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Full-field optical angiography (FFOA)—a real-time non-invasive imaging
technique for extracting biological blood microcirculation
information—contributes to an in-depth understanding of the functional and
pathological changes of biological tissues. However, owing to the limitation of
the depth-of-field (DOF) of optical lenses, existing FFOA imaging methods
cannot capture an image containing every blood-flow information. To address
this problem, this study develops a long-DOF full-field optical angiography
imaging system and proposes a novel multi-focus image fusion scheme to
expand the DOF. First, FFOA images with different focal lengths are acquired
by the absorption intensity fluctuation modulation effect. Second, an image
fusion scheme based on gradient feature detection in a nonsubsampled
contourlet transform domain is developed to capture focus features from
FFOA images and synthesize an all-focused image. Specifically, FFOA images
are decomposed by NSCT into coefficients and low-frequency difference
images; thereafter, two gradient feature detection-based fusion rules are used
to select the pre-fused coefficients. The experimental results of both phantom
and animal cases show that the proposed fusion method can effectively extend
the DOF and address practical FFOA image defocusing problems. The fused FFOA
image can provide a more comprehensive description of blood information than
a single FFOA image.
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1 Introduction

Blood microcirculation information is critical for gaining insights into both the normal
development and pathogenesis of diseases such as cancer and diabetic retinopathy [1–3]; for
example, microvascular rarefaction is a hallmark of essential hypertension [4]. Therefore, it
is essential to accurately depict high-resolution full-field images of blood vessels to enhance
the accuracy of biological studies. In existing full-field optical imaging methods, such as full-
field optical coherence tomography [5], laser scatter contrast imaging [6], and full-field
optical angiography (FFOA) [7, 8], the imaging speed and sensitivity of bio-optical imaging
can be slightly improved, but the imaging range is limited to the depth-of-field (DOF). In
addition, high-resolution images are usually obtained by increasing the magnification of the
lens, which further reduces the DOF range and cannot ensure that all relevant objects in
focus are distinctly imaged. The multi-focus image fusion technique is a feasible method for
addressing the issue of a limited DOF. Images of the same scene with different DOFs can be
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obtained by changing the focal length; thereafter, the focus features
from these images are extracted to synthesize a sharp image to
extend the DOF.

Current multi-focus image fusion methods can be essentially
classified into four categories [9]: transform domain [10–13], spatial
domain [14–19], sparse representation (SR) methods [20–25], and
deep learning methods [26–30]. The spatial domain methods
implement image fusion mainly by detecting the activity level of
pixels or regions. For example, Xiao et al. [31] used the multi-scale
Hessian matrix to acquire the decision maps. SAMF [32]proposes a
new small-area-aware algorithm for enhancing object detection
capability. MCDFD [33]proposes a new scheme based on multi-
scale cross-differencing and focus detection for blurred edges and
over-sharpening of fused images. Spatial domain methods are
known for their simplicity and speed; however, accurately
detecting pixel activity poses a significant challenge. Inaccurate
pixel activity detection may lead to block artifact occurrence and
introduce spectral distortions of the fusion results. Since the
overcomplete dictionaries of SR methods contain richer basis
atoms, SR methods are more robust to misalignment than spatial
domain methods [34]. Tang et al. [35] used joint patch grouping and
informative sampling to build an overcomplete dictionary for SR. SR
is usually time-consuming, and sparse coding using SR is complex;
furthermore, it inevitably loses important information of source
images. Recently, deep learning methods have gained widespread
attention owing to their excellent feature representation capabilities.
Liu et al. [26] first applied a CNN to obtain the initial decision of
focused and out-of-focus regions. Thereafter, other authors
proposed extensive deep learning image fusion algorithms,
including generative adversarial network-based [36], encoder-
decoder-network based [37], and transform-based methods [27].
REOM [38] measure the similarity between the source images and
the fused image based on the semantic features at multiple
abstraction levels by CNN. AttentionFGAN [39] used dual
discriminators in order to avoid the modal unevenness caused by
a single discriminator. Tang et al. [40] proposed an image fusion
method based on multiscale adaptive transformer, which introduces
adaptive convolution to perform convolution operation to extract
global contextual information. CDDFuse [41] propose a novel
correlation-driven feature decomposition fusion network, to
tackle the challenge in modeling cross-modality features and
decomposing desirable modality-specific and modality-shared
features. However, these training data lack consistency with real
multi-focal images; therefore, real multi-focal images cannot be
processed effectively. Transform domain methods decompose
images into different scales, analogous to the process of human
eyes handling visual information ranging from coarse to fine; thus,
the latter can achieve a better signal-to-noise ratio [42]. Transform
domain methods usually include pyramid transform [43], wavelet
transform [44, 45], and nonsubsampled contourlet transform
(NSCT) [46, 47].

