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Considerable evidence shows that the heavy fermion material UTe2 is a spin-
triplet superconductor, possibly manifesting time-reversal symmetry breaking, as
measured by Kerr effect below the critical temperature, in some samples. Such
signals can arise due to a chiral orbital state or possible nonunitary pairing.
Although experiments at low temperatures appear to be consistent with point
nodes in the spectral gap, the detailed form of the order parameter and even the
nodal positions are not yet determined. Thermal conductivity measurements can
extend to quite low temperatures, and varying the heat current direction should
be able to provide information on the order parameter structure. Here, we derive
a general expression for the thermal conductivity of a spin-triplet superconductor
and use it to compare the low-temperature behavior of various states
proposed for UTe2.
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1 Introduction

The uranium-based superconductor UTe2 has stimulated a large number of
experimental and theoretical studies, initially because of its apparent role as a
paramagnetic end point of a family of ferromagnetic superconductors [1–3] and later as
evidence for spin-triplet superconductivity accumulated. The nuclear magnetic resonance
(NMR) Knight shift measurements on the earlier samples did not show any change in the
superconducting state [4], although recent Knight shift measurements on high-quality
samples show a small reduction along all three axes [5]. Both measurements support
spin–triplet pairing; however, the spin structure of Cooper pairs remains unclear. Another
piece of evidence that indicates spin–triplet pairing is the size of the upper critical field Hc2

that exceeds the Pauli limit for all field directions [1, 6]. Measured power–law temperature
dependence in NMR relaxation, specific heat [1], and thermal conductivity [7, 8] was found
to be consistent with point nodes, as expected for a triplet superconductor in a system with
strong spin–orbit coupling (SOC) [9–11]. Finally, a reentrant superconducting phase was
shown to be stabilized at high magnetic fields [12].

A second set of measurements relevant to the nature of the superconducting state
purports to exhibit evidence for time-reversal symmetry breaking (TRSB) below Tc,
suggesting that UTe2 may support the long-sought chiral p-wave state that may serve
as a quantum computing platform [13–17]. Initially, the polar Kerr effect [18] experiments
suggested that TRSB occurred in the superconductor, implying the existence of a
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multicomponent spin-triplet order parameter. According to group
theoretical classifications of the one-dimensional (1D) irreducible
representations (irreps) allowed in orthorhombic symmetry, order
parameters corresponding to single irreps must be unitary triplet
states, meaning that any TRSB must arise from a nonunitary
multicomponent state. Such combinations of 1D representations
were discussed intensively, particularly because a double specific
heat transition was sometimes observed in early samples, recalling
the specific heat experiments in multicomponent UPt3.

More recently, measurements of a new generation of high-
quality UTe2 crystals grown in molten salt flux have challenged
this characterization of UTe2 as a chiral triplet state breaking time-
reversal symmetry (TRS). The Kerr effect was observed in a sample
showing two specific heat jumps, but as the quality of the samples
improved, only a single transition was observed [19, 20]. A recent
investigation of the Kerr effect on both the old- and new-generation
UTe2 single crystals displaying a single specific heat jump found no
evidence for TRSB superconductivity [21]. Similarly, muon spin
relaxation (μSR) measurements of the molten salt flux-grown
samples found no evidence of TRSB [22]. Finally, sound velocity
changes across Tc [23] and recent NMR Knight shift measurements
on similar samples [5] both point to a single-component, odd parity-
order parameter, i.e., inconsistent with the previous hypothesis of
nonunitary pairing.

The thermal conductivity κ(T) is an important probe of the gap
structure of unconventional superconductors, reflecting the ability
of the superconductor to carry heat current in various directions.
The theory of thermal conductivity in unitary triplet
superconductors is quite similar to the well-known theory
developed for singlet superconductors [24, 25]. Most of the
popular model triplet states in the literature, including the 3He-A
phase, belong to this class. In that case, the triplet quasiparticle
energies are Ek �

