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This paper introduces a new green decomposition model of carbon productivity
that aims to further analyze the regional differences in carbon productivity and its
interaction with regional industrial performance. We combine desired outputs
and undesired outputs orientation, and multiple factor inputs to derive a new
green decomposition theorem, establish a new green decomposition model of
carbon productivity, and obtain nine effects of regional carbon productivity
differences. Empirical analysis is conducted using input-output data from
29 provinces and 15 industries in China, comparing the differences in carbon
productivity from both the provincial and industry perspectives and exploring the
mechanism of action. This paper provides theoretical basis and empirical
evidence for regional carbon productivity enhancement and economic and
industrial optimization from the perspective of multi-factor inputs, as well as
policy insights for regional low-carbon transition development.
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1 Introduction

Since 2006, China has become the largest carbon-emitting country in the world.
According to data released by the International Energy Agency (IEA), China’s carbon
dioxide emissions in 2021 were approximately 1.014 billion tons, accounting for around
27% of total global emissions, and its carbon dioxide emissions in 2022 are expected to
remain at a similar level to those of 2021. China is faced with the dual constraints of
economic growth and environmental protection [1], with underlying contradictions such as
insufficient innovation capability, worsening environmental pollution, and regional
development disparities [2]. Therefore, China has adopted carbon-emission reduction-
oriented environmental policies, with a key focus on achieving the proper balance between
environmental pollution and industrial performance [3–5]. Clearly, the adoption of carbon-
emission reduction-oriented environmental policies requires a more comprehensive
understanding of the interaction between carbon productivity and industrial
performance, as well as a more in-depth search for the driving factors of carbon
productivity.
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However, traditional carbon productivity decomposition
models often ignore undesirable outputs, making it difficult to
efficiently measure production technology efficiency that includes
undesirable outputs [6,7]. Additionally, these models overlook the
diversity and complexity of factor inputs in the economic
production process [8, 9], especially the critical role that
knowledge inputs play in regional carbon productivity disparities
[10, 11]. This limits our ability to thoroughly understand the
interaction between regional carbon productivity and industrial
performance, as well as to develop location-specific policies based
on the driving factors and impact of carbon productivity. Against the
backdrop of environmental policies aimed at reducing carbon
emissions, how do the diversity and complexity of factor inputs
and the duality of desirable and undesirable outputs affect regional
carbon productivity disparities, and what impact do they have on
regional industrial performance?

This paper addresses the aforementioned issues by constructing
a new green decomposition model of carbon productivity. First, we
refine energy input factors into renewable and non-renewable
energy inputs, and draws from [2] and [12] to introduce
knowledge stock and green knowledge stock inputs, defining a
new green environmental production technology. Using data
envelopment analysis (DEA) method, we establish a new linear
programming model for green environmental production
technology with constant returns to scale. Second, based on the
traditional output-oriented Shephard distance function, we define a
more practical new green Shephard distance function for desirable
and undesirable outputs and their corresponding new green Farrell
technical efficiency measures. Third, according to the definition of
carbon productivity and input factors under the drive of green
development, we define a new green decomposition theorem for
carbon productivity and a new green decomposition theorem for
carbon productivity embedded in distance function. By obtaining
the decomposition equation for carbon productivity and
constructing a new green decomposition model of carbon
productivity, we have decomposed the regional differences of
carbon productivity into 9 influencing factors: the green
knowledge efficiency effect of renewable energy inputs,
knowledge efficiency effect of non-renewable energy inputs,
potential hybrid knowledge emission ratio effect, carbon
performance index effect, carbon emissions structure effect,
capital-hybrid energy substitution effect, labor-hybrid energy
substitution effect, hybrid knowledge stock-hybrid energy
substitution effect, and carbon factor effect. According to the
definition of carbon productivity and input factors under green
development drive, we define the new green decomposition theorem
for carbon productivity and the embedded distance function green
decomposition theorem for carbon productivity, obtaining the
decomposition formula for carbon productivity. The new green
decomposition model for carbon productivity is constructed, and
the regional differences in carbon productivity are decomposed into
9 effects: green knowledge efficiency effect of renewable energy
(HEEE), knowledge efficiency effect of non-renewable energy
(GEFE), potential hybrid knowledge emission ratio effect
(PHGCRE), carbon performance index effect (CPIE), carbon
emission structure effect (CESE), capital - hybrid energy
substitution effect (KEFSE), labor - hybrid energy substitution
effect (LEFSE), hybrid knowledge stock - hybrid energy

substitution effect (HGEFSE), carbon factor effect (CFE). The
empirical part of this paper selects input and output data from
15 industries in 29 provinces, municipalities, and autonomous
regions in China in 2019. By using the new green decomposition
model of carbon productivity and the expressions of each effect, we
compare the differences in carbon productivity and explore the
influencing factors behind the differences, enriching the research
content at both the regional and industry levels. The research
framework for the new green decomposition system of carbon
productivity is shown in Figure 1.

The rest of this paper is described as follows; Section 2 provides a
literature review on the research progress of carbon productivity
methods and compares this paper with previous research; Section 3
constructs a new green decomposition model of carbon
productivity, decomposing the differences in regional carbon
productivity into 9 influencing factors; Section 4 presents an
empirical analysis of the model, comparing and analyzing the
differences and influential factors of carbon productivity from
single and double dimensions; Section 5 is conclusion; Section 6
is policy recommendations.

2 Literature review

The concept of carbon productivity first appeared in the study
by [13], which refers to the economic benefits generated by unit
carbon emissions. In 2008, the report released by [14] elaborated on
the significance of carbon productivity, indicating that any
technology that successfully mitigates climate change must
achieve two objectives: firstly, to stabilize greenhouse gas
emissions, and secondly, to maintain high-quality and healthy
economic development. Carbon productivity effectively combines
both goals. Nowadays, carbon productivity has become one of the
important indicators that measure the development of a low-carbon
economy, attracting attention from policymakers and researchers in
various countries and regions worldwide.

2.1 Research methods for carbon
productivity

Regarding the research methods of carbon productivity, scholars
and experts have done a lot of research. The main methods include
Stochastic Frontier Analysis (SFA) [15] and Data Envelopment
Analysis (DEA) [16]. The most important feature of SFA is that
it considers the effect of stochastic factors on output, while it enables
the study of panel data across time periods, resulting in more
realistic research outcomes [17–19]. DEA methods are widely
used in efficiency measurement research. [20] used a
nonparametric approach to measure technical efficiency with
constant returns to scale and proposed the environmental DEA
technique. However, the traditional DEA model does not account
for undesirable outputs, making it challenging to effectively measure
the efficiency of production technology that includes them [7, 21].
Currently, there are three primary methods for dealing with
undesirable outputs in efficiency analysis models. The first treats
them as input variables for research, but this contradicts actual
production processes [22, 23]. The second constructs a variable that
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is negatively correlated with undesirable output, and then performs
calculations within the traditional efficiency analysis model [24], but
this method is limited to variable returns to scale cases. The third
approach involves using environmental production technology to
measure technical efficiency and incorporating undesirable outputs
in the actual production process [25], rather than merely
representing it through mathematical functions in abstract terms
[5]. In addition to the above two traditional analysis methods, [26]
have proposed a new approach to measuring carbon productivity in
the generalized input-output model, which aims to construct more
reasonable carbon productivity indicators. Thus, a theoretical
framework for multiple research methods on carbon productivity
has been preliminarily established.

2.2 Analysis methods for influencing factors
of carbon productivity

The analysis of factors influencing carbon productivity usually
uses econometric modeling and factor decomposition methods.
Econometric models effectively combine economic theory and
statistical methods to quantitatively analyze the research object
[27, 28]. The factor decomposition methods are more widely used

because they can decompose the variation of the research object
into the changes of multiple influencing factors. By comparing and
analyzing the contribution rates of various influencing factors to
the changes of the research object, it can offer more comprehensive
insights. Based on the decomposition principle, factor
decomposition methods mainly include Structural
Decomposition Analysis (SDA) and Index Decomposition
Analysis (IDA) methods [8, 29]. Compared to the SDA method,
the IDA method is more widely applied at a cross-time and cross-
regional level. The IDA method mainly includes Laspeyres index
decomposition method and Divisia index decomposition method.
The latter consists of Logarithmic Mean Divisia Index (LMDI)
method and Arithmetic Mean Divisia Index (AMDI) method.
LMDI is capable of handling residual and zero value problems
better [30]. LMDI can be divided into LMDI-1 and LMDI-2, which
use different weighting formulas. LMDI-1 is simpler, and thus,
more widely applied in energy and environmental research [31]. In
1998, [32] introduced a fully decomposable LMDI method. In
2018, [9] used the LMDI method to decompose carbon emissions
into six influencing factors and analyzed the top 23 countries in
renewable energy use. [33] compared the contributions of different
technology-driving factors related to CO2 emission growth, using
the LMDI method based on energy allocation analysis for different

FIGURE 1
Framework for the new green decomposition system of carbon productivity.
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time periods. The diversity of methods for analyzing the factors
affecting carbon productivity provides a reference basis and
analysis tool for the green decomposition of carbon
productivity in this paper.

2.3 Research methods for regional
differences in carbon productivity

The comparative research on regional differences of carbon
productivity mainly involves two methods: the Theil index and
decomposition analysis [34, 35]. The Theil index indicates the level
of regional economic disparity, with a larger value indicating greater
disparity. [36] effectively combined the decomposition analysis
method and environmental production technology, proposing a
new Production Decomposition Analysis (PDA) method using
Shephard distance function and environmental DEA technology
in production theory. [37] quantified the impact of carbon
performance index, potential carbon factors, and industrial
structure on regional differences in carbon emission intensity
using a spatial PDA model based on the production theory
framework. [38] used the spatial PDA method and data from
various industrial sectors in Chinese provinces to study the
regional differences in industrial carbon productivity as well as
the driving factors at the provincial and sectoral levels. At the
carbon trading and regional carbon productivity level, carbon
trading can promote technological progress, factor accumulation,
scale allocation and energy substitution effects [39]. [40] provided
an in-depth explanation of energy saving and emission reduction in
China’s energy system in terms of carbon trading and new energy
development mechanism, driving mechanism, evolutionary
behavior and policy synergy. This provides us with reference for
studying a green decomposition system for multiple sectors
and regions.

Carbon productivity is a hot topic in the current field of energy
and economic research. Scholars and experts mostly analyze the
differences in carbon productivity by using existing methods,
exploring the impact of different driving factors on carbon
productivity. However, there is less research on the driving
factors of carbon productivity that take into account the
knowledge stock input needed in the production process and the
green knowledge stock input, and most studies neglect the critical
role of undesirable outputs, as well as the inherent interaction
between regions and industries. This paper investigates multiple
types of input factors in the economic production process,
considering both desirable and undesirable outputs. It constructs
a new green decomposition system of carbon productivity and
obtains the results of carbon productivity decomposition in both
single-dimensional and dual-dimensional dimensions. The
comparative analysis of carbon productivity differences at the
regional and industry levels from the perspective of inherent
interaction provides targeted policy recommendations for low-
carbon development in regions and industries.

3 New green decomposition model of
carbon productivity

3.1 New green environmental production
technology

Suppose there are N regions Rj (j = 1, . . . ,N) in the economic
system, each of which contains M industries (i = 1, . . . ,M).
Following the MR model in the spatial decomposition strategy,
we take the average of all the regions under evaluation to obtain the
reference region Ru as a benchmark for comparison. Therefore, our
study includes a total of N+1 regions.

In economic production activities, a certain type and amount of
production factors can generate economic benefits, or the desirable
outputs (referring to GDP added value). However, at the same time,
it can also produce some waste and pollutants, or the undesirable
outputs (referring to CO2 emissions). Based on the environmental
production technology proposed by [20], this paper endogenizes the
production factor input in economic production process in
accordance with the requirements of green development [2, 41].
Building on the original energy input, energy input is divided into
renewable energy input and non-renewable energy input, where the
stock of knowledge input and green knowledge stock input are
introduced. Definition 1 is given as follows: The set of new green
environmental production technologies.