In a previous study, a large-DOF FFOA method was developed
that uses the contrast pyramid fusion algorithm (CPFA) to achieve
image fusion [48]. Pyramid transform is a popular tool that is simple
and easy to implement; however, it creates redundant data in
different layers and easily loses high-frequency details. In
comparison with the pyramid transform, the wavelet transform
has attracted more attention owing to its localization, direction, and

multi-scale properties. Nevertheless, discrete wavelet transform
cannot accurately represent anisotropic singular features [16].
Because it is flexible, multi-scale, multi-directional, and sift-
invariant, NSCT has gained an encouraging reputation for multi-
focus image fusion and can decompose images in multiple directions
and obtain fusion results withmore correct information. Li et al. [16]
performed comprehensive experiments to analyze the performance
of different multi-scale transforms in image fusion and their
experimental results demonstrated that the NSCT can
overperform other multi-scale transforms in terms of multi-focus
image fusion. This study devised a long-DOF full-field optical
technique based on gradient feature detection (GFD). A series of
FFOA images with different focal lengths were first acquired by the
absorption intensity fluctuation modulation (AIFM) effect [8].
Subsequently, a novel multi-focus image fusion method in the
NSCT domain was developed to fuse the source FFOA images to
extend the DOF. The proposed fusion scheme includes the following
three steps. First, the initial images (FFOA images with different
DOFs) are decomposed by NSCT into corresponding low-frequency
coefficients (LFCs); thereafter, a series of high-frequency directional
coefficients (HFDCs), and low-frequency difference images (LFDIs)
are obtained by subtracting the LFCs from the source images.
Second, two gradient feature detection-based fusion rules are
proposed to select the pre-fused coefficients. Finally, the fused
image is generated by taking the inverse NSCT (INSCT) on
different pre-fused coefficients. This article compared the fusion
results using objective assessment and subjective visual evaluation.
The experimental results show that the proposed GFD fusion
scheme can yield better blood microcirculation images and
effectively retain the focus information in the source image.

The main contributions of this study are as follows:

(1) This article constructs a full-field optical imaging system to
acquire phantom and animal FFOA images with
different DOFs.

(2) This article proposes a gradient feature detection-based image
fusion scheme in the NSCT domain that can effectively fuse
FFOA images to extend the DOF.

(3) This article develops two fusion rules to fuse the LFCs and
HFDCs of NSCT that can be used to extract more detailed and
structured FFOA image information, thereby improving the
visual perception of the fused images.

The remainder of this paper is organized as follows. Section 2
introduces the imaging system, acquisition of FFOA images, and
proposed fusion model based on GFD in the NSCT domain. Section
3 focuses on the experimental results and discussion. Finally, Section
4 provides the conclusions of the study.

2 Materials and methods

2.1 System setup

A schematic of the constructed system is given in Figure 1. The
80-mW laser beam (λ0 = 642 nm, bandwidth = 10 nm) from the
semiconductor is reflected by the beam splitter (BS), thus vertically
illuminating the sample; the speckle pattern is recorded by a
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complementary metal-oxide semiconductor (CMOS) camera
(acA2000-340km, Basler. Pixel size, 5.5 μm × 5.5 μm; sampling
rate, 42 fps; exposure time, 20 ms). Samples were placed on the
optical mobile platform (OMP), and the focal length in the
z-direction was changed by computer control of the electric
zoom lens (EZL) to obtain FFOA images ( Z1, Z2, Z3, . . . Z10)
with different DOFs; the multi-focus image fusion technique was
then used to fuse the 10 images to obtain the fused image. The data
collection was controlled using LabVIEW software.

2.2 Acquisition of FFOA image

First, describe the theory of the AIFM effect in realizing the
FFOA image [8]. Under irradiation from a low-coherence light
source, the red blood cell (RBC) absorption coefficient is
significantly higher than the background tissue. In the vascular
region, when the RBCs flow, a high-frequency fluctuation signal
(IAC) is generated by the combination of different absorptions of
RBCs and background tissue; the above phenomenon is called the
AIFM effect. However, the region outside the blood vessels produces
a DC signal (IDC) that does not fluctuate over time because it only
contains background tissue. Thereafter, the time sequences (IAC)
and (IDC) are independently demodulated by respectively applying
a high-pass filter (HPF) and low-pass filter (LPF) in the frequency
domain. The employed formulas are as Eq. (1):