����������
ξ2k + |d(k)|2

√
, where d(k) is the triplet-order

parameter vector defining its structure in spin space via
Δσσ′ � [d(k) · σ(iσy)]σσ′. Here, σ is the Pauli vector in the spin
space spanned by the Pauli matrices σx, σy, and σz. Since the thermal
current response depends only on the quasiparticle energies, the
same expressions can be used for triplet superconductors [26–28]
with |Δ(k)|2 replaced by |d(k)|2. As shown below, however, in the
nonunitary state, additional terms involving the spin moment q ≡
id(k) ×d*(k) carried by quasiparticles of momentum k occur in both
the quasiparticle energies and the weights of scattering processes.
Furthermore, in nonunitary triplet superconductors, the zeros of
|d(k)|2 differ from those of Ek, even when k is on the Fermi surface
(“spectral nodes”). This distinction may be important; it was
suggested by Ishihara et al. [29] that in UTe2, complex linear
combinations of 1D irreducible representations could support
spectral nodes pointing in generic directions in the orthorhombic
Brillouin zone and thereby explain early experiments exhibiting
TRSB and relative isotropy of the low-temperature penetration
depth. On the other hand, order parameters corresponding to a
single 1D irrep must be real, with nodes along high-symmetry axes.

In this paper, we derive a general form of the thermal
conductivity of a triplet superconductor in the presence of
nonmagnetic pointlike impurities and evaluate it for various
types of triplet states that have been proposed for UTe2. The aim
is to see whether there are qualitative distinctions between the
thermal conductivity temperature and heat current direction

dependence of unitary and nonunitary states and whether or not
predictions of low-temperature behavior can be used, by
comparison with experiments, to identify the ground state of UTe2.

2 Model and formalism

2.1 Superconducting state

In a general triplet superconductor, the spin structure of the
superconducting order parameter is constrained by the underlying
crystal symmetries. The structure of the UTe2 crystals corresponds
to the orthorhombic point group D2h, and the symmetry of the odd-
parity pairing states can be deduced according to the irreducible
representations of the D2h point group [30–32]. Table 1 shows the
odd-parity triplet superconducting states considered in this article.
Here, we do not consider the even-parity states for the D2h point
group, and we further assume strong SOC due to heavy atoms like U
and Te. Due to strong SOC, orbital and spin degrees of freedom do
not transform independently; instead, each space group rotation
involves a rotation in spin and spatial spaces of the order parameter.
In the weak SOC limit, the odd-parity states for the D2h point group
come with line nodes that are not consistent with experimental
measurements.

The d-vector is real for the superconducting states listed in
Table 1; hence, these states preserve TRS. These states are unitary
triplet states, i.e., Δ̂†Δ̂∝ 1̂. We denote a 2 × 2 matrix in the spin
space with and a 4 × 4 matrix in the Nambu-spin space with . A
TRSB state is not possible with a single-component order parameter,
noting that the D2h group has only one-dimensional irreducible
representations. We construct the TRSB superconducting state with
a combination of two irreducible representations, and all such
possible combinations are shown in Table 2. In principle, a
combination of two different irreducible representations involves
six real constants; however, we introduce a single-parameter model
for the TRSB states. The effective d-vector is (d1 + ird2)/

�����
1 + r2

√
,

where r is the mixing parameter that determines the relative strength
of the individual order parameter. The individual d-vectors are listed
in Table 1 with all the coefficients pi=1,2..3 set to unity.

In the Nambu-spin basis, the mean field Hamiltonian reads

�H � ξkσ0 iΔ0 d · σ( )σy
−iΔ0σy d* · σ( ) −ξkσ0( ), (1)

where ξk is the electronic dispersion, Δ0 is the superconducting gap
energy scale, and σ0 is the identity matrix in the spin space.We adopt
a model where the electronic dispersion reads

TABLE 1 List of possible spin-triplet superconducting states for an
orthorhombic crystal with strong spin–orbit coupling. Here, pi=1,..,3 are
constants, and 8pi ∈ R.

Γ Gap function d(k) Nodes

A1u (p1kx, p2ky, p3kz) Accidental

B1u (p1ky, p2kx, p3kxkykz) z-axis

B2u (p1kz, p2kxkykz, p3kx) y-axis

B3u (p1kxkykz, p2kz, p3ky) x-axis
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ξk � Z2k2x
2ma

+ Z2k2y
2mb

− μ − 2t⊥ cos kz, (2)

where ma/b is the effective masses along x̂/ŷ directions, t⊥ is the
hopping energy that controls the ẑ velocity, and μ is the chemical
potential. We further assume that t⊥≪ μ. An alternate dispersion
with a closed Fermi surface is considered in the Supplementary
Material. The bare Green’s function is