Definition 1: The set of new green environmental production
technologies for industry i in economic production activities is:

Ti � Ki, Li, Ei · Fi,Hi · Gi, Yi, Ci( ): input Ki, Li, Ei · Fi,Hi · Gi( ),{
output Yi, Ci( )} (1)

Where, Ki represents the capital input for industry i, Li
represents the labor input for industry i, Ei represents the
renewable energy input for industry i, Fi represents the non-
renewable energy input for industry i, and the product of Ei and
Fi represents the hybrid energy input for industry i.Hi represents the
green knowledge stock input for industry i, Gi represents the

FIGURE 2
Graphical representation of the output set of new green
environmental production technologies.
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knowledge stock input for industry i, and the product of Hi and Gi

represents the hybrid knowledge stock input for industry i. Yi

represents the desirable outputs for industry i, referring to the
industry added value, while Ci represents the undesirable outputs
for industry i, referring to the amount of CO2 emissions.

According to [42], we present Property 1 of the set of new green
environmental production technologies.

Property 1: states that the set of new green environmental
production technologies exhibits the following properties:

(1) The production technology demonstrates output neutrality;
(2) The set of new green environmental production technologies

is a bounded and closed set;
(3) The input factors have free disposability;
(4) The desirable outputs have free disposability;
(5) The undesirable outputs have weak disposability;
(6) The desirable and undesirable outputs exhibit zero jointness.

Note 1: Explanation of the 6 properties in Property 1:

(1) In the economic production process, the production
technology exhibits output neutrality, which means that
when the inputs are not all zero, the output can be zero,
that is, (Ki, Li, Ei · Fi,Hi · Gi, 0, 0) ∈ Ti, indicating the
decision-making unit may not engage in production activities;

(2) In Eq. 1, for any input vector (Ki, Li, Ei · Fi,Hi · Gi), the
subscript i represents the industry, of which there are only
finitely many. A finite quantity of inputs can only produce a
finite quantity of outputs. Therefore, the set of new green
environmental production technologies in production theory
is a closed and bounded set;

(3) Each input factor in the production process has free
disposability. The free disposability of capital input is
expressed as: if (Ki, Li, Ei · Fi,Hi · Gi, Yi, Ci) ∈ Ti and
Ki ≤Ki′, then (Ki′, Li, Ei · Fi,Hi · Gi, Yi, Ci) ∈ Ti. The free
disposability of labor input is expressed as: if (Ki, Li, Ei ·
Fi,Hi · Gi, Yi, Ci) ∈ Ti and Li ≤ Li′, then
(Ki, Li′, Ei · Fi,Hi · Gi, Yi, Ci) ∈ Ti. Similar expressions can
be derived for disposal of other input factors;

(4) The desirable outputs have free disposability, which means
that if (Ki, Li, Ei · Fi,Hi · Gi, Yi, Ci) ∈ Ti and Yi′≤Yi,
then (Ki, Li, Ei · Fi,Hi · Gi, Yi

′
i , Ci) ∈ Ti;

(5) The undesirable outputs exhibit weak disposability, which
means that if (Ki, Li, Ei · Fi,Hi · Gi, Yi, Ci) ∈ Ti and 0≤ θ ≤ 1,
then (Ki, Li, Ei · Fi,Hi · Gi, θYi, θCi) ∈ Ti. This implies that
undesirable outputs cannot be reduced separately during the
production process and can only be reduced proportionally
with desirable outputs;

(6) The “zero jointness” of the desirable and undesirable
outputs indicates that when
(Ki, Li, Ei · Fi, Hi · Gi, Yi, Ci) ∈ Ti, if there exists Ci = 0,
then Yi = 0. This means that obtaining desirable outputs
during the production process will necessarily generate
undesirable outputs, and only by completely terminating
the entire production process can undesirable outputs be
eliminated. The “zero jointness” is also known as by-
productivity, which refers to the feature in the
production process where undesirable outputs are
considered as a by-product of desirable outputs, and C
and Y will be produced simultaneously.

The new green environmental production technology can be
modeled and described through an output set. Definition 2 is

TABLE 1 Industry division.

Industrial division Sub-industry Symbol

Manufacturing industries Food, tobacco and wine industry S1

Textile and garment industry S2

Stationery industry S3

Petroleum refineries S4

Pharmaceutical industry S5

Chemical industry S6

Black gold, gold processing and non-gold and metal products industry S7

General equipment industry S8

Special equipment industry S9

Transportation equipment industry S10

Electric appliance manufacturing S11

Communication equipment, office equipment and other manufacturing industries S12

Electricity, heat, gas and water production and supply industries Electricity and heat production and supply industry S13

Gas production and supply industry S14

Water production and supply industry S15
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provided as follows: the output set of new green environmental
production technology.

Definition 2: In economic production activities, the output set of
new green environmental production technology for a given
industry is defined as:

Pi Ki, Li, Ei · Fi,Hi · Gi( ) � Yi, Ci( ): Ki, Li, Ei · Fi,Hi · Gi, Yi, Ci( ) ∈ Ti{ }
(2)

Where (Ki, Li, Ei · Fi,Hi · Gi) represents the input factor
combination in industry i, (Yi,Ci) represents the output factor
combination in industry i, and Ti represents the set of new green
environmental production technologies in industry i as defined in
Definition 1.

Based on the properties of the set of new green environmental
production technologies, we present Property 2 of the output set of
new green environmental production technologies:

Property 2: The output set of new green environmental production
technologies satisfies the following properties:

(1) (Ki, Li, Ei · Fi,Hi · Gi, Yi, Ci) ∈ Ti if and only
if (Yi, Ci) ∈ Pi(Ki, Li, Ei · Fi,Hi · Gi);

(2) Production technologies exhibit output neutrality;
(3) The output set of new green environmental production

technologies is a bounded closed set;
(4) Input factors have free disposability;
(5) Desirable outputs have free disposability;
(6) Undesirable outputs have weak disposability;
(7) Desirable outputs and undesirable outputs exhibit “zero

association".

Note 2: Explanation of the 7 properties in Property 2:

(1) When an input-output factor combination (Ki, Li, Ei ·
Fi, Hi · Gi, Yi, Ci) belongs to the set of new green
environmental production technologies Ti, that is, given
the input vector (Ki, Li, Ei · Fi, Hi · Gi), the output set of the
new green environmental production technologies
Pi(Ki, Li, Ei · Fi, Hi · Gi) as defined in Definition 2 is

composed of all the feasible output vectors (Yi,Ci). The
converse also holds true.

(2) The output neutrality of production technologies is
demonstrated by the fact that for any input vector
(Ki, Li, Ei · Fi,Hi · Gi), then 0, 0, 0, 0{ } ∈ Pi(Ki, Li, Ei ·
Fi,Hi · Gi).

(3) In Eq. 2, for any given input vector (Ki, Li, Ei · Fi,Hi · Gi), the
subscript i denotes industry, which is of a finite number. A
finite number of inputs can only generate a finite number of
outputs, ensuring the closure of the output vector. Clearly, the
output set of new green environmental production
technologies in the production theory is a closed bounded set.

(4) Each input factor in the production process has free
disposability. The free disposability of capital input is
manifested by the fact that if Ki ≤Ki′, then
Pi(Ki, Li, Ei · Fi,Hi · Gi) ⊆ Pi(Ki′, Li, Ei · Fi,Hi · Gi). The
free disposability of labor input is manifested by the fact
that if Li ≤Li′, then
Pi(Ki, Li, Ei · Fi,Hi · Gi) ⊆ Pi(Ki′, Li′, Ei · Fi,Hi · Gi).
Similarly, the free disposability of other input factors can
be derived.

(5) The free disposability of undesirable outputs is manifested by
the fact that if (Yi, Ci) ∈ Pi(Ki, Li, Ei · Fi,Hi · Gi) and
Yi′≤Yi, then (Yi′, Ci) ∈ Pi(Ki, Li, Ei · Fi,Hi · Gi).

(6) The weak disposability of undesirable outputs is manifested
by the fact that if (Yi, Ci) ∈ Pi(Ki, Li, Ei · Fi,Hi · Gi) and
0≤ θ ≤ 1, then (θYi, θCi) ∈ Pi(Ki, Li, Ei · Fi,Hi · Gi).

(7) The “zero association” of desirable and undesirable outputs is
manifested by the fact that when (Yi, Ci) ∈ Pi(Ki, Li, Ei ·
Fi,Hi · Gi) and Ci = 0, we must have Yi = 0.

Based on Definition 2 and Property 2, we have drawn Figure 2 to
represent the output set of new green environmental production
technologies.

Note 3: Explanation on Figure 2:

(1) In Figure 2, the horizontal axis represents non-desirable
output, and the vertical axis represents desirable output.
The slope from the origin O to any point in the
production set represents the ratio of desirable output Y to

TABLE 2 Descriptive statistics of input-output data of 29 provinces in China.

Variable Unit Max Min Mean Median Std

K 1 hundred million yuan 27682.68 200.46 8104.78 5568.93 7449.03

L 10 thounsand people 2020.16 37.47 457.12 228.56 470.08

F 1016 Joule 702.00 25.79 208.78 162.86 160.02

E 1016 Joule 81.40 1.84 21.97 17.74 17.41

G Piece 517942 2756 81170 53020 111107

H Piece 65794 603 14231 9226 17018

Y 1 hundred million yuan 37014.80 583.73 9626.34 7407.29 9289.71

C 10 thousand tons 80819.58 3070.10 29498.90 21440.85 22638.97

P Yuan/kg 11.81 0.49 3.26 3.16 2.70
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non-desirable output C, which indicates the carbon
productivity of the corresponding output combination.

(2) For example, assuming that A, B, and C are three different
decision-making units that use the same amount of input
factors to produce different output factor combinations (C,
Y), which are (10,30), (30,50), and (50,40), respectively. They
are represented by the three vertices A, B, and C in the Figure
2, and the region OABCD represents the production set.
Based on the specific values of output factor combinations
from A, B, and C, we can obtain the carbon productivities of
the three decision-making units PA = YA/CA = 30/10 = 3, PB =
YB/CB = 50/30 = 5/3, and PC = YC/CC = 40/50 = 4/5,
respectively. Clearly, PA > PB > PC, and the slopes of the
three lines OA, OB, and OC decrease in turn in Figure 2.

(3) According to the sixth property of Property 2, any output
factor combination (Y, C) in the production set, (θY, θC) after
the reduction according to the same ratio θ still belongs to
the output set.

(4) According to the seventh property of Property 2, the only
intersection of the horizontal and vertical axes with the
production set is at the origin O, which indicates that non-
desirable output C and desirable output Y are “zero
correlated” and can only equal 0 at the same time. Non-
desirable output C is the by-product of desirable output Y.

New green environmental production technologies effectively
combine six inputs with two outputs. We will now use DEA method
to construct a new green environmental linear programming model
based on Definition 1 under the assumption of constant returns
to scale.

Model 1: A new green environmental linear programming model
for industry i in economic production activities under the
assumption of constant returns to scale.

Ti � { Kij, Lij, Eij · Fij,Hij · Gij, Yij, Cij( ):∑
j

λjKij ≤Ki,

∑
j

λjLij ≤ Li,

∑
j

λj Eij · Fij( )≤ Ei · Fi( ),

∑
j

λj Hij · Gij( )≤ Hi · Gi( ),

∑
j

λjYij ≥Yi,

∑
j

λjCij � Ci,

λj ≥ 0, j � 1, 2,/, N + 1},

(3)

Where, in Eq. 3, (Ki, Li, Ei · Fi,Hi · Gi, Yi, Ci) is the input-
output vector for industry i, (Kij, Lij, Eij · Fij,Hij · Gij, Yij, Cij) is
the input-output vector for industry i in region j, and λj represents
the intensity variable.