IDC x, y, t( ) � LPF I x, y, t( ){ }
IAC x, y, t( ) � HPF I x, y, t( ){ } (1)

where I(x, y, t) is the value of the pixel at spatial coordinate (x, y) at
time t. The samples have a small concentration of scattering
examples, so the collected intensity signal is proportional to the
scattering concentration, i.e., IDC ∝ nDC and IAC ∝ nAC, where nAC

and nDC represent the moving RBC and background scattering
numbers, respectively. Under the condition of IAC ≪ nAC, the
moving RBC concentration can be defined as Eq. (2):

ρ � nAC
nAC + nDC

≈
nAC
nDC

� IAC
IDC

(2)

In current FFOAmethods [7, 8], the imaging parameter is called
averaged modulation depth (AMD), defined as the ratio of the
average dynamic signal intensity 〈IAC(x, y, t)〉t to the average
static signal intensity 〈IDC(x, y, t)〉t. The employed formula is as
Eq. (3):

AMD x, y( ) � 〈IAC x, y, t( )〉t
〈IDC x, y, t( )〉t (3)

2.3 Proposed fusion scheme for
FFOA images

The proposed fusion scheme is illustrated in Figure 2. For a
convenient explanation, only two FFOA images are used for the
entire process, and the above process is iterated to achieve the
fusion of three or even more images. The fusion scheme mainly
includes three steps. First, the NSCT is performed on the source
images to obtain the corresponding LFCs and HFDCs, and LFDIs
are obtained by subtracting the LFCs from the source images.
Thereafter, a sum-modified-Laplacian and local energy (SMLE) is
used to fuse the LFCs, and the structural tensor and local
sharpness change metric (SOLS) is used to process the LFDIs
to obtain the initial decision map. Finally, the HFDC of the fused
image is obtained by fusing the HFDC obtained by the final
decision map, and an INSCT is performed on all coefficients to
generate the final fused image.

FIGURE 1
GFD FFOA fusion system. Z1 to Z10 represent 10 FFOA images with different foci, OMP is the optical mobile platform, BS is the beam splitter, EZL is
electric zoom lens, TC is the transparent container, and GT is the glass tube.
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2.3.1 NSCT
The NSCT consists of a non-subsampled pyramid (NSP)

structure and non-subsampled directional filter banks (NSDFBs)
to provide a decomposition of images [47]. Figure 3 depicts an
overview of the NSCT. The ideal support regions of the low-
frequency and high-frequency filters at the j level are
complementary and can be expressed as [−(π/2j), (π/2j)]2 and
[−(π/2j−1), (π/2j−1)]2/[−(π/2j), (π/2j)]2, respectively. The source
image is first decomposed into a high-frequency coefficient (HFC)
and an LFC by NSP; subsequently, the LFC is decomposed iteratively
using NSP. After processing by k-stage NSP, k+1 coefficients (an

LFC and k HFCs) with the same size as the source image
are generated.

The k-th level NSP is defined as Eq. (4):

Hn Z( ) � H1 Z2n−1I( )∏n−2
j�0H0 22jI( ), 1≤ n≤ k∏n−2

j�0H0 22jI( ), n � k + 1

⎧⎨⎩ (4)

whereHn(Z) is the low-pass filter, andHn(Z) is the high-pass filter
at the n-th stage. NSDFB is a filter bank consisting of a two-channel
tree structure. The HFCs from the NSP are decomposed by the
NSDFB in one step, and one HFC can generate 2l HFDCs. Because

FIGURE 2
Proposed FFOA images fusion scheme.

FIGURE 3
Overview of NSCT (A) Nonsubsampled filter bank structure. (B) Idealized frequency partitioning.
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upsampling and downsampling are eliminated, NSDFB can provide
directional unfolding with shift invariance for the image. Further
details about the NSCT can be found in [47].

To understand the following presentation, let us recall some
frequently used symbols. A, B, and X denote the source images, F
indicates the fused image, and (x, y) represents the pixel points in
the image. The LFC and HFC of the source image X are represented
by CF

L(x, y) and CF
g,l(x, y), respectively, where L represents the

coarsest scale, and g and l are the decomposition level and direction,
respectively. IX(x, y) denote the low frequency difference image and
is obtained by subtracting the LFC from the original image
(IX(x, y) � X(x, y) − CX

L (x, y)).