�G0 � �1ω − �H( )−1 � Ĝ11 Ĝ12

Ĝ21 Ĝ22
( ). (3)

Here, ω is the quasiparticle energy. The Matsubara Green’s function
can be obtained by ω→ iωn. The 2 × 2 matrices in the spin space are

Ĝ11 � ω + ξ( )
D

ω2 − ξ2 − Δ2
0|d|2( )σ0 + Δ2

0q · σ[ ], (4)

Ĝ12 � ω2 − ξ2 − Δ2
0|d|2( )σ0 + Δ2

0q · σ[ ] iΔ0 d · σ( )σy
D

, (5)

Ĝ21 � − ω2 − ξ2 − Δ2
0|d|2( )σ0 + Δ2

0q · σT[ ]Δ0iσy d* · σ( )
D

, (6)

Ĝ22 � ω − ξ( )
D

ω2 − ξ2 − Δ2
0|d|2( )σ0 + Δ2

0q · σT[ ]. (7)

Here, q = i (d ×d*), and the denominator D is

D � ω2 − ξ2 − Δ2
0|d|2( )2 − Δ4

0|q|2 � ξ2 − ω2 + Δ2
+( ) ξ2 − ω2 + Δ2

−( ).
(8)

Here, we introduce Δ2
± � Δ2

0(|d|2 ±|q|). For the unitary case, q = 0;
therefore, there is only a single energy scale. In contrast, for the TRSB
nonunitary states, q ≠ 0, which leads to non-degenerate excitation
energies. For single-component order parameters, q vanishes. However,
for a mixture of multiple irreducible representations, q remains finite,
and it can be interpreted as the spin moment of the Cooper pairs. The
average of q over the Fermi surface may or may not vanish. The
nonunitary states can therefore be further divided into anti-
ferromagnetic (AF) and ferromagnetic (FM) states, where the

TABLE 2 Six possible mixed IR states.

Classification d(k) Cylindrical FS Spherical FS

r Nnodes r Nnodes

Antiferromagnetic nonunitary A1u + irB1u r < 1 0 r < 1 0

r = 1 4 (xy-plane) r = 1 4 (xy-plane)

1< r≤
�
2

√
8 (xz- and yz-planes) r > 1 8 (xz- and yz-planes)

r>
�
2

√
0

A1u + irB2u r < 1 0 r < 1 0

r = 1 2 (x-axis) r = 1 4 (xz-plane)

1< r≤
�
2

√
4 (xy-plane) r > 1 8 (xy- and yz-planes)

r>
�
2

√
8 (xy- and yz-planes)

A1u + irB3u r < 1 0 r < 1 0

r = 1 2 (y-axis) r = 1 4 (yz-plane)

1< r≤
�
2

√
4 (xy-plane) r > 1 8 (xy- and xz-planes)

r>
�
2

√
8 (xy- and xz-planes)

Ferromagnetic nonunitary B1u + irB2u (x̂ spin moment) r< 1�
2

√ 0 r < 1 4 (xz-plane)

1�
2

√ ≤ r< 1 4 (xz-plane) r = 1 2 (x-axis)

r = 1 2 x-axis r > 1 4 (xy-plane)

r > 1 4 (xy-plane)

B1u + irB3u (ŷ spin moment) r< 1�
2

√ 0 r < 1 4 (yz-plane)

1�
2

√ ≤ r< 1 4 (yz-plane) r = 1 2 (y-axis)

r = 1 2 (y-axis) r > 1 4 (xy-plane)

r > 1 4 (xy-plane)

B2u + irB3u (ẑ spin moment) r≤ 1�
2

√ 4 (yz-plane) r < 1 4 (yz-plane)

1�
2

√ < r<
�
2

√
0 r = 1 2 (z-axis)

r≥
�
2

√
4 (xz-plane) r > 1 4 (xz-plane)
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average of q vanishes over the Fermi surface for the former and remains
finite for the latter [9]. The six possible nonunitary states are shown in
Table 2, with the possibility of nodes on a spherical or a cylindrical
Fermi surface open along the ẑ axis. For a cylindrical Fermi surface, we
adopt cylindrical coordinates with kz dependence of the gap functions
replacedwith sin (kzd/2), where d is the z-axis. The factor of 1/2 is added
to ensure only a single pair of point nodes in the first Brillouin zone in
the unitary limit. However, this does not have any qualitative effect on
our results.