Note 4: Explanation of the constraints in Model 1:

(1) Inequalities are used to constrain each input in the production
process. The right-hand side of the constraint represents the
actual input used by the producer, while the left-hand side
represents the input used by a theoretically efficient producerT
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at the optimal production frontier. The inequality indicates
that the input used by a theoretically efficient producer must
be less than or equal to the input used by the actual producer,
which reflects property 1 (3), that input factors are freely
disposable. In this paper, constraints on the input of
knowledge stock and green knowledge stock are added to
the new green environmental linear programming model to
further determine the feasible range. The product of
renewable energy input and non-renewable energy input is
treated as an input factor, and the product of knowledge stock
input and green knowledge stock input is treated as an input
factor for ease of calculation in subsequent steps.

(2) Inequalities are used to constrain the desirable outputs Y, where
the right-hand side of the constraint represents the actual
desirable outputs received by the producer, and the left-hand
side represents the desirable outputs that a theoretically efficient
producer would receive at the optimal production frontier. The
inequality indicates that the desirable outputs received by a
theoretically efficient producer must be greater than or equal
to the actual desirable outputs received by the producer, which
reflects Property 1 (4), that desirable outputs are freely disposable.

(3) Equalities are used to constrain the undesirable outputs,
which reflects Property 1 (5), that undesirable outputs have
weak disposability. The desirable outputs and undesirable
outputs can only be reduced proportionally.

(4) λj represents the intensity variable, which indicates the weight
assigned to each observation when constructing the
production possibility boundary. λj in Model 1 is
unconstrained and hence the new green environmental
linear programming model is constructed under the
assumption of constant returns to scale.

3.2 New green distance function and
technical efficiency measurement

Drawing on the research of [37], a new definition is
presented for the Shephard distance function for undesirable
outputs orientation, incorporating input factors under the
framework of green development and in accordance with
Definition 1, based on the traditional output-oriented
Shephard distance function.

Definition 3: The new green Shephard distance function for
undesirable outputs orientation is defined as:

DC
io Kij, Lij, Eij · Fij, Hij · Gij, Yij, Cij( )

� sup βio: Kij, Lij, Eij · Fij,Hij · Gij, Yij,
Cij

βio
( ) ∈ Ti{ }, (4)

Where, in Eq. 4, the subscript O indicates the study area.

Property 3: The new green Shephard distance function for
undesirable outputs orientation, as defined in Definition 3, has
the following properties:

(1) DC
io(Kij, Lij, Eij · Fij,Hij · Gij, Yij, Cij)≥ 15(Kij, Lij, Eij ·

Fij, Hij · Gij, Yij, Cij) ∈ Ti;
(2) DC

io(Kij, Lij, Eij · Fij, Hij · Gij, Yij, Cij) � 15(Kij, Lij, Eij ·
Fij,Hij · Gij, Yij, Cij) at the production technical frontier;

(3) DC
io(Kij, Lij, Eij · Fij,Hij · Gij, Yij, Cij) possesses first-degree

homogeneity with respect to undesirable outputs: when α is
a positive scalar, DC

io(Kij, Lij, Eij · Fij,Hij · Gij, Yij, α · Cij) �
αDC

io(Kij, Lij, Eij · Fij,Hij · Gij, Yij, Cij).

TABLE 4 Input-output related data of reference region.

Symbol K L F E G H Y C P

S1 833.96 38.49 4.49 0.54 3760 66 1083.10 154.98 69.88

S2 450.22 29.60 3.38 0.37 2581 45 487.44 55.34 88.08

S3 300.60 19.84 2.89 0.39 2268 63 333.21 82.80 40.24

S4 96.34 6.06 15.77 1.52 908 247 427.43 676.77 6.32

S5 229.57 16.56 0.93 0.11 2963 8 258.81 15.22 170.03

S6 836.17 39.93 23.93 2.80 7562 205 1064.08 445.52 23.88

S7 1383.73 65.46 107.10 10.41 11696 4127 1846.96 9259.23 1.99

S8 507.60 24.43 2.75 0.30 4651 98 429.15 111.88 38.36

S9 475.76 20.36 1.91 0.17 5062 31 320.46 77.32 41.45

S10 624.60 41.90 2.19 0.25 9247 53 840.82 56.14 149.78

S11 521.31 32.50 1.56 0.20 7957 26 657.12 30.95 212.31

S12 768.19 77.20 2.96 0.42 17618 36 1164.52 32.60 357.20

S13 786.48 33.45 35.62 4.16 3494 9136 608.16 18332.94 0.33

S14 81.60 3.58 2.84 0.27 282 86 74.05 165.60 4.47

S15 208.63 7.75 0.46 0.06 1122 2 31.05 1.61 193.30

Aggregate 8104.78 457.12 208.78 21.97 81170 14231 9626.34 29498.90 3.26
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Proof:

(1) When a combination of input-output factors (Kij, Lij, Eij ·
Fij,Hij · Gij, Yij, Cij) belongs to the set of new green
production technology Ti for undesirable outputs
orientation, the new green Shephard distance function is
used to measure the technical efficiency of each decision-
making unit in terms of carbon emissions, as represented by
DC

io(Kij, Lij, Eij · Fij,Hij · Gij, Yij, Cij) � Cio/Cio
*, which is the

ratio of actual observed undesirable outputs to potential ideal
undesirable outputs. Clearly, the actual observed undesirable
outputs are greater than or equal to the potential ideal
undesirable outputs. Therefore,
DC

io(Kij, Lij, Eij · Fij,Hij · Gij, Yij, Cij)≥ 1, the opposite is
also true;

(2) When a combination of input-output factors (Kij, Lij, Eij ·
Fij,Hij · Gij, Yij, Cij) lies on the production technology
frontier, the actual observed undesirable outputs are
exactly equal to the potential ideal undesirable outputs,
that is, Cio � Cio

*. Therefore,
DC

io(Kij, Lij, Eij · Fij,Hij · Gij, Yij, Cij) � Cio/Cio
* � 1, and the

opposite is also true;
(3) According to the formula of the new green Shephard distance

function for undesirable outputs orientation:

DC
ij Kij, Lij, Eij · Fij,Hij · Gij, Yij, α · Cij( )
� sup βij: Kij, Lij, Eij · Fij, Hij · Gij, Yij,

α · Cij

βij
⎛⎝ ⎞⎠ ∈ Ti

⎧⎨⎩ ⎫⎬⎭
� sup α · βij

α
: Kij, Lij, Eij · Fij,Hij · Gij, Yij,

α · Cij

βij
⎛⎝ ⎞⎠ ∈ Ti

⎧⎨⎩ ⎫⎬⎭
� sup α · βij

α
: Kij, Lij, Eij · Fij,Hij · Gij, Yij,

Cij

βij/α⎛⎝ ⎞⎠ ∈ Ti

⎧⎨⎩ ⎫⎬⎭

Based on Definition 3 and Model 1, the definition of the new
green Farrell technical efficiency measure for undesirable outputs
orientation is presented in this paper.

Definition 4: The new green Farrell undesirable outputs measure
of production technical efficiency in Eq. 5 is defined as:

DC
io Kij, Lij, Eij · Fij, Hij · Gij, Yij, Cij( )( )−1 � min βio,

s.t.

∑
j

λjKij ≤Kio,

∑
j

λjLij ≤ Lio,

∑
j

λj Eij · Fij( )≤ Eio · Fio( ),

∑
j

λj Hij · Gij( )≤ Hio · Gio( ),

∑
j

λjYij ≥Yio,

∑
j

λjCij � βioCio,

λj ≥ 0, j � 1, 2,/, N + 1}.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(5)

Note 5: The new green Farrell undesirable outputs measure used
to measure production technical efficiency represents the
proportion that needs to shrink to the minimum possible value
of undesirable outputs, while keeping the desirable outputs constant,
given a constant input factor. According to the meaning of the new
green Shephard distance function for undesirable outputs
orientation, the new green Farrell undesirable outputs measure of
production technical efficiency is the reciprocal of the distance
function defined in Definition 3, that is,
DC

io(Kij, Lij, Eij · Fij,Hij · Gij, Yij, Cij)≥ 1. Therefore, βio is no
greater than 1. When βio = 1, that is, the new green Shephard
distance function for undesirable outputs orientation is 1, the new
green Farrell undesirable outputs measure of production technical
efficiency is 1, and the system is in the optimal production state.

FIGURE 3
Carbon emissions and carbon productivity of 29 provinces and reference regions in 2019. (A) CO2 emissions (104 tons), (B) Carbon productivity (CNY/Kg).
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Definition 5: The new green Shephard distance function for
desirable outputs orientation is in Eq. 6:

DY
io Kij, Lij, Eij · Fij,Hij · Gij, Yij, Cij( )
� inf θio: Kij, Lij, Eij · Fij, Hij · Gij,

Yij

θio
, Cij( ) ∈ Ti{ }, (6)

Property 4: The new green Shephard distance function for
desirable outputs orientation defined in Definition 5 has the
following properties:

(1) DY
io(Kij, Lij, Eij · Fij, Hij · Gij, Yij, Cij)≤ 15 (Kij, Lij, Eij ·

Fij,Hij· Gij, Yij, Cij) ∈ Ti;
(2) DY

io(Kij, Lij, Eij · Fij, Hij · Gij, Yij, Cij) � 15(Kij, Lij, Eij ·
Fij,Hij · Gij, Yij, Cij) at the production technical frontier;

(3) DY
io(Kij, Lij, Eij · Fij,Hij · Gij, Yij, Cij) is positively

homogeneous of degree +1 with respect to desirable
outputs: when α is a positive scalar, DY

io(Kij, Lij, Eij · Fij,Hij·
Gij, Yij, α · Cij) � αDY

io(Kij, Lij, Eij · Fij,Hij · Gij, Yij, Cij).

Proof:

(1) When a set of input-output factor combinations (Kij, Lij, Eij ·
Fij,Hij · Gij, Yij, Cij) belongs to the new green environmental
production technology set Ti, the new green Shephard
distance function for desirable outputs orientation is used

to measure the technical efficiency of each decision unit in
producing desirable outputs, represented as
DY

io(Kij, Lij, Eij · Fij,Hij · Gij, Yij, Cij) � Yio/Y*, the ratio of
observed desirable outputs to potential ideal desirable
outputs. Obviously, observed desirable outputs are less
than or equal to potential ideal desirable outputs, therefore
DY

io(Kij, Lij, Eij · Fij,Hij · Gij, Yij, Cij)≤ 1 and vice versa.
(2) When a set of input-output factor combinations (Kij, Lij, Eij ·

Fij,Hij · Gij, Yij, Cij) is at the production technical frontier,
the observed desirable outputs are exactly equal to the
potential ideal desirable outputs, Yio � Yio

*. Therefore,
DY

io(Kij, Lij, Eij · Fij,Hij · Gij, Yij, Cij) � Yio/Yio
* � 1 and

vice versa.
(3) According to the formula for the new green Shephard

distance function for desirable outputs orientation:

DY
ij Kij, Lij, Eij · Fij,Hij · Gij, Yij, Cij( )
� inf θij: Kij, Lij, Eij · Fij, Hij · Gij,

α · Yij

θij
, Cij( ) ∈ Ti{ }

� inf α · θij
α
: Kij, Lij, Eij · Fij,Hij · Gij,

Yij

θij/α, Cij
⎛⎝ ⎞⎠ ∈ Ti

⎧⎨⎩ ⎫⎬⎭
� α · inf θij

α
: Kij, Lij, Eij · Fij,Hij · Gij,

Yij

θij/α, Cij
⎛⎝ ⎞⎠ ∈ Ti

⎧⎨⎩ ⎫⎬⎭
� α ·DY

ij Kij, Lij, Eij · Fij, Hij · Gij, Yij, Cij( ).