2.3.2 LFCs fusion based on SMLE
In addition to the selection of transform domain, fusion rules

are also critical in the multi-focus fusion method. For a pair of
LFCs of image X obtained by NSCT decomposition, which
retains the majority of the energy information from the
source image, the energy change between the clear and
defocused objects in the image is relatively large. According
to existing literature [49], sum-modified-Laplacian (SML)
performs excellently in guiding the selection of LFCs. SML is
defined as Eq. (5):

SML CX
L x, y( )( ) � ∑M

m�−M
∑N
n�−N

MLX
L x +m, y + n( )2 (5)

where M × N denotes the 3 × 3 window centered at (x, y).
MLXL (x, y) denotes the modified Laplacian of CX

L (x, y) at point
(x, y), and is defined as Eq. (6):

MLX
L x, y( ) � 2CX

L x, y( ) − CX
L x − 1, y( ) − CX

L x + 1, y( )∣∣∣∣ ∣∣∣∣
+ 2CX

L x, y( ) − CX
L x, y − 1( ) − CX

L x, y + 1( )∣∣∣∣ ∣∣∣∣ (6)

SML can effectively reflect the changes in the energy of LFCs but
cannot reflect the brightness information; therefore, adding the local
energy (LE) of LFCs is considered to improve SML. The LE is
defined as Eq. (7):

LE CX
L x, y( )( ) � ∑M

m�−M
∑N
n�−N

CX
L x +m, y + n( )2 (7)

where M × N denotes the window size centered at (x, y);
considering the time complexity and performance, they can be
set as M � N � 1. Therefore, a combination of SML and LE is
used to construct a new fusion rule (SMLE), as shown in Eq. (8):

SMLE CX
L x, y( )( ) � SML CX

L x, y( )( )*LE CX
L x, y( )( ) (8)

SMLE is selected as the fusion rule, and the coefficient with a
larger SMLE is taken as the LFC after fusion. The coefficient
selection principle for an LFC can be described as Eq. (9):

CF
L x, y( ) � CA

L x, y( ), SMLE CA
L x, y( )( )> SMLE CB

L x, y( )( )
CB

L x, y( ), otherwise
{

(9)
where CF

L(x, y) denotes the LFC of the fused image, CA
L (x, y) and

CB
L(x, y) are the LFCs of images A and B decomposed by NSCT,

respectively.

2.3.3 HFDCs fusion based on SOLS
The process of HFDC fusion based on SOLS consists of three

steps. First, the initial decision map is obtained by describing the
changes in LFCs using SOLS; thereafter, the initial decision map is
optimized using consistency verification and morphological filtering
operations to obtain the final decision map; and finally, the final
decision map is used to guide the fusion of HFDCs.

The HFDCs obtained by the NSCT decomposition mainly
contain most of the detailed information, such as contours, lines,
edges, region boundaries, and textures, and the local geometric
structures (LGS) of the focused region tend to be more
prominent [50]. Therefore, fusion can be achieved by describing
the variation of LGS in HFDC. In recent years, the SOT has gained
widespread adoption in image fusion, emerging as a critical method
for analyzing the LGS of images [51]. This article selected SOT as a
descriptive tool to describe the variation of LGS in the HFDC;
however, when SOT is directly selected to guide HFDC fusion, the
decision maps of different HFDCs may not be consistent, which can
lead to the introduction of error information in the fused images;
thus, the fusion decision maps of HFDCs of decision maps are
obtained by LFDIs. The process steps are described as follows.

Considering the low frequency difference image IX(x, y) of
image X, the square of the rate of change of image A in any direction
θ at the point (x, y) can be expressed as [52]:

dIX( )2 � IX x + ε cos θ, y + ε sin θ( ) − IX x, y( )����� �����22
≈ ∑

ω x,y( )
∂IX
∂x

ε cos θ + ∂IX
∂y

ε sin θ( )2

(10)

where the window ω(x, y) is defined as the Gaussian function
exp − (x2+y2)

2δ2
. Using C(θ) to represent the change rate of LGS of

image IX(x, y), Eq. (10) can be expressed as Eq. (11):

C θ( ) � ∑
ω x,y( )

∂IX
∂x

ε cos θ + ∂IX
∂y

ε sin θ( )2

� cos θ, sin θ( )

∑
ω x,y( )

∂IX
∂x

( )2 ∑
ω x,y( )

∂IX
∂x

∂IX
∂y

∑
ω x,y( )

∂IX
∂x

∂IX
∂y

∑
ω x,y( )

∂IX
∂y

( )2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
cos θ, sin θ( )T

� cos θ, sin θ( ) ∑
ω x,y( )

∇g∇gT cos θ, sin θ( )T

(11)
where ∇g � (∂IX∂x ∂IX

∂y )T; ∇g∇gT is the SOT, which is defined as
Eq. (12):

S � ∑
ω x,y( )

∇g∇gT � H M
M V

[ ] (12)

where H � ∑
ω(x,y)

(∂IX∂x )2, M � ∑
ω(x,y)

∂IX
∂x

∂IX
∂y , and V � ∑

ω(x,y)
(∂IX∂y )2.