2.2 Impurity scattering and
thermal transport

In order to calculate the thermal conductivity, we need to
include the effect of impurity scattering that dominates all other
relaxation mechanisms at low temperatures. We consider elastic
impurity scattering due to pointlike defects and include its effect
through a disorder-averaged self-energy. The impurity self-
energy is calculated within the self-consistent T-matrix
approximation. The momentum-integrated Green’s function
ĝ has both vector and scalar components for the normal
Green’s functions:

ĝ11 � πN0 g0 + g · σ( ), (9)
ĝ22 � πN0 g0 + g · σT( ), (10)

and the anomalous Green’s functions ĝ12 and ĝ21 vanish because the
odd-parity order parameter averages to 0. In Eqs 9, 10, g is directly
related to the Fermi surface average of the spin moment q and
remains finite for the chiral nonunitary states, only. Using these
integrated Green’s functions, we can write the T-matrix self-energy
for the non-magnetic impurities as

�Σ � �τ3 · Σ3 + Σ3 · σ 0
0 Σ3 + Σ3 · σT( )

+�τ0 · Σ0 + Σ · σ 0
0 Σ0 + Σ · σT( ), (11)

Σ3 � Γu
cot δs cot2δs − g2

0 + g · g( )[ ]
Dimp

, (12)

Σ3 � Γu
2 cot δsg0g

Dimp
, (13)

Σ0 � Γu
g0 cot2δs − g2

0 − g · g( )[ ]
Dimp

, (14)

Σ � Γu
g cot2δs + g2

0 − g · g( )[ ]
Dimp

, (15)

Dimp � cot4δs − 2 cot2δs g2
0 + g · g( ) + g2

0 − g · g( )2, (16)

where δs ≡ tan−1 (πN0Vimp) is the s-wave scattering phase shift; Γu =
nimp/(πN0); and nimp and Vimp are the impurity concentration and
impurity potential, respectively. Here, �τ3 is the Pauli matrix in the
Nambu space. The τ3 component of the self-energy that
renormalizes the electronic dispersion is ignored. It can be
absorbed in the chemical potential. The impurity-dressed Green’s
function reads

�G
−1 � �G

−1
0 − �Σ � ~ω − ξσ0 − Σ · σ −Δ̂

−Δ̂†
~ω + ξσ0 − Σ · σT( ),

�G � Ĝ11 Ĝ12

Ĝ21 Ĝ22
( ). (17)

Here, impurity-renormalized ~ω � ω − Σ0, which is obtained self-
consistently. Unlike unitary superconductors, the impurity-dressed
nonunitary Green’s function acquires a different structure from that
of the bare Green’s function, in particular the structure in spin space
for the normal component. The individual components of the
Green’s function �G are

Ĝ11 � L0 + L1 · σ
~D

, (18)

Ĝ22 � L0 ξ → − ξ( ) + L1 ξ → − ξ( ) · σT

~D
, (19)

Ĝ12 � [2ξ Σ · d( ) + ~ω2 − ξ2 − Δ2
0|d|2 + Σ · Σ( )

d · σ + iΔ2
0 q × d( ) · σ − 2 Σ · d( )Σ · σ

+2i~ω Σ × d( ) · σ]iσyΔ0

~D
, (20)

Ĝ21 � [ − 2ξΣ · d* + ~ω2 − ξ2 − Δ2
0|d|2 + Σ · Σ( )d* · σT

−iΔ2
0 q × d*( ) · σT − 2Σ · d*Σ · σT

−2i~ω Σ × d*( ) · σT]iσyΔ0

~D
, (21)

where

L0 � X0a0 − Δ2
0b0|d|2 − Δ2

0q · Σ, (22)
L1 � X0 + Δ2

0|d|2( )Σ + Δ2
0b0q − Δ2

0Σ · dd* − Δ2
0Σ · d*d. (23)

Here, a0/b0 � ~ω ∓ ξ, X0 � b20 − Σ · Σ, and the denominator
~D � (ξ2 + ~Q

2
+)(ξ2 + ~Q

2
−), where ~Q± is

~Q
2

± � Δ2
0|d|2 − ~ω2 − Σ · Σ

±
�����������������������������������������
Δ4
0q · q + 4~ω2Σ · Σ + 4Δ2

0 ~ωq · Σ − 4Δ2
0 Σ · d( ) Σ · d*( )