FIGURE 4
Spatial distribution of China’s carbon productivity in 2019.
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According to Definition 5 and Model 1, we present Definition 6:
new green Farrell technical efficiency measure for desirable outputs
orientation.

Definition 6: The new green Farrell measure of production
technical efficiency for desirable outputs orientation is in Eq. 7
defined as follows:

DY
io Kij, Lij, Eij · Fij,Hij · Gij, Yij, Cij( )( )−1 � max θio,

s.t.

∑
j

λjKij ≤Kio,

∑
j

λjLij ≤Lio,

∑
j

λj Eij · Fij( )≤ Eio · Fio( ),

∑
j

λj Hij · Gij( )≤ Hio · Gio( ),

∑
j

λjYij ≥ θioYio,

∑
j

λjCij � Cio,

λj ≥ 0, j � 1, 2,/, N + 1.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(7)

Note 6 The new green Farrell measure for desirable outputs
orientation used to measure production technical efficiency
represents the expansion ratio required to achieve the

maximum possible value of desirable outputs, under the
condition that undesirable outputs remain constant and
given input factors remain unchanged. Based on the
definition of the new green Shephard distance function for
desirable outputs orientation, it can be seen that the new
green Farrell measure of production technical efficiency for
desirable outputs orientation is the reciprocal of the
distance function defined in Definition 5,
DY

io(Kij, Lij, Eij · Fij, Hij · Gij, Yij, Cij)≤ 1. Therefore, θio is not
less than 1, and when θio = 1, the new green Shephard
distance function for desirable outputs orientation is 1, the
new green Farrell measure of production technical efficiency
for desirable outputs orientation is also 1, which represents the
optimal production state.

3.3 The new green carbon productivity
decomposition theorem

According to [13] definition of carbon productivity and
considering the input factors in the context of green
development, this paper derives a new green decomposition
theorem for carbon productivity in the context of green
development.

FIGURE 5
Decomposition results of provincial carbon productivity differences.

Frontiers in Physics frontiersin.org11

Fu et al. 10.3389/fphy.2024.1398261

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2024.1398261


Theorem 1: (New Green Decomposition Theorem for Carbon
Productivity): The carbon productivity in region j can be
decomposed into new green components as follows:

Pj � ∑M
i�1
EFEij ·HEEij · GEFij ·HGCRij · CESij, (8)

Where, in Eq. 8 EFEij � Yij

Eij ·Fij
represents the hybrid energy

utilization efficiency of industry i in region j, which is defined as
GDP added value by unit of hybrid energy input;HEEij � Eij/Hij

represents the green knowledge efficiency of renewable energy
input, which is defined as the consumption of renewable energy
per unit of green knowledge stock input; GEFij � Fij/Gij

represents the knowledge efficiency of non-renewable energy
input, which is defined as the consumption of non-renewable
energy per unit of knowledge stock input;HGCRij � Hij · Gij/Cij

represents the hybrid knowledge emission ratio, which is defined
as the consumption of hybrid knowledge stock per unit of carbon
emission spatial resources; CESij � Cij/Cj represents the carbon
emission structure, which is defined as the proportion of carbon
emissions from industry i in region j to the total carbon emissions
from all industries in region j.

Proof: Carbon productivity in region j is equal to the ratio of the
added value of GDP in region j to CO2 emissions, and the added value
of GDP in region j is written in the form of the sum of the added value
of GDP in each industry in region j. Proof of Theorem 1 in Eq. 9:

Pj � Yj

Cj
� ∑M

i�1

Yij

Cj

� ∑M
i�1

Yij

Eij · Fij
· Eij · Fij

Hij · Gij
· Hij · Gij

Cij
· Cij

Cj

� ∑M
i�1

Yij

Eij · Fij
· Eij

Hij
· Fij

Gij
· Hij · Gij

Cij
· Cij

Cj

� ∑M
i�1
EFEij ·HEEij · GEFij ·HGCRij · CESij.

(9)

Note 7: Theorem 1 decomposes carbon productivity of any region
into the above-mentioned five indicators by using a new green
decomposition approach. This paper further introduces three
decomposed indicators, namely, green knowledge efficiency of
renewable energy input, knowledge efficiency of non-renewable
energy input, and hybrid knowledge emission ratio, into the green-
decomposed results of carbon productivity. The mechanism for the
driving factors of carbon productivity is analyzed from two perspectives,
that is, input-output ratio and input-input ratio.

Based on Theorem 1, Definitions 3 and Definitions 5, a new
green decomposition theorem of carbon productivity with a
Shepherd distance function directed to both desirable outputs
and undesirable outputs is derived.

Theorem 2: (New green-decomposition theorem of carbon
productivity with embedded distance function) Carbon productivity
of region j can be decomposed into a new green-decompositionwith an
embedded distance function in Eq. 10 as follows:

Pj � ∑M
i�1
MIXij ·HEEij · GEFij · PHGCRij · CPIij · CESij, (10)

Where, MIXij � Yij/(Eij ·Fij)
DY

ij(Kij,Lij,Eij ·Fij,Hij ·Gij,Yij,Cij) represents the new

green hybrid indicator of industry i in region j; PHGCRij � (Hij ·
Gij)DC

ij(Kij, Lij, Eij · Fij,Hij · Gij, Yij, Cij)/Cij represents the

potential hybrid knowledge emission ratio of industry i in region

j; CPIij � DY
ij(Kij,Lij,Eij ·Fij,Hij ·Gij,Yij,Cij)

DC
ij(Kij,Lij,Eij ·Fij,Hij ·Gij,Yij,Cij) represents the carbon efficiency

index of industry i in region j; while the meanings of HEFij, GEFij
and CESij remain the same as in Theorem 1.

Proof: Theorem 2 is proved by embedding the new green
Shepherd distance function directed to both desirable outputs
and undesirable outputs on the basis of the proof of Theorem 1
in Eq. 11.

Pj � ∑M
i�1

Yij

Eij · Fij
· Eij

Hij
· Fij

Gij
· Hij · Gij

Cij
· Cij

Cj

� ∑M
i�1

Yij/DY
ij Kij, Lij, Eij · Fij,Hij · Gij, Yij, Cij( )

Eij · Fij
· Eij

Hij
· Fij

Gij

· Hij · Gij

Cij/DC
ij Kij, Lij, Eij · Fij,Hij · Gij, Yij, Cij( )

·D
Y
ij Kij, Lij, Eij · Fij, Hij · Gij, Yij, Cij( )

DC
ij Kij, Lij, Eij · Fij, Hij · Gij, Yij, Cij( ) · Cij

Cj

� ∑M
i�1
MIXij ·HEEij · GEFij · PHGCRij · CPIij · CESij.

(11)
Note 8: Theorem 2 further decomposes carbon productivity of

any region into the above-mentioned six indicators by embedding a
new green Shepherd distance function directed to both desirable
outputs and undesirable outputs on the basis of Theorem 1. This
enables a more in-depth study of the driving factors of carbon
productivity from the perspectives of both actual observed state and
potential ideal state. The following are explanations for the three
newly added indicators among the six decomposed indicators: new
green hybrid indicator, potential hybrid knowledge emission ratio,
and carbon efficiency index.

(1) In the new green hybrid indicator, the numerator is
changed from Yij in the original hybrid energy
utilization efficiency indicator to
Yij/DY

ij(Kij, Lij, Eij · Fij, Hij · Gij, Yij, Cij), which means
that desirable outputs are expanded to potential ideal
state under the corresponding undesirable outputs-
directed new green Shepherd distance function. The
denominator remains the hybrid energy input, so the
whole fraction represents the potential hybrid energy
utilization efficiency, indicating the potential level of
hybrid energy utilization efficiency when the technical
performance of desirable outputs reaches the ideal state.

According to [43] study, the new green Shephard distance
function with outputs oriented desirable outputs have
homogeneous of degree +1, that is,DY

ij(Kij, Lij, Eij · Fij, Hij · Gij, α ·
Yij, Cij) � α ·DY

ij(Kij, Lij, Eij · Fij,Hij · Gij, Yij, Cij), and with
inputs oriented desirable outputs have homogeneous of
degree −1, that is, DY

ij(β ·Kij, β · Lij, β · Eij · Fij, β ·Hij ·
Gij, Yij, Cij) � β−1 ·DY

ij(Kij, Lij, Eij · Fij,Hij · Gij, Yij, Cij), where
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α and β are positive scalars. Hence, the new green hybrid index can
be formulated as:

Yij/DY
ij Kij, Lij, Eij · Fij, Hij · Gij, Yij, Cij( )

Eij · Fij

� 1
Yij

· 1
Eij · Fij

( )−1
·DY

ij Kij, Lij, Eij · Fij, Hij · Gij, Yij, Cij( )[ ]−1

� 1
Yij

·DY
ij kij, lij, 1, hij · gij, Yij, cij( )[ ]−1

� DY
ij kij, lij, 1, hij · gij, 1, cij( )( )−1,

Where, kij � Kij

Eij ·Fij
represents the capital - hybrid energy ratio

(KEF); lij � Lij
Eij ·Fij

represents the labor - hybrid energy ratio
(LEF); hij · gij � Hij ·Gij

Eij ·Fij
represents the green knowledge stock

input ratio (HGEF), and cij � Cij

Eij ·Fij
represents the carbon

factor (CF), which denotes the carbon conversion rate of the
hybrid energy input. The calculation process highlights the
superiority of representing the hybrid energy input as a
product of renewable energy input E and non-renewable
energy input F and that of representing the hybrid knowledge
stock input as a product of green knowledge stock input H and
total knowledge stock input G.

(2) In the potential hybrid knowledge emission ratio, the
denominator has been changed from Cij, which was the
hybrid knowledge emission ratio for the original index, to

Cij

DC
ij (Kij,Lij,Eij ·Fij,Hij ·Gij,Yij ,Cij), which represents the undesirable

outputs based on the corresponding undesirable outputs-
oriented new green Shephard distance function. This indicates
a reduction of the potential output to an ideal state of undesirable
outputs. The numerator remains as the hybrid knowledge stock
input. The entire fraction represents the potential level of hybrid
knowledge emission ratio when the undesirable outputs
technical efficiency reaches its ideal state.

(3) The carbon performance index is expressed as the ratio of the
new green Shephard distance function oriented towards
desirable outputs and the one oriented towards undesirable
outputs. According to the meanings of the two distance

functions, DY
ij(Kij, Lij, Eij · Fij,Hij · Gij, Yij, Cij) � Yij/Yij

*

and DC
ij(Kij, Lij, Eij · Fij,Hij · Gij, Yij, Cij) � Cij/Cij

*. By

substituting these values into the expression for
the carbon performance index, we obtain

CPIij � DY
ij(Kij,Lij,Eij ·Fij,Hij ·Gij,Yij,Cij)

DC
ij(Kij,Lij,Eij ·Fij,Hij ·Gij,Yij,Cij) �

Yij/Yij
*

Cij/Cij
* � Yij/Cij

Yij
* /Cij

* � Pij

Pij
* , which

represents the ratio of the actual observed carbon productivity
to the potential ideal state carbon productivity. The potential
ideal state of carbon productivity is greater than or equal to
the actual observed carbon productivity. Therefore, the range
of the carbon performance index CPI is between 0 and 1,
where CPI approaching 1 indicates higher carbon
productivity, which means that the actual observed carbon
productivity is closer to the potential ideal state carbon
productivity. When CPI equals 1, it represents the
potential ideal state. This is the optimal level of carbon
emission performance.