The structure tensor S has two eigenvalues, which can be
explicitly calculated as Eq. (13):

λ1,2 � 1
2

H + V( ) ±
��������������
V −H( )2 + 4M2

√( ) (13)
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In general, relatively small values of λ1 and λ2 indicate that
pixel values change minimally in the region, i.e., they are flat. A
larger value of λ1 or λ2 indicates a large change in the pixel in one
direction, and this region is more inclined to be the focusing
region. The structure tensor [53] salient detection operator can
be defined as Eq. (14):

STS IX x, y( )( ) � ���������������������
λ1 + λ2( )2 + 0.5 λ1 − λ2( )2

√
(14)

STO can describe the amount of LGS information in LFDIs;
however, it cannot accurately reflect the changes in local contrast. In
this study, the sharpness change metric (SCM) is used to overcome
this deficiency, and the SCM is defined as Eq. (15):

SCM IX x, y( )( ) � ∑
x0 ,y0∈Ω0( )

IX x, y( ) − IX x0, y0( )( )2 (15)

In the formula,Ω0 is a local region of size 3 × 3 centered on (x,y).
In addition, considering the correlation between the pixels in the (x,y)
neighborhood, the local SCM (LSCM) is optimized as Eq. (16):

LSCM IX x, y( )( ) � ∑M
m�−M

∑N
n�−N

SCM x +m, y + n( ) (16)

where M × N is a neighborhood with size of 3 × 3.Therefore, a
combination of SOT and LSCM is used to construct a new fusion
rule (SOLS), as shown in Eq. (17):

SOLS IX x, y( )( ) � STS IX x, y( )( ) × LSCM IX x, y( )( ) (17)

Consequently, the process of constructing the initial decision
map IDM(x, y) of the fused image detail layer using SOLS can be
described as Eq. (18):

IDM x, y( ) � 1, SOLS CL
A x, y( )( )> SOLS CL

B x, y( )( )
0, otherwise

{ (18)

where SOLS(CL
A(x, y)) and SOLS(CL

B(x, y)) denote the SOLS of the
LFDIs A and B, respectively. The IDM in Figure 2 reveal small holes,
fine grooves, protrusions, and narrow cracks. To correct these
erroneous pixels, the “bwareaopen” filter with adaptive threshold
was utilized to improve the IDM, as described in Eq. (19):

MDM � bwareaopen IDM x, y( ), th( ) (19)
where MDM denotes the intermediate decision map. The
“bwareaopen” filter removes isolated areas smaller than the
threshold (th) in the binary map. Considering that different
image sizes adapt to different values of th, th = 0.015 × S in our
scheme, where S denotes the image area. Considering the object
integrity, the MDM can be further improved using the consistency
verification operations., as described in Eq. (20):

FDM x, y( ) � 1, if ∑
a,b( )∈Θ

MDM x + a, y + b( )
0, otherwise

⎧⎪⎨⎪⎩ (20)

where FDM(x, y) is the final decision map of the detail layer, andΘ
is a square neighborhood centered at (x, y) with size 21 × 21.

The fusion detail layer is generated using the final decision map
as Eq. (21):

CF
g,l x, y( ) � CA

g,l x, y( ), if FDM x, y( ) � 1
CB

g,l x, y( ), otherwise
{ (21)

where CF
g,l(x, y) denotes the HFDC of the fused image, and

CA
g,l(x, y) and CB

g,l(x, y) are HFDCs of images A and B
decomposed by NSCT, respectively.

Finally, the fused image is obtained by INSCT using the LFC
CF
L(x, y) and HFDCs CF

g,l(x, y).

2.4 Evaluation of the FFOA images

For subjective visual evaluation, this article measured the quality
of fusion using the difference image, which was obtained by
subtracting the fused image from the source image; the difference
image Dn(x, y) is given as Eq. (22):

Dn x, y( ) � F x, y( ) − In x, y( ) (22)
where F(x, y) denotes the final fused image, and In(x, y) denotes
the n-th source image. This article inverted the pixel value of the
information residual image for better observation.

For the same focused regions in the fused images, less residual
information in the difference image indicates better performance of
the fusion method; therefore, difference images are employed for
subjective visual evaluation.

Subjective visual evaluation offers a direct comparison, but
occasionally, it may be difficult to determine the best performing
case. In contrast, objective evaluations can provide a quantitative
analysis of fusion quality. In this study, six popular metrics were
used to evaluate fusion quality: 1) Normalized Mutual Information
(QMI) [54] for measuring the information preservation degree; 2)
Nonlinear Correlation Information entropy (QNCIE) [55] for
measuring the nonlinear correlation degree; 3) Gradient-based
Fusion Performance (QG) [56]; 4) Image Fusion Metric-Based on
a Multiscale Scheme (QM) [57] for measuring image features; 5)
Metric-Based on Phase Congruency (QP) [58]; and 6) Visual
Information Fidelity (VIF) [59]. Considering the evaluation
results of these metrics, a comprehensive evaluation of the fusion
effect can be provided. The greater the value of all these metrics, the
better the quality of the fused image. Further information regarding
the calculation of objective evaluations can be found in [60].

