM can then provide detailed
explanations or feedback based on the AI’s findings in a way that is
understandable for the healthcare provider.

5 Conclusion

In conclusion, the future application of deep learning in medical
ultrasound imaging is multifaceted. It can not only enhance image
quality and diagnostic efficiency but also promote the development of
personalized medicine and precision medicine. With the increasing
availability of computational resources and the continuous
improvement of algorithms, we can expect deep learning to play an
increasingly important role in ultrasound imaging technology.
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