Based on Theorem 2 and Note 8(1), the decomposition of
carbon productivity in the j region can be obtained as:

Pj � ∑M
i�1

DY
ij kij, lij, 1, hij · gij, 1, cij( )( )−1 ·HEEij · GEFij

· PHGCRij · CPIij · CESij (12)

The decomposition results of carbon productivity in the j region
have included three indicators: the green knowledge efficiency of
renewable energy input, the knowledge efficiency of non-renewable
energy input, and the potential hybrid knowledge emission ratio.
This paper explores the influential factors of carbon productivity
from the perspectives of input quantity and potential ideal states. To
compare the differences of carbon productivity among different
regions, two methods can be used: additive decomposition and
multiplicative decomposition. In this paper, we adopt the
multiplicative decomposition method to derive a new green
decomposition theorem for regional differences in carbon
productivity.

Theorem 3: (A new green decomposition theorem for regional
differences of carbon productivity) The carbon productivity ratio

FIGURE 6
Carbon emissions and carbon productivity of 15 industries and overall industry in 2019. (A) CO2 emissions (108 tons), (B) Carbon productivity (CNY/Kg).
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between any given region j and a reference region can be
decomposed into a new green decomposition as follows:

Pj

Pu
� Aj,u

MIX · Aj,u
HEE · Aj,u

GEF · Aj,u
PHGCR · Aj,u

CPI · Aj,u
CES, (13)

Where, Aj,u
MIX represents the new green hybrid effect (MIX),

which includes four types of differences: the capital-hybrid
energy ratio, labor - hybrid energy ratio, hybrid knowledge
stock - hybrid energy ratio, and carbon factor, between the
two regions. Aj,u

HEE represents the green knowledge efficiency
effect of renewable energy input (HEEE); Aj,u

GEF represents the
knowledge efficiency effect of non-renewable energy input
(GEFE); Aj,u

PHGCRE represents the potential hybrid - knowledge
emission ratio effect (PHGCRE); Aj,u

CPI represents the carbon
performance index effect (CPIE); and Aj,u

CES represents the
carbon emission structure effect (CESE).

Proof: According to Eq. 12, dividing the carbon productivity
decomposition equation in Eq. 14 of two regions yields:

Pj

Pu
�

∑M

i�1 DY
ij kij, lij, 1, hij · gij, 1, cij( )( )−1 ·HEEij

·GEFij · PHGCRij · CPIij · CESij∑M

i�1 DY
iu kiu, liu, 1, hiu · giu, 1, ciu( )( )−1 ·HEEiu · GEFiu

·PHGCRiu · CPIiu · CESiu
� Aj,u

MIX · Aj,u
HEE · Aj,u

GEF · Aj,u
PHGCR · Aj,u

CPI · Aj,u
CES.

(14)

Note 9: Theorem 3 uses the new green decomposition to analyze
the regional differences in carbon productivity, decomposing the
ratio of carbon productivity between two regions into six effects,
which correspond to the six decomposition indicators in Eq. 12 of

carbon productivity. Furthermore, we have added the green
knowledge efficiency effect of renewable energy inputs, the
knowledge efficiency effect of non-renewable energy inputs, and
the potential hybrid - knowledge emission ratio effect to investigate
the influencing factors of regional differences in carbon productivity
from a new perspective. In this paper, carbon productivity is
represented as the ratio of industry added value and CO2

emissions, thus, it is an intensity variable. We use a
multiplication decomposition method to study the differences in
carbon productivity between regions. Based on the research of [31],
we select the LMDI-1 decomposition weight formula to obtain the
six effects in Eqs 15–20 in Theorem 3.

Aj,u
MIX � exp ∑M

i�1
wj,u

i ln
DY

iu kiu, liu, 1, hiu · giu, 1, ciu( )
DY

ij kij, lij, 1, hij · gij, 1, cij( )⎛⎝ ⎞⎠, (15)

Aj,u
HEE � exp ∑M

i�1
wj,u

i ln
HEEij

HEEiu

⎛⎝ ⎞⎠, (16)

Aj,u
GEF � exp ∑M

i�1
wj,u

i ln
GEFij

GEFiu

⎛⎝ ⎞⎠, (17)

Aj,u
PHGCR � exp ∑M

i�1
wj,u

i ln
PHGCRij

PHGCRiu

⎛⎝ ⎞⎠, (18)

Aj,u
CPI � exp ∑M

i�1
wj,u

i ln
CPIij
CPIiu

⎛⎝ ⎞⎠, (19)

Aj,u
CES � exp ∑M

i�1
wj,u

i ln
CESij
CESiu

⎛⎝ ⎞⎠, (20)

FIGURE 7
Industrial decomposition results of provincial carbon productivity differences.
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Where, wj,u
i � L(Yij/Cij,Yiu/Ciu)

L(Pj,Pu) represents the weight function, and

L a, b( ) �
a − b

ln a − ln b
, a ≠ b

a, a � b

⎧⎪⎪⎨⎪⎪⎩ represents the logarithmic

averaging function.
Regarding the new green hybrid effect,

Aj,u
MIX � exp(∑M

i�1
wj,u

i ln DY
iu(kiu,liu,1,hiu ·giu,1,ciu)

DY
ij(kij,lij ,1,hij ·gij,1,cij) ), there are some parts

that can be further decomposed. By separating the four
indicators of the capital-hybrid energy ratio, labor-hybrid energy
ratio, hybrid knowledge stock-hybrid energy ratio, and carbon factor
between the two regions, we derived a decomposition theorem for
the new green hybrid effect.

Theorem 4: (New green hybrid effect decomposition theorem):
The new green hybrid effect can be decomposed into the following
components:

Aj,u
MIX � Aj,u

KEF · Aj,u
LEF · Aj,u

HGEF · Aj,u
CF, (21)

Where, Aj,u
KEF represents the capital-hybrid energy substitution

effect (KEFSE),Aj,u
LEF represents the labor-hybrid energy substitution

effect (LEFSE), Aj,u
HGEF represents the hybrid knowledge stock-

hybrid energy substitution effect (HGEFSE), and Aj,u
CF represents

the carbon factor effect (CFE).
Proof: Referring to the “one-factor-at-a-time” principle of

the Laspeyres-linked approach in [43] study, we keep all other
factors constant and change only one factor at a time to analyze
its driving effect during the research period. For the logarithmic

part, DY
iu(kiu,liu ,1,hiu ·giu,1,ciu)

DY
iu(kij ,lij ,1,hij ·gij,1,cij) , of the new green hybrid effect, we use

this method by sequentially changing k, l, h·g, and c in the
distance function ratio in different orders, where h·g is treated as
a whole for changes. According to permutation and
combination, there are A4 � 4! � 24 decomposition forms
in total.

We sequentially alter the values of k, l, h·g, and c in sequence
in the equation, and the results of the decomposition are
as follows:

DY
iu kiu, liu, 1, hiu · giu, 1, ciu( )

DY
ij kij, lij, 1, hij · gij, 1, cij( )

� DY
iu kiu, liu, 1, hiu · giu, 1, ciu( )

DY
i kij, liu, 1, hiu · giu, 1, ciu( ) · D

Y
i kij, liu, 1, hiu · giu, 1, ciu( )

DY
i kij, lij, 1, hiu · giu, 1, ciu( )

·D
Y
i kij, lij, 1, hiu · giu, 1, ciu( )

DY
i kij, lij, 1, hij · gij, 1, ciu( ) · D

Y
i kij, lij, 1, hij · gij, 1, ciu( )

DY
ij kij, lij, 1, hij · gij, 1, cij( ).

(22)

The four terms on the right-hand side of Eq. 22 respectively
reflect the influences of KEF, LEF, HGEF, and CF, and similarly, we
can obtain 23 other decomposition results. [44] proposed using a
geometric mean with equal weights to obtain a complete
decomposition of the distance function ratio for all possible
decompositions, but the large number of factors can make the
calculation process cumbersome. [45] introduced the polar
coordinate method, which approximates the complete
decomposition by averaging a group of mirrored decomposition
possibilities and captures the influences of each factor from the

opposite direction. Drawing on the research of [37], we utilize the
polar coordinate method in this paper. The decomposition results of
the mirrored sequence c, h·g, l, and k in Eq. 22 are presented in Eq. 23
as follow:

DY
iu kiu, liu, 1, hiu · giu, 1, ciu( )

DY
ij kij, lij, 1, hij · gij, 1, cij( )

� DY
iu kiu, liu, 1, hiu · giu, 1, ciu( )

DY
i kiu, liu, 1, hiu · giu, 1, cij( ) · D

Y
i kiu, liu, 1, hiu · giu, 1, cij( )

DY
i kiu, li, 1, hij · gij, 1, cij( )

·D
Y
i kiu, liu, 1, hij · gij, 1, cij( )

DY
i kiu, lij, 1, hij · gij, 1, cij( ) · D

Y
i kiu, lij, 1, hij · gij, 1, cij( )

DY
ij kij, lij, 1, hij · gij, 1, cij( ).

(23)

The four terms on the right-hand side of Eq. 22 respectively
reflect the influences of CF, HGEF, LEF, and KEF. By averaging the
group of mirrored decomposition possibilities, we obtain the final
decomposition of the distance function ratio as follows:

DY
iu kiu, liu, 1, hiu · giu, 1, ciu( )

DY
ij kij, lij, 1, hij · gij, 1, cij( )
� DY

iu kiu, liu, 1, hiu · giu, 1, ciu( )
DY

i kij, liu, 1, hiu · giu, 1, ciu( ) · D
Y
i kiu, lij, 1, hij · gij, 1, cij( )

DY
ij kij, lij, 1, hij · gij, 1, cij( )⎡⎢⎣ ⎤⎥⎦ 1

2

· D
Y
i kij, liu, 1, hiu · giu, 1, ciu( )

DY
i kij, lij, 1, hiu · giu, 1, ciu( ) ·

DY
i kiu, liu, 1, hij · gij, 1, cij( )

DY
i kiu, lij, 1, hij · gij, 1, cij( )⎡⎢⎣ ⎤⎥⎦ 1

2

· D
Y
i kij, lij, 1, hiu · giu, 1, ciu( )

DY
i kij, lij, 1, hij · gij, 1, ciu( ) ·

DY
i kiu, liu, 1, hiu · giu, 1, cij( )

DY
i kiu, liu, 1, hij · gij, 1, cij( )⎡⎢⎣ ⎤⎥⎦ 1

2

· D
Y
i kij, lij, 1, hij · gij, 1, ciu( )

DY
ij kij, lij, 1, hij · gij, 1, cij( ) · D

Y
iu kiu, liu, 1, hiu · giu, 1, ciu( )

DY
i kiu, liu, 1, hiu · giu, 1, cij( )⎡⎢⎣ ⎤⎥⎦ 1

2

� KEFj,u
i · LEFj,u

i ·HGEFj,u
i · CFj,u

i .

(24)
Substituting Eq. 24 into Eq. 15 yields Eq. 25:

Aj,u
MIX � exp ∑M

i�1
wj,u

i ln
DY

iu kiu, liu, 1, hiu · giu, 1, ciu( )
DY

ij kij, lij, 1, hij · gij, 1, cij( )⎛⎝ ⎞⎠
� exp ∑M

i�1
wj,u

i ln KEFj,u
i · LEFj,u

i ·HGEFj,u
i · CFj,u

i( )⎛⎝ ⎞⎠
� exp ∑M

i�1
wj,u

i lnKEFj,u
i

⎛⎝ ⎞⎠ · exp ∑M
i�1
wj,u

i ln LEFj,u
i

⎛⎝ ⎞⎠
· exp ∑M

i�1
wj,u

i lnHGEFj,u
i

⎛⎝ ⎞⎠ · exp ∑M
i�1
wj,u

i lnCFj,u
i

⎛⎝ ⎞⎠
� Aj,u

KEF · Aj,u
LEF · Aj,u

HGEF · Aj,u
CF.