The proposed method was compared with four advanced
methods—CPFA [48], IFCNN [61], U2Fusion [62], and NSSR
[63]— to verify its effectiveness. For a fair comparison, the
parameter settings of all the methods were consistent with the
original publications. In the fusion experiments, the CPFA, NSSR
and proposed methods were implemented in MATLAB 2019a,
IFCNN and U2Fusion methods were implemented in PyCharm
2022. All the fusion methods were executed on a PC using an
Intel(R) Core (TM) i7-5500U CPU @ 2.40 GHz (2,394 MHz)
and 12 GB RAM.

3 Results and discussion

To verify the effectiveness of the GFD scheme, this article
compared the CPFA, IFCNN, U2Fusion, NSSR, and GFD using
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phantom and animal experimental results. In all examples, using
10 images with different DOFs for fusion, the DOF was extended by
multiples of three. For the NSCT used in the proposed method, a
four-layer decomposition was performed from coarse to fine in [1, 1,
1, 1] directions, with “vk” and “pyrexc” as the pyramid and the
direction filter, respectively. In addition, owing to the limited DOF
extended by the fusion of the two images, in all experiments, this
article chose to fuse 10 images to get the final fusion results.

3.1 Phantom experimental

This article first demonstrates the validity of the method through
simulation experiments, the experimental results of which are shown in
Figure 4. A glass tube with a 0.15 mm radius was placed inside the
transparent container at an angle of 60° to the horizontal for simulating
blood vessels, and the transparent container was filled with 3.2 mg/mL of
agar solution to imitate background tissue. RBCs were simulated using
an approximately 5 μm radius TiO2 particle, and 0.5-mg/mL TiO2

solution was injected into the glass tube at a speed of 5 mL/h to simulate
blood flow. In the experiment, the EZL increased the focal length by
2.4 mm each time to acquire FFOA images; themagnification of the lens
was 2, the camera exposure time and frame rate were 0.8millisecond and
95 fps, respectively, and the DOF was expanded from 1 to ~3.2 mm.

Figure 4 shows the FFOA fusion results generated by the
different methods. FFOA images A and B represent the first and
10th images, with the focus regions in the images boxed in red and
blue, respectively. The fusion results of each method contain three
images; the first image represents the fused image produced by

fusing 10 FFOA images, and the second and third images are the
difference images produced by subtracting the fused image from
FFOA images A or B, respectively. The magnified image of the boxed
region was placed in the middle of the two difference images for
better visibility. By analyzing the red and blue boxed regions, it can
be found that the proposed method and U2Fusion had fewer
residuals; in contrast, the difference images of CPFA, IFCNN,
and NSSR had more residual information. The above results
indicate that the proposed method can retain more source image
information than othermethods. Figure 5 was obtained by excluding
the subjective visual evaluation in Figure 4; it was used to validate the
effectiveness of the proposed method and shows the objective
evaluation metrics of the nine fusions used in the phantom
experiment. Furthermore, it shows that in the objective
evaluation of QMI, QG, QM, and QP, both NSSR and the
proposed method exhibited excellent performance; however, the
proposed method was slightly better than the NSSR method,
whereas the CPFA, IFCNN, and U2Fusion performed poorly in
these objective evaluations. Regarding the objective evaluation VIF,
NSSR performed the best, and the proposed method and U2Fusion
also showed good performance. The subjective and objective
evaluations in Figures 4, 5 showed that the proposed method is
effective in the phantom experiment.

3.2 Animal experimental

This article performed vivo experiments using mouse ears to
validate the proposed method further. The mouse (C57BL/6,

FIGURE 4
Subjective evaluation of phantom experiments.

Frontiers in Physics frontiersin.org07

Wang et al. 10.3389/fphy.2024.1397732

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2024.1397732


9 weeks old, and 21 g in weight) was anesthetized with 0.12 mL of
chloral hydrate at a concentration of 0.15 g/mL. In the experiment,
the EZL increased the focal length by 2.4 mm each time to acquire
FFOA images, the magnification of the lens was 1.15, and the camera
exposure time and frame rate were 0.45 ms and 42 fps, respectively.
For a fair comparison, the experimental data of the first groupmouse
ear is from literature [48], and the second group mouse ear is from
literature [63].