√
. (24)

For the unitary states, the nodes are symmetry-imposed, and for
the nonunitary states, nodes may shift away from the high-
symmetry directions, and their positions remain protected
against disorder as long as the Σ component of the impurity
self-energy vanishes. Σ can be interpreted as impurity-induced
magnetization. For the chiral states, this term remains finite and
gives rise to non-degenerate quasiparticle spin density and, in
principle, can change the nodal positions. Here, the nodes do
not refer to the zeros of the gap or the order parameter; instead,
they are the zeros in the quasiparticle spectrum on the Fermi
surface. In the unitary states, the gap nodes and the spectral
nodes are same, unlike the nonunitary states. There are some
additional triplet terms Σ ·σ and (Σ ×d) ·σ in Eq. 20, which reflect
the impurity-induced modification of the spin structure of the
Cooper pairs. It is worth mentioning that there is an impurity-
induced odd-frequency pairing for the chiral nonunitary states,
which is spin singlet and odd parity in nature.

After obtaining the impurity-dressed Green’s function, we
calculate the electronic thermal conductivity κ using the Kubo
formula that relates the thermal conductivity to the
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heat–current response [24]. We ignore the vertex corrections
and restrict ourselves to the bare thermal–current response
function. The vertex corrections are small in the strong
scattering limit that is focused on in this article [33]. The
diagonal thermal conductivity for a general triplet
superconductor reads

κii
T

� ∫∞

−∞
dω

ω2

T2
−dnF ω( )

dω
( )

〈N0v
2
Fi

−c1c4 + c2c3( ) + c3b1 + c1b2 + b3 −c3 + c1c2( )/c4
c23 + c21c4 − c1c2c3( ) 〉FS. (25)

Here, c1 � −2Re( ~Q+ + ~Q−), c2 � | ~Q+|2 + | ~Q−|2 + 4Re( ~Q+)Re( ~Q−),
c3 � −2| ~Q+|2Re( ~Q−) − 2| ~Q−|2Re( ~Q+), and c4 � | ~Q+|2| ~Q−|2, and
the coefficients bi=1,.,3 are

b1 � |~ω|2 − Δ2
0|d|2 + |Σ|2( ) + Re ~Q

2

+ + ~Q
2

−[ ], (26)

b2 � 1
4
| ~Q2

+ + ~Q
2

−|2 + |~ω|2 + |Σ|2 − Δ2
0|d|2( )Re ~Q

2

+ + ~Q
2

−[ ] + 3Δ4
0q · q

+ 4|Σ|2 |~ω|2 + Re ~ω2[ ]( )
− 4Δ2

0 |Σ · d|2 + |Σ · d*|2 + Re Σ · d( ) Σ · d*( )[ ]( )
+ 4|~ω|2Re Σ · Σ[ ] + 4Δ2

0Re ~ωq · Σ* + 2~ωq · Σ[ ],
(27)

b3 � |~ω|2 − Δ2
0|d|2( ) |α+|2 + Δ4

0q · q[ ] − 2Δ4
0q · qRe α+[ ] + Y Σ( ),

(28)
Y Σ( ) � | ~ω2 + Δ2

0|d|2 − Σ · Σ( )|2 − Δ4
0q · q{ }|Σ|2

− 2Δ2
0Re α− − α−*( )~ωq · Σ*[ ]

− 4Δ2
0 |~ω|2 + |Σ|2 − Δ2

0|d|2( )Re ~ωq · Σ*[ ]
+ 2Δ4

0Re |q · Σ|2 − q · Σ( )2 + Σ · Σq · q[ ]
+ 2Δ2

0Re |~ω|2 − ~ω2( ) − |Σ|2 − Σ · Σ( )[ ] |Σ · d|2 + |Σ · d*|2( )
− 4Δ2

0|d|2|~ω|2|Σ|2 + 4Δ2
0Re α+ Σ* · d*( ) Σ* · d( )[ ]

− 4Δ2
0Re ~ω2 − Δ2

0|d|2( )Σ* · Σ*[ ],
(29)

where α± � ~ω2 − Δ2
0|d|2 ± Σ · Σ. The derivation of thermal

conductivity is provided in Supplementary Material. We
calculate the full temperature dependence of thermal
conductivity using the self-consistently determined
superconducting gap using an effective pairing potential to
obtain a single transition temperature (see
Supplementary Material).