(25)
Note 10: Theorem 4 decomposes the new green hybrid effect

into four effects. In this paper, we adopt a hybrid energy input of
the product of renewable energy input and non-renewable energy
input, which adds the mutual substitution effect between hybrid
knowledge stock input and hybrid energy input. We consider
using knowledge stock input to replace energy input in the
production process, which optimizes the input factor ratio
from a new perspective.
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According to Theorem 3 and Theorem 4, substituting Eq. 21
into Eq. 13 yields the decomposition formula for carbon
productivity regional differences:

Pj

Pu
� Aj,u

KEF · Aj,u
LEF · Aj,u

HGEF · Aj,u
CF · Aj,u

HEE · Aj,u
GEF · Aj,u

PHGCR · Aj,u
CPI · Aj,u

CES

(26)

FIGURE 8
Decomposition results of carbon productivity differences in 8 key industries in 15 key provinces. (A) Hebei, (B) Shanxi, (C) Inner Mongolia, (D)
Liaoning, (E) Jilin, (F) Heilongjiang, (G) Anhui, (H) Shandong, (I) Guangxi, (J) Hainan, (K) Guizhou, (L) Shaanxi, (M) Gansu, (N) Qinghai, (O) Ningxia.
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We decompose the carbon productivity ratio between region j
and reference region u into the above 9 effects. If the decomposition
value of any effect is greater than 1, it indicates that the effect has
enlarged the differences in carbon productivity between region j and
reference region u; otherwise, it has reduced the differences.

4 Empirical analysis

4.1 Data sources and description

Sample data were selected for the provinces and cities of China
in 2019, excluding Hong Kong, Macao, Taiwan, Xinjiang, and Tibet
due to missing data. The study objects were divided according to
China’s seven major geographical regions (see Table A1), and the
reference region was obtained by taking the average of the
29 provinces and autonomous regions, representing the average
level of socio-economic activities. Based on China’s national
economic industry classification, 38 sub-industries in
manufacturing and electricity, heat, gas, and water production
and supply were classified and summarized into 15 industries
(see Table 1).

The new green decomposition model of carbon productivity
involves a total of 9 variables, namely, capital input K, labor input L,
renewable energy input E, non-renewable energy input F, knowledge
stock input G, green knowledge stock input H, industrial added
value Y, carbon dioxide emissions C, and carbon productivity P. This
paper collected and compiled 6 input and 2 output data for
15 industries in 29 provinces in 2019. The capital input was
obtained from fixed asset investment data from the “China
Investment Statistical Yearbook” in billions of yuan. The labor
input was obtained from employment population data from the
“China Population and Employment Statistical Yearbook” in ten
thousand people. The non-renewable energy input used non-
renewable energy heat generation data from the CEADs China
carbon accounting database. Referring to relevant research by
[46], the usage of different types of energy in provincial energy
inventories was converted into unified standard coal based on the
conversion factors in the “China Energy Statistical Yearbook” for
each type of energy, then converted into heat value, with units in
joules of 10̂16. Renewable energy input used renewable energy heat
generation data from the National Energy Administration and
“China Energy Statistical Yearbook”, converted to heat value
based on the conversion of each province’s renewable energy
power consumption to unified standard coal, with units in joules
of 10̂16. The knowledge stock input used ordinary patent data from
the State Intellectual Property Office and provincial statistical
yearbooks, with units in pieces. The green knowledge stock input
used green patent data from provincial green patent panel data, with
units in pieces. The desirable outputs are used u industrial added
value data from the National Bureau of Statistics, “China Industrial
Statistical Yearbook”, and provincial statistical yearbooks in billions
of yuan. The undesirable outputs are used carbon dioxide emissions
data [46] from the CEADs China carbon accounting database’s
provincial emission inventory, with units in ten thousand tons.
Carbon productivity was calculated based on the P=Y/C formula
with units in yuan/kg. A few missing data were obtained using
interpolation.

Table 2 summarizes the input and output data for the
29 provinces studied in this paper. There are significant
differences between provinces. Table 3 summarizes the input and
output data for the 15 industries studied in this paper. There are also
significant differences between different industries. Looking at the
mean column of Table 2 and Table 3, the mean column data in
Table 2 is the input-output data of the reference region, and the
mean column in Table 3 is the average data of the 15 industries. The
mean carbon productivity of all provinces is the same as the mean
carbon productivity of all industries (3.26 yuan/kg), because the
mean carbon productivity is not the mean of carbon productivity,
but the ratio of industrial added value means to carbon dioxide
emissions mean, which matches the provincial and industrial data.

Table 4 summarizes the input and output data for various
industries in the reference region. The carbon productivity of the
overall industry is not the sum of carbon productivity of each
industry, but rather the ratio of the overall industry GDP added
value to the overall industry carbon dioxide emissions. The overall
industry carbon productivity for the reference region, located in the
bottom right corner of the table, is 3.26 yuan/kg, which further
confirms the consistency between provincial and industrial data.

4.2 One-dimensional comparative analysis

4.2.1 Comparative analysis at provincial level
From a provincial perspective, Figure 3 depicts the carbon

dioxide emissions and carbon productivity for the 29 provinces
and the reference region studied in this paper. As shown in
Figure 3A, the top 3 provinces with the highest carbon dioxide
emissions are Hebei (808.20million tons), Shandong (806.06million
tons), and Inner Mongolia (732.32 million tons), while the top
3 provinces with the lowest carbon dioxide emissions are Hainan
(30.70 million tons), Qinghai (33.52 million tons), and Beijing
(35.15 million tons). The carbon dioxide emissions for the
reference region (294.99 million tons) are marked in red and
ranked 11th among the 29 provinces. As shown in Figure 3B, the
top 3 provinces with the highest carbon productivity are Beijing
(11.81 yuan/kg), Guangdong (8.24 yuan/kg), and Shanghai
(8.19 yuan/kg), while the top 3 provinces with the lowest carbon
productivity are Ningxia (0.49 yuan/kg), Inner Mongolia
(0.58 yuan/kg), and Shanxi (0.63 yuan/kg). The carbon
productivity for the reference region (3.26 yuan/kg) is marked in
red and ranked 15th among the 29 provinces. By combining Figure
3, it can be found that the provincial ranking of carbon dioxide
emissions and carbon productivity varies significantly due to the
inter-provincial differences in industrial added value.

Figure 4 shows the spatial distribution of provincial-level carbon
productivity in China, with different shades of color indicating the
numerical value of carbon productivity for each province. The white
color in the map represents provinces that have not been counted
due to data deficiency. From the map, it can be clearly seen that the
level of carbon productivity in China is generally higher in the
southeast coastal provinces, followed by central provinces, and lower
in the southwest and northwest regions. Looking at China’s seven
major geographical regions, for the North China region, Beijing has
the highest carbon productivity in the country, while Tianjin’s
carbon productivity is close to the reference region and therefore
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at the average level. The carbon productivity of the other provinces
in the region is relatively low, especially Shanxi and Inner Mongolia.
The overall level of carbon productivity in the three provinces in the
Northeast region is poor, all lower than the reference region. In the
East China region, except for Anhui and Shandong which are below
the average level, the carbon productivity of the other provinces is
relatively high, especially Shanghai, Jiangsu, and Zhejiang, which are
among the top provinces in the country. The carbon productivity of
all three provinces in the Central China region is higher than the
average level. In the South China region, Guangdong has a high level
of carbon productivity, while Guangxi and Hainan have lower levels
than the average. In the southwest region, except for Guizhou, the
carbon productivity of the other three provinces is higher than the
average level. In the northwest region, the overall level of carbon
productivity in the four provinces is relatively low, all lower than the
average level.

Using the new green decomposition model of carbon
productivity, which takes into account carbon emissions, we can
apply Theorem 3 and Theorem 4 to compare the carbon
productivity of 29 provinces with that of the reference regions.
Eq. 26 can be used to decompose the regional differences in carbon
productivity:

Pj

Pu
� Aj,u

KEF · Aj,u
LEF · Aj,u

HGEF · Aj,u
CF · Aj,u

HEE · Aj,u
GEF · Aj,u

PHGCR · Aj,u
CPI · Aj,u

CES,

By applying the calculation formula for each specific effect,
taking the capital-hybrid energy substitution effect KEF as an
example, we obtain:

Aij,iu
KEF � exp ∑M

i�1
wj,u

i lnKEFj,u
i

⎛⎝ ⎞⎠,

The remaining 8 types of effects can be obtained similarly. By
taking j from 1 to 29, we can obtain the effect decomposition results
of carbon productivity differences between each province and the
reference region, and present them as a heat map. Figure 5 shows the
ratio of industry-wide carbon productivity of 29 provinces in this
paper to that of the reference region, as well as the effect
decomposition results.

The y-axis of Figure 5 represents the 29 provinces, and the first
nine columns of the x-axis represent the results of the nine
decomposition effects. The values of each decomposition effect
are represented using different shades of color, with lighter colors
indicating larger values of the specific decomposition effect. The
lightest color indicates that the decomposition effect is greater than
1, which means it has a positive impact on carbon productivity. On
the other hand, darker colors indicate a smaller value of the specific
decomposition effect, which has a negative impact on carbon
productivity. The last column shows the ratio of the industry-
wide carbon productivity of each province to that of the
reference region. Provinces whose industry-wide carbon
productivity is lower than the reference region are marked in red
on the y-axis, indicating that they have significant potential for
improvement.

From the first nine columns, we can see that the KEFSE, LEFSE,
and CPIE have a positive influence on carbon productivity for the
majority of provinces, indicating that these provinces have a
reasonable input factor structure and carbon emission

performance levels. In contrast, the HGEFSE has a negative
impact on the carbon productivity of most provinces, except for
the 10 provinces of Beijing, Tianjin, Hebei, Shanghai, Jiangsu,
Zhejiang, Anhui, Hunan, Guangxi, and Shaanxi. Therefore, when
it comes to improving the carbon productivity of these 19 provinces,
theHGEFSE has greater potential compared with theKEFSE, LEFSE,
and CPIE. It is a driving factor that requires special attention to
improve carbon productivity by increasing the substitution of
hybrid knowledge stock for hybrid energy in input factors. The
CFE and PHGCRE have negative impacts on carbon productivity of
most provinces, indicating the need to optimize energy
consumption structure and improve the potential ideal hybrid
knowledge emission ratio level in future development. The HEEE
and GEFE also have different promotion and inhibition effects on
carbon productivity for different provinces. These two effects are
important factors that promote further improvement of carbon
productivity for provinces with a higher level of carbon
productivity. By increasing scientific research investment,
promoting technological innovation, encouraging patent research
and development, and actively developing green low-carbon
technologies, carbon productivity can be enhanced to a higher
level. The CESE is another important factor that leads to
significant differences in carbon productivity among provinces.
Except for the provinces of Beijing, Jilin, Heilongjiang, Shanghai,
Jiangsu, Hunan, Guangdong, Chongqing, and Sichuan, there is no
significant improvement in the carbon productivity of the remaining
20 provinces, indicating that there is great potential to improve the
level of carbon productivity by improving industrial sector structure.
The KEFSE and LEFSE are the main driving forces for the
development of carbon productivity in most provinces, while the
substitution of hybrid knowledge stock for hybrid energy and the
potential ideal hybrid knowledge emission ratio still needs to be
improved. In particular, the HEEE and GEFE are key factors for
further improving carbon productivity in economically
developed provinces.

4.2.2 Industry-level comparative analysis
From an industry-level perspective, Figure 6 shows the carbon

emissions and carbon productivity of the 15 industries studied in
this paper, as well as the overall industry.