Figures 6, 7 show the experimental results of two different
groups of mouse ears. The DOF was expanded from 0.8 to
~3.3 mm. Figure 6 presents the first group of mouse ear
experiments, and the FFOA images A and B are mouse ears
with different DOFs; the focused regions are marked with red and
blue boxes. This article boxed some blood vessels with different
thicknesses in FFOA image A and one complete vascular vein in
FFOA image B. The fusion results of each method contain three

FIGURE 5
Objective evaluation of phantom experiments.

FIGURE 6
Subjective evaluation of the first of group mouse ear experiments.
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images: the first image is the fused image, and the second and
third images are the difference images. A comparison of the red-
boxed regions shows that the residual information from the
boxed regions of the proposed method and U2Fusion is
smaller, which indicates that the GFD scheme was able to
retain more information from the source image for different
vessel thicknesses. Figure 7 shows the second group of mouse ear
experiments. Here, the boxed region in the FFOA image A
contains relatively more background tissue and fewer
capillaries, and the boxed region in the FFOA image B
contains rich capillary information; the other images in
Figure 7 were obtained in the same manner as those in

Figure 6. The blue zoomed area shows that there are cloud-
like residuals in the fusion results of CPFA, IFCNN, and
U2Fusion, suggesting that the GFD scheme can be effective
for regions with fewer capillaries and more background tissue.
In the difference images of the red focus region, CPFA, IFCNN,
and U2Fusion show more evident vascular veins and lose some
important contour edge details of the source images. NSSR also
has a large number of residuals, demonstrating that NSSR poorly
preserves the edge details of capillaries. The GFD scheme retains
only a few residual information.

To evaluate the fusion results, QMI, QNCIE, QG, QM, QP, and
VIF were used to evaluate nine fusions. Figures 8, 9 show the

FIGURE 7
Subjective evaluation of the second group mouse ear experiments.

FIGURE 8
Objective evaluation of the first of group mouse ear.
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metric values for the nine fusions of the ears of the first and
second groups of mice, respectively. Table 1 lists the metric
average values of the nine fusions; the optimal values are
mentioned in bold font. Figures 8, 9 show that metrics QMI,
QNCIE, QG, QM, and QP, than the other methods, and IFCNN and
NSSR showed better performance, whereas CPFA and U2Fusion
performed poorly. In terms of the VIF, the proposed method and
NSSR showed excellent performance. Table 1 shows that the
proposed method has the highest average value in terms of
objective evaluation of the mouse ear in the first and second
groups, and the NSSR also has good performance compared with
other methods.

3.3 Fusion on the public dataset

To demonstrate the generalization of the proposed method, the
Lytro dataset [64], which contains 20 pairs of multi-focus images, was
used to validate the effectiveness of the method. The fusion results
produced by the differentmethods on a set of Lytro dataset are shown in
Figure 10. The average values of the objective evaluation of the Lytro
dataset and Figure 10 are presented in Table 2.

In Figure 10, images A and B are produced by DOF in the same
scene, which contains a motion field and a metal grid. The fusion
result of each method consists of a fusion image and two difference
images. The difference images were produced from the fusion result

FIGURE 9
Objective evaluation of second of group mouse ear.

TABLE 1 Objective evaluation of mouse ears.

Experimental data Method QMI QNCIE QG QM Qp VIF

First set of images CPFA 0.7385 0.8156 0.4945 0.5013 0.5195 0.4536

IFCNN 0.7373 0.8159 0.5444 0.5774 0.5417 0.4435

U2Fusion 0.7274 0.8133 0.4372 0.4333 0.6270 0.4486

NSSR 0.7650 0.8160 0.5319 0.9749 0.6032 0.5588

Proposed 0.9231 0.8233 0.6189 1.6765 0.7082 0.5613

Second set of images CPFA 0.9282 0.8307 0.7092 1.1195 0.8515 0.6550

IFCNN 0.7791 0.8219 0.6839 0.5273 0.7985 0.5513

U2Fusion 0.7153 0.8186 0.6328 0.5331 0.8023 0.4987

NSSR 0.9203 0.8301 0.7081 1.2126 0.8602 0.6727

Proposed 1.1517 0.8514 0.7254 1.6541 0.9338 0.6730

The best results are in Bold.
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and original images A and B. Regions in the difference map
containing focus and out-of-focus information were selected and
enlarged in the middle of the two difference maps. From the overall
fusion results, all methods can retain the brightness and color
information in the source image satisfactorily; however, the fused
images produced by NSSR and the proposed method achieve
satisfactory results in terms of sharpness. The different methods
showed a distinct gap in the difference images. In the difference
images of CPFA, IFCCN, U2Fusion, and NSSR, residuals appeared
in the focus region, indicating that these methods introduce
information concerning the out-of-focus region in the fusion
results. Particularly in the difference images NSSR-A and NSSR-
B, there is almost no metal lattice shown in the out-of-focus images;
this is attributable to the limited ability of the dictionary to

characterize the image in the SR methods. In a comprehensive
comparison, the proposed method achieved satisfactory subjective
results in the subjective evaluation. In the objective evaluation
results of the Lytro dataset, the proposed method achieved the
best rankings in the metrics QMI, QNCIE, QG, QM and QP, although
the value of the VIF was lower than that of NSSR, as shown in
Figure 10. Considered together, the proposed method indicators
were the best in the overall objective evaluation.