3 Results and discussion

3.1 T = 0 limit of the density of states and
thermal conductivity

We start with the single-component states based on four
irreducible representations of the D2h point group symmetry. The
basis functions for these four states are listed in Table 1, where
the A1u state remains gapped unless the coefficient of one of the

basis functions is set to zero. We exclude that possibility and
choose the same coefficients for all three basis functions, and this
choice of coefficients is adopted for the other states as well, which
is a reasonable choice for a qualitative understanding of the low-
energy properties. In principle, it is also possible to generate line
nodes with an appropriate choice of basis function coefficients,
but those possibilities are excluded considering the recent
experimental results on UTe2. Apart from the A1u state, the
B1u state also remains gapped because the open Fermi surface
along the ẑ-axis forbids the nodes for this state. For the B2u and
B3u states, a pair of point nodes exists along the ŷ-axis and x̂-axis,
respectively. Figures 1A–D show the disorder dependence of the
thermal conductivity normalized to the normal state value at the
transition as a function of relative reduction in the transition
temperature δtc ≡ = 1 − Tc/Tc0, where Tc0 is the transition
temperature in the clean limit. For a clean system, δtc = 0, and
δtc reaches unity as the impurity scattering kills
superconductivity. The normalized residual thermal
conductivity κTc/κNT in the zero-temperature limit remains
0 up to a threshold value of disorder Γth for all four states;
this Γth corresponds to a threshold level of Tc suppression δtthc .
This threshold value of disorder depends on the superconducting
gap structure and the strength of the impurity potential [27]. For
the gapped states A1u and B1u, the residual thermal conductivity
remains 0 for slightly higher values of disorder compared to the
other two states B2u and B3u as expected due to the presence of
impurity-induced quasiparticle states near the nodes. The
normalized thermal conductivity remains very isotropic for
the A1u and B1u states. However, for the nodal states, the
residual thermal conductivity is enhanced for thermal current
along the nodal directions. This trend in anisotropy in thermal
conductivity continues even at finite temperatures, as shown in
the temperature evolution of κTc/κNT for the four single-
component states in Figures 1E–H for tan θs = 2 and in
Figures 1I–L for tan θs = 5, which represents the stronger
scatterers. For both impurity strengths, δtc is 0.02. In the
presence of the point nodes, the thermal conductivity shows a
weak maximum at very low temperature along the nodal
direction for the weak scatterers, which disappears as the
scattering rate increases. This is a known behavior for the
superconducting states with point nodes [28], which is not
present for the stronger impurity potentials.

It is useful to examine the density of states (DOS) and the
structure of the low-energy quasiparticle states before discussing
the thermal transport for the nonunitary states. We first report
the average density of states per spin for the nonunitary states on
a cylindrical Fermi surface that is open along the ẑ-axis.
Figure 2A shows the DOS for the A1u + irB2u state, which is a
chiral state, and Figures 2B–D show Δ− for this state. In the
gapped phase (r < 1), this state has minima near the x̂-axis, and a
small gap is visible in the DOS. For r = 1, a pair of point nodes
appear along the x̂-axis, and the low-energy DOS shows ω2

behavior that is expected for linear point nodes. Here, and in
subsequent discussions, a “node” refers to spectral nodes, not the
gap nodes. However, in contrast to a unitary state, the low-energy
quadratic behavior remains confined to a very low energy scale, as
compared to the unitary B3u state. For r > 1, the nodes move away

Frontiers in Physics frontiersin.org05

Mishra et al. 10.3389/fphy.2024.1397524

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2024.1397524


from the x̂-axis, and the positions of four nodes are determined
by tan ϕ � ±

�����
r2 − 1

√
, where ϕ is the polar angle on the cylindrical

Fermi surface. As the mixing parameter r increases, additional
pairs of nodes appear in the yz plane at sin(kz/2) � ± 1/

�����
r2 − 1

√
.