From Figure 6A, we can see that the top three industries with the
highest carbon emissions are the power and heat production and
supply industry (S13) with 5.317 billion tons, followed by the black
gold, non-ferrous metal, and metal products industry (S7) with
2.685 billion tons, and the petroleum processing industry (S4) with
0.196 billion tons. All of these industries are high-energy
consumption industries. The three industries with the lowest
carbon emissions are the water production and supply industry
(S15) with 0.0047 billion tons, followed by the medical industry (S5)
with 0.0441 billion tons, and the electrical equipment manufacturing
industry (S11) with 0.0898 billion tons. The industry-wide carbon
emissions of all industries combined (85.55 billion tons) are marked
in red. From Figure 6B, we can see that the top three industries with
the highest carbon productivity are the communication equipment,
office equipment, and other manufacturing industry (S12) with
357.20 yuan/kg, followed by the electrical equipment
manufacturing industry (S11) with 212.31 yuan/kg, and the water
production and supply industry (S15) with 193.30 yuan/kg. The
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three industries with the lowest carbon productivity are the power
and heat production and supply industry (S13) with 0.33 yuan/kg,
followed by the black gold, non-ferrous metal, and metal products
industry (S7) with 1.99 yuan/kg, and the gas production and supply
industry (S14) with 4.47 yuan/kg. The industry-wide carbon
productivity (3.26 yuan/kg) is marked in red, which is obtained
by comparing the industry-wide GDP added value with the
industry-wide carbon emissions. This once again confirms the
consistency between provincial data and industry data. By
combining Figure 6, we can conclude that high-energy
consumption industries tend to have higher carbon emissions but
lower carbon productivity. Conversely, industries with lower carbon
emissions tend to have higher carbon productivity. For example, the
power and heat production and supply industry (S13) have the
highest carbon emissions and lowest carbon productivity. While the
power industry has been committed to reducing energy
consumption, its high reliance on fossil fuels results in high
carbon emissions, leaving significant challenges to improve
carbon productivity.

We divide the carbon productivity of each industry in the
29 provinces by the carbon productivity of the corresponding
industry in the reference region (Pij/Piu). By taking j from 1 to
29 and i from 1 to 15, we obtain the industry decomposition results
of the differences in carbon productivity between each province and
the reference region and present them in a heat map. Figure 7 depicts
the ratio of carbon productivity between the 29 provinces and the
reference region, as well as the industry decomposition results. The
vertical axis represents the 29 provinces, while the horizontal axis
represents the 15 industries. Observing the vertical aspect of
Figure 7, we can see that the industries with lower carbon
productivity than the reference region are mainly concentrated in
15 provinces, namely, Hebei, Shanxi, Inner Mongolia, Liaoning,
Jilin, Heilongjiang, Anhui, Shandong, Guangxi, Hainan, Guizhou,
Shaanxi, Gansu, Qinghai, and Ningxia. We mark these 15 provinces
in red on the vertical axis. Combining this with the provinces
marked in red on the vertical axis in Figure 4, we find that the
provinces with overall lower carbon productivity and specific
industries with lower carbon productivity than the reference
region are completely consistent. Therefore, we identify these
15 provinces as potential areas for improving carbon
productivity. Compared to provinces with higher carbon
productivity, these provinces are of greater concern and worthy
of further study.

4.3 Dual dimensional comparative analysis

Based on the comparative analysis of single-dimension province
and single-dimension industry, and the comprehensive effect
decomposition results and industry decomposition results of each
province, we found that there are 15 provinces with carbon
productivity levels lower than the reference region. These
provinces are Hebei, Shanxi, Inner Mongolia, Liaoning, Jilin,
Heilongjiang, Anhui, Shandong, Guangxi, Hainan, Guizhou,
Shaanxi, Gansu, Qinghai, and Ningxia. The 8 weak industries
that cause the carbon productivity of these 15 provinces to be
lower than the average level are: food, tobacco and liquor
industry (S1), culture and education supplies industry (S3),

chemical industry (S6), black and non-ferrous metal smelting and
processing industry (S7), transportation equipment industry (S10),
communication equipment, office equipment and other
manufacturing industry (S12), electric power, heat production
and supply industry (S13), and water production and supply
industry (S15).

By combining the differences and influencing factors of
carbon productivity at the regional and industry levels, and
considering the industry heterogeneity within regions, we
obtained the effect decomposition of specific industry-level
carbon productivity differences in different regions. In this
paper, we conducted an effect decomposition of the carbon
productivity differences of these 15 key provinces and 8 key
industries from the two dimensions of province and industry, and
investigated the factors influencing the differences. Using the
new green decomposition model of carbon productivity and
applying the decomposition Eq. 26 for regional differences, we
obtained the decomposition formula for the carbon productivity
differences with provincial and industrial subscripts.

Pij

Piu
� Aij,iu

KEF · Aij,iu
LEF · Aij,iu

HGEF · Aij,iu
CF · Aij,iu

HEE · Aij,iu
GEF · Aij,iu

PHGCR · Aij,iu
CPI

· Aij,iu
CES,

This refers to the decomposition effect of the carbon
productivity difference between the j region industry and the
reference region industry, which is the product of the
decomposition effects of the carbon productivity difference
between each industry in the j region and the reference region.
This paper uses the capital-hybrid energy substitution effect KEF as
an example.

Aj,u
KEF � exp ∑M

i�1
wj,u

i lnKEFj,u
i

⎛⎝ ⎞⎠ � Π
M

i�1
exp wj,u

i lnKEFj,u
i( )

� Π
M

i�1
Aij,iu

KEF,

Furthermore, we obtain the capital-hybrid energy
substitution effect KEF of the carbon productivity difference
between the i industry in the j region and the i industry in the
reference region:

Aij,iu
KEF � exp wj,u

i lnKEFj,u
i( ),

The remaining eight effects are obtained similarly. Taking j from
1 to 15 and i from 1 to 8, we obtain the decomposition results of the
effects of carbon productivity differences between each province and
industry and the reference region industry, which can be presented
in heat maps. Figure 8 contains 15 heat maps, each describing the
decomposition results of the effects on eight key industries of the
relative carbon productivity laggard provinces. Overall, the KEFSE
and LEFSE have higher decomposition results in most provinces and
industries, indicating a positive role in promoting the development
of carbon productivity. In contrast, the PHGCRE has lower
decomposition results in most provinces and industries,
indicating a negative impact on carbon productivity and
significant potential for improvement. This is consistent with the
provincial decomposition results presented in Figure 5. The
PHGCRE indicates, that is, the consumption of hybrid knowledge
resources per unit of carbon emission space, at the point when
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undesirable outputs reach the ideal state, corresponding to measures
aimed at increasing hybrid knowledge stock input and reducing
carbon emissions.

Figure 8A shows the decomposition results of the effects on eight
key industries in Hebei province. It can be observed that there are
significant variations in the decomposition results of various effects
across different industries. Overall, the HGEFSE and GEFE have a
positive impact on the development of carbon productivity in most
industries. On the other hand, the CFE,HEEE, CPIE, and CESE have
a negative impact on carbon productivity in most industries. Thus, it
is important to focus on increasing the decomposition values of
these effects. As an industrial province, Hebei’s economic
development has long relied on heavy industry. From the figure,
it can be observed that the chemical industry (S6) needs to improve
the HGEFSE, CFE, HEEE, CPIE, and CESE.

Figure 8B, C show the decomposition results of the effects on
eight key industries in Shanxi and Inner Mongolia, respectively. The
results in these two regions are similar. From the figures, it can be
observed that the HEEE, GEFE, and CPIE have a positive impact on
carbon productivity in most industries. On the other hand, the
HGEFSE, CFE, and CESE still have significant potential for
improvement. As an economically underdeveloped region, the
carbon productivity of many industries in Shanxi province is
below the average level. For example, the LEFSE, CFE, and CESE
have a negative impact on carbon productivity in the manufacturing
industry of communication equipment, office equipment, and other
industries (S12). Although Inner Mongolia is also an economically
underdeveloped region, it has abundant natural resources that can
be reasonably developed and utilized to reduce carbon emissions
and improve carbon productivity.

Figure 8D–F show the decomposition results of the effects on
eight key industries in the three provinces of Northeast China.
Among them, the HGEFSE, GEFE, and CPIE in Liaoning have a
positive impact on carbon productivity in most industries. On the
other hand, the CFE, HEEE, and CESE have great potential for
improvement. The decomposition results of Jilin and Heilongjiang
are relatively similar. The HEEE, GEFE, and CESE have a positive
impact on carbon productivity in most industries; however, the
HGEFSE and CFE need to be improved. For example, the black and
non-ferrous metal, and metal products industry (S7) in Liaoning
needs to adopt policies such as capital replacement of hybrid energy,
labor replacement of hybrid energy, and hybrid knowledge stock
replacement of hybrid energy, increase scientific and technological
inputs, and encourage the research and application of green patents.
The transportation equipment industry (S10) in Jilin needs to
vigorously promote the replacement of hybrid knowledge stock
for hybrid energy, regulate the structure of production factors,
improve technical efficiency, and the potential emission ratio of
hybrid knowledge. The chemical industry (S6) in Heilongjiang needs
to raise the level of technology and carbon emission efficiency,
advocate the development and application of green patents, and
vigorously develop high-tech emerging industries.

Figure 8G shows the decomposition results of the effects on eight
key industries in Anhui province. The HGEFSE and CPIE have a
positive impact on carbon productivity in most industries (S1, S3,
S6, S7, S13, S15), while the HEEE, GEFE, and CESE have great
potential for improvement. Anhui province is a relatively backward
province in the Yangtze River Economic Zone, with great potential

for economic development. For instance, the black and non-ferrous
metal, and metal products industry (S7) should focus on increasing
scientific and technological inputs, promoting the development and
application of patents, especially green patents, improving technical
efficiency, balancing industrial structure, and applying green and
clean energy and low-carbon technologies in the production process
to effectively improve the level of carbon productivity.

Figure 8H shows the decomposition results of the effects on
eight key industries in Shandong province. The GEFE and CESE
have a positive impact on carbon productivity in most industries,
while there is still room for improvement for HEEE and CPIE.
Shandong province is an important energy base in China, with
abundant coal and oil resources. However, this advantage also leads
to an imbalanced energy consumption structure, with a high
proportion of fossil energy consumption and resulting in large
amounts of carbon emissions and low levels of carbon
productivity. Therefore, Shandong province urgently needs to
improve its energy consumption structure, reduce the use of
traditional fossil fuels, and vigorously develop clean energy
sources such as wind, solar, and hydropower to reduce
carbon emissions.

Figure 8I shows the decomposition results of the effects on eight
key industries in Guangxi province. The HEEE, GEFE, and CPIE
have a positive impact on carbon productivity in most industries,
while there is still room for improvement for HGEFSE and CFE.
Guangxi province is relatively backward in the southern region of
China, and for specific industries such as the food, tobacco, and
liquor industry (S1), which is mainly focused on the sugar industry,
it is necessary to focus on improving the capital substitution of
hybrid energy, labor substitution of hybrid energy, and hybrid
knowledge stock substitution of hybrid energy. Adjusting the
proportions of various production factors inputs, further
improving technical efficiency, and carbon performance levels,
increasing the economic benefits of the industry, and thus further
enhancing the level of carbon productivity.

Figure 8J shows the decomposition results of the effects on eight
key industries in Hainan province. The CPIE has a positive impact
on carbon productivity in most industries, while there is still room
for improvement for HEEE and CESE. Hainan has a favorable
geographical location, rich forestry and marine resources, and a
strong ability to absorb and store carbon dioxide. Hainan has diverse
energy structure and enormous potential for developing renewable
energy sources such as solar and hydropower generation.
Additionally, Hainan has abundant geothermal and tidal energy
resources, which should be fully utilized to balance the energy
consumption structure, reduce carbon emissions, and promote
the absorption and storage of carbon emissions. By combining
both carbon sources and carbon sinks, Hainan can lower carbon
dioxide concentration in the atmosphere and enhance its carbon
productivity.