Based on the above discussion, this article confirmed the validity
and stability of the proposed program. First, this is because, in
contrast to CPFA, NSCT does not perform upsampling and
downsampling. Thus, it reduces the redundancy between data in
different layers and reduces the possibility of losing high-frequency
detailed information in upsampling and downsampling, which may

FIGURE 10
Subjective evaluation of the Lytro dataset.

TABLE 2 Objective evaluation of the Lytro dataset.

Experimental data Method QMI QNCIE QG QM Qp VIF

Objective evaluation of Figure 10 CPFA 0.9017 0.8306 0.6279 1.1729 0.8019 0.4652

IFCNN 0.9545 0.8330 0.6377 0.8563 0.7984 0.4847

U2Fusion 0.8144 0.8252 0.5614 0.5253 0.7474 0.4247

NSSR 0.9289 0.8312 0.6216 1.6815 0.7788 0.5234

Proposed 1.0943 0.8437 0.6719 2.1190 0.8100 0.5192

Average evaluation values of Lytro dataset CPFA 0.9089 0.8286 0.6601 1.2671 0.8032 0.5086

IFCNN 0.9377 0.8298 0.6628 0.9471 0.8178 0.5225

U2Fusion 0.7989 0.8231 0.5601 0.4699 0.7272 0.4361

NSSR 0.9493 0.8305 0.6869 1.7788 0.8183 0.5517

Proposed 1.1157 0.8406 0.7088 2.1405 0.8329 0.5634

The best results are in Bold.
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blur the fused images in the reconstruction process. Second, the
NSCT can extract more accurate directional information to better
represent image information. Finally, different fusion rules were
adopted for different coefficients separately, which can stably retain
the source image information. The proposed method could have
potential applications in optical angiography experiments to
extend the DOF.

3.4 Discussion on time efficiency

In this section, the time efficiency of the proposed method will
be compared with other methods on grayscale images (size 710 ×
620). As summarized in Table 3, the NSSR method takes the longest
time because it uses a dictionary for the SR of the image. In contrast,
the CPFA has the shortest time because of the fast contrast pyramid
construction process and the simple fusion rules used. The
computational efficiencies of the deep learning methods IFCNN
and U2Fusion were relatively high because they use pre-trained
models. In terms of the time required, proposed method ranked
fourth; this is attributable to the large amount of time spent on the
NSCT decomposition and the relative complexity of the
computation of the fusion rule. The speed of proposed method
may not be the highest, but its high performance makes it effective.
Additionally, optimizing the underlying code and utilizing tools
such as GPUs and C++ holds the potential to significantly reduce the
execution time of proposedmethod, which will enable the method to
meet the requirements of a wider range of applications.

4 Conclusion

Blood microcirculation information is essential for biological
research. This article developed a GFD method to solve the
defocusing problems by extending the DOF. FFOA images with
different DOFs were obtained using the AIFM effect; subsequently,
the DOF was extended using the proposed fusion method. The
proposed fusion methodology consists of three steps. First, the
NSCT decomposes the FFOA images into LFC and HFDCs. GFD
rules are employed to fuse the LFC and HFDCs, and the final fused
images are obtained by performing INSCT. Subjective visual
comparison and objective assessment in the experiments can
certify the validity and stability of the proposed scheme.
Experimental results show that the proposed method can solve
the FFOA scattering problem biological samples due to surface
and thickness inhomogeneity, and has the potential applications in
optical angiography experiments; notably, it provides effective
technical support for target identification and tracking.

Although the proposed GFD method can obtain high-resolution
blood flow images by extending the DOF, there are some limitations.
First, the EZL has a limited focusing speed, resulting in the inability to
image in real time. Second, the decomposition level of NSP and

decomposition direction of NSDFB in the NSCT must be set using
artificial empirical values, which increases the uncertainty of the fusion
effect; moreover, the computational efficiency of the GFD needs to be
refined. Finally, the completed FFOA image must be registered to
reduce artifacts from the sample jitter in the fused image. In future
work, the designed algorithm will be improved to enhance the
robustness of fusing noise-disturbing and misregistered images.
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TABLE 3 Running time of different methods.

Methods CPFA IFCNN U2Fusion NSSR Proposed

Time/s 0.08 0.41 0.36 76.46 4.32
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