In the r→∞ limit, only two point nodes along the ŷ-axis survive,
as expected for a pure B2u state. The low-energy DOS remains
quadratic in all these cases. For 1≤ r<

�
2

√
, the nodes remain

closer to the x̂-axis, and for r≥
�
2

√
, the nodes move closer to the

ŷ-axis. The A1u + irB3u state also shows similar DOS to the A1u +
irB2u state, but it has a different nodal structure. It has gap
minima in the quasiparticle spectrum near the ŷ-axis, and nodes
appear along the ŷ-axis. For r > 1, a set of four nodes appear near
the ŷ-axis at ϕ � ± cot−1

�����
r2 − 1

√
and move toward the x̂-axis in

the xy-plane as the value of r increases. For r>
�
2

√
, four more

nodes appear at kz � ± 2 sin−1(1/ �����
r2 − 1

√ ) in the xz-plane. Both
these states are chiral and show finite quasiparticle spin density
along ŷ and x̂ directions in the spin space. The last AF nonunitary
state is A1u + irB1u, which is not a chiral state. It has nodes along
the x̂ and ŷ directions for r = 1, a set of four point nodes in the xz-
plane and another set of four point nodes in the yz-plane, where
the kz for the nodal position is determined by
sin(kz/2) � ±

�����
r2 − 1

√
. The DOS shows quadratic behavior at

low energies (see Supplementary Material).
Next, we consider the ferromagnetic nonunitary states on the

cylindrical Fermi surface, which are chiral states with finite Cooper
pair spin moment. Figure 2D shows the DOS for the B1u + irB2u state

along with the Δ− in Figures 2E–F. This state is gapped for r< 1/
�
2

√
,

and a set of four point nodes appear in the yz-plane for 1/
�
2

√
≤ r< 1,

whose positions are determined by sin(kz/2) � r/
�����
1 − r2

√
. For r > 1,

a set of four point nodes appear in the xy-plane at ϕ �
± tan−1

�����
r2 − 1

√
close to the x̂-axis and move toward the ŷ-axis as

r increases. These states show quadratic DOS at low energies. For r =
1, this state shows point nodes along the x̂-axis, but these are the
quadratic point nodes. The first derivative of Δ− vanishes at the
nodes for quadratic or second-order point nodes. This leads to linear
DOS at low energies, as shown in Figure 2D. Similarly, for B1u +
irB3u, a twin pair of quadratic point nodes appear along the ŷ-axis
and shows linear DOS at low energies for r = 1. For 1/

�
2

√
≤ r< 1, four

point nodes appear at sin(kz/2) � ±
�����
1 − r2

√
/r in the yz-plane, and

for r > 1, a set of four point nodes appear in the xy-plane at
cot ϕ � ±

�����
r2 − 1

√
, closer to the ŷ-axis for r ≥ 1, which move toward

the x̂-axis for r ≫ 1. The DOS remains quadratic, as expected. For
the B2u + irB3u state, four point nodes are either located in the yz-
plane at sin(kz/2) � ± r/

�����
1 − r2

√
for r≤ 1/

�
2

√
or in the xz-plane at

sin(kz/2) � ± 1/
�����
r2 − 1

√
for r≥

�
2

√
. These states showω2 behavior in

the low-energy DOS. For 1/
�
2

√
< r<

�
2

√
, a gap exists in the

quasiparticle spectrum due to lack of nodes (see Supplementary
Material). In contrast to the AF nonunitary states on the cylindrical
Fermi surface, the FM nonunitary states can have at most four nodes
and are expected to be more anisotropic.

We now discuss the zero-temperature limit of the thermal
conductivity, which is very sensitive to the gap structure. We

FIGURE 1
Thermal conductivity for the single-component unitary states allowed by theD2h point group. The thermal conductivity normalized to its value at Tc
for the four irreducible representations of theD2h point group shown column-wise for the A1u, B1u, B2u, and B3u representations from (A–D), respectively.
The first row shows the residual thermal conductivity in the zero-temperature limit as a function of relative reduction in the transition temperature δtc.
(E–H) in the second row show κTc/κNT for theweak scatterers with tan θs=2 and for the intermediate-strength scatterers with tan θs= 5 from (I–L) in
the third row. For the temperature dependence, the Tc is reduced by 2% (δtc = 0.02) with respect to the clean limit.
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compare the normalized κTc/TκN along three principal directions