Figure 8K shows the decomposition results of the effects on eight
key industries in Guizhou province. The HEEE and CPIE have a
positive impact on carbon productivity in most industries, while
there is still room for improvement for HGEFSE, CFE, GEFE and
CESE. Guizhou province is relatively underdeveloped in the
southwestern region of China, and the carbon productivity levels
of most industries need to be improved. For example, in the electric
and thermal power generation and supply industry (S13), which is a
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key area for transmitting electricity from western to eastern China,
there is a need to increase capital substitution of hybrid energy and
hybrid knowledge stock substitution of hybrid energy, and optimize
the input structure of production factors while improving the
potential emission rate of hybrid knowledge. By doing so, carbon
productivity can be enhanced comprehensively. Another key
industry in Guizhou is the food, tobacco, and liquor industry
(S1), for which there is a need to increase hybrid knowledge
stock substitution of hybrid energy, adjust the energy
consumption structure, encourage the development of green
patents, reduce carbon emissions, improve economic efficiency,
and gradually enhance the level of carbon productivity.

Figure 8L–O show the decomposition results of the effects on
eight key industries in four northwestern provinces of China. The
results in Shaanxi, Gansu, Qinghai, and Ningxia are quite similar,
the HEEE, GEFE, and CPIE have a positive impact on carbon
productivity in most industries, while the CFE and CESE still
have room for improvement. These northwestern provinces have
sparse populations, arid climates, and lack of water resources, while
possessing abundant desert and wind-blown sand resources.
Therefore, it is necessary to increase scientific and technological
investment and make use of existing natural resources to vigorously
develop solar power stations and ecological photovoltaic power
stations. At the same time, renewable energy sources such as
wind power and biogas should be reasonably developed and
utilized as new forms of clean energy in order to jointly reduce
CO2 emissions and enhance the level of carbon productivity.

5 Conclusion

This paper explores the input elements in the economic
production process under the driving force of green
development, where energy input is refined into renewable
energy input and non-renewable energy input, and knowledge
stock input and green knowledge stock input are introduced. By
using the data envelopment analysis (DEA) method and combining
traditional environmental production technology with green input
elements, a new linear programmingmodel with a constant return to
scale is constructed. Based on the traditional output-oriented
Shephard distance function, a new green Shephard distance
function and corresponding green Farrell technical efficiency
measures for desirable outputs orientation and undesirable
outputs orientation are also constructed. In addition, a series of
new green decomposition methods are derived based on the
definition of carbon productivity, and a new green
decomposition model of carbon productivity is established. The
carbon productivity differences between two regions are
decomposed into nine effect types, resulting in the formation of a
new green decomposition system of carbon productivity. Using
input-output data from 15 industries in 29 Chinese provinces in
2019, this paper investigates the regional differences in carbon
productivity and the factors that influence these differences from
both a single-dimensional and a two-dimensional perspective.

(1) Conclusion of single-dimensional provincial level comparison
analysis: Out of the 29 provinces studied in this paper,
14 provinces have higher carbon productivity than the

reference region, mainly including Beijing, Tianjin, most of
Eastern China, Central China, and parts of Southwest China,
while the remaining 15 provinces have lower carbon
productivity than the reference region, mainly including
some parts of North China, Northeast China, South China
and Northwest China. The regions with relatively backward
carbon productivity mostly have rich natural resources, but
poor resource utilization efficiency and over-reliance on heavy
industry, especially industrial sectors that have been transferred
from the eastern regions to the western regions. Therefore, it is
necessary to optimize the industrial structure in these regions to
gradually improve their carbon productivity.

(2) Conclusion of single-dimensional industry level comparison
analysis: Among the 15 industries studied in this paper, high-
energy-consuming industries such as the electric power
generation and supply industry (S13), the processing of
black and non-ferrous metals and other minerals industry
(S7), and the petroleum processing industry (S4) have high
levels of CO2 emissions and relatively low carbon
productivity. In contrast, industries with low levels of CO2

emissions such as the water production and supply industry
(S15), the pharmaceutical industry (S5), and the electrical
machinery manufacturing industry (S11) have relatively
higher levels of carbon productivity. Most high-energy-
consuming industries use fossil energy sources, which leads
to excessive CO2 emissions and low carbon productivity
levels. Therefore, new energy sources need to be
continuously developed and utilized, and the proportion of
traditional fossil energy use needs to be reduced at its core to
minimize carbon emissions, enhance energy utilization
efficiency, and improve carbon productivity.

(3) Conclusion of two-dimensional comparison analysis: Among
the eight key industries and 15 provinces studied in this paper,
the decomposition results for the capital - hybrid energy
substitution effect (KEFSE) and labor - hybrid energy
substitution effect (LEFSE) are high. This indicates that
capital and labor substitution are the main driving forces
behind the development of carbon productivity in these
15 key provinces. However, the decomposition results for
the potential hybrid knowledge emission ratio effect
(PHGCRE) are comparatively low, indicating that there is
significant room for improvement in the potential level of
hybrid knowledge emission rate under ideal conditions in
these 15 key provinces.

6 Policy suggestions

China is the country with the highest carbon dioxide emissions
in the world. To achieve low-carbon development, we must
simultaneously meet the requirements of increasing industrial
added value and reducing carbon emissions, so as to
fundamentally and effectively improve carbon productivity.
Firstly, based on the input and output data of 15 industries in
29 provinces and the new green decomposition model of carbon
productivity, the influencing factors of regional carbon productivity
differences are quantitatively studied. Secondly, through the
decomposition of provincial effects and provincial industries,
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15 key provinces and 8 key industries that affect the improvement of
China’s overall carbon productivity will be identified, and potential
areas for the development of carbon productivity will be identified.
Based on the decomposition results and the actual situation, the
following policy recommendations are given:

(1) At the single-dimension provincial level, the carbon factor
effect CFE and the potential hybrid knowledge emission ratio
effect PHGCRE have negative effects on the carbon
productivity of most provinces. Therefore, priority should
be given to improving these two effects, optimizing the energy
consumption structure in time, improving the level of hybrid
knowledge emission ratio, and implementing differentiated
energy policies according to the characteristics of natural
resources and industrial structure in different regions.
Hybrid knowledge stock - hybrid energy substitution effect
HGEFSE has a negative impact on the carbon productivity of
the rest of the provinces, except for the positive effect on the
carbon productivity of nearly one-third of the provinces.
Therefore, it is necessary to continuously improve the
substitution of hybrid knowledge stock for hybrid energy
and adjust the structure of input factors, so as to improve the
overall carbon productivity. The carbon emission structure
effect CESE has no significant improvement in the carbon
productivity of the remaining 20 provinces, except for its
positive effects on the nine provinces of Beijing, Jilin,
Heilongjiang, Shanghai, Jiangsu, Hunan, Guangdong,
Chongqing and Sichuan. Therefore, we should give priority
to the development of low-carbon industries, get rid of the
high dependence on energy-intensive industries and heavy
industries, learn from provinces with advanced technology
and experience in this field, and adjust the industrial
structure, so as to gradually improve carbon productivity.

(2) At the single-dimension industry level, stationery industry
(S3), communication equipment, office equipment and other
manufacturing industries (S12) and power and heat
production and supply industry (S13) have negative effects
on the carbon productivity of most provinces, and the carbon
productivity of these three industries needs to be greatly
improved. From the perspective of the seven major
regions, North China needs to focus on the development
of the stationery industry (S3), petroleum processing industry
(S4), transportation equipment industry (S10), electrical
equipment manufacturing industry (S11), communication
equipment, office equipment and other manufacturing
industries (S12), power and heat production and supply
industry (S13) and water production and supply industry
(S15). Northeast China needs to improve weak industries
such as stationery industry (S3), chemical industry (S6), metal
products industry (S7), electrical appliance manufacturing
industry (S11), communication equipment, office equipment
and other manufacturing industry (S12), power and heat
production and supply industry (S13) and water
production and supply industry (S15). Communication
equipment, office equipment and other manufacturing
industries (S12) and power and heat production and
supply industries (S13) in East and Central China need to
be further improved. South China needs to focus on

improving the relatively backward industries such as food,
tobacco and wine industry (S1), textile and clothing industry
(S2), stationery industry (S3) and metal products industry
(S7). Southwest China needs to focus on textile and
clothing industry (S2), stationery industry (S3), petroleum
processing industry (S4), chemical industry (S6), metal
products industry (S7) and electrical manufacturing
industry (S11). The northwest region needs to vigorously
develop the stationery industry (S3), chemical industry (S6),
transportation equipment industry (S10) and water
production and supply industry (S15).

(3) At the provincial level and industry level, priority should be
given to improving the carbon productivity of 8 key industries
in 15 key provinces. On the whole, it is necessary to improve
potential hybrid knowledge emission ratio effect PHGCRE.
The government should strengthen investment in science,
technology and education, train high-tech talents, and
promote the research, development and application of
patents. The government should introduce low-carbon
technologies in various industries to reduce carbon
emissions, so as to vigorously develop low-carbon
industries, balance the structure of low-carbon industries
and energy-intensive industries, and achieve balanced
development. For the eight key industries, each province
should adjust the input proportion of various production
factors, optimize the energy structure, and reduce carbon
emissions under the condition of ensuring stable and healthy
economic development, so as to reduce the gap in carbon
productivity between provinces. Provinces with close
geographical locations should implement assistance policies
to improve carbon productivity.

(4) In terms of specific industries in specific provinces, the
chemical industry in Hebei should focus on the
development of hybrid knowledge stock to replace hybrid
energy, adjust the proportion of energy use, increase
investment in scientific and technological research and
development, and improve technical efficiency and carbon
emission performance. Shanxi Province should focus on the
development of labor substitution for hybrid energy in
communication equipment, office equipment and other
manufacturing industries, reduce the use of fossil energy,
and reduce carbon emissions. Inner Mongolia should make
full and efficient use of natural resources and improve its ability
to absorb and store carbon dioxide. The three northeastern
provinces as a whole need to develop advanced production
technologies and improve traditional production methods.
They should vigorously develop capital to replace hybrid
energy, labor to replace hybrid energy and hybrid
knowledge stock to replace hybrid energy, adjust the input
structure of production factors, and increase the research,
development and use of green patents. Anhui should
increase scientific and technological investment in black
gold, gold processing and non-gold and metal products
industries, promote scientific and technological innovation,
especially the use of clean energy, to reduce carbon dioxide
emissions. Shandong Province should focus on adjusting the
energy consumption structure in the province and improve the
level of carbon productivity fundamentally. Guangxi Province

Frontiers in Physics frontiersin.org22

Fu et al. 10.3389/fphy.2024.1398261

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2024.1398261


needs to focus on improving the substitution of capital, labor
force and hybrid knowledge stock for hybrid energy, and
improve the proportion of production factors input, so as to
improve the level of technology and carbon emission
performance. Hainan Province should make full use of the
advantages of natural resources, actively develop renewable
energy, reduce carbon emissions, and absorb carbon dioxide
that has been generated. The combination of the two will
further improve carbon productivity. Guizhou needs to
increase the substitution of capital and hybrid knowledge
stock for hybrid energy, optimize the input structure of
production factors, and comprehensively improve carbon
productivity. The four provinces in northwest China need to
focus on developing new energy, such as solar power, wind
power, and ecological photovoltaic power, to reduce fossil
energy consumption and reduce carbon emissions.
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Appendix A

TABLE A1 Seven geographical divisions and symbols of China.

Region Name and symbol

North China Beijing (BJ), Tianjing (TJ), Hebei (HE), Shanxi (SX), Inner Mongoria (IM)

Northeast China Liaoning (LN), Jilin (JL), Heilongjiang (HL)

East China Shanghai (SH), Jiangsu (JS), Zhejiang (ZJ), Anhui (AH), Fujian (FJ), Jiangxi (JX), Shandong (SD)

Central China Henan (HA), Hubei (HB), Hunan (HN)

South China Guangdong (GD), Guangxi (GX), Hainan (HI)

Southwest China Chongqing (CQ), Sichuan (SC), Guizhou (GZ), Yunnan (YN)

Northwest China Shaanxi (SN), Gansu (GS), Qinghai (QH), Ningxia (NX)

Reference region Reference region (U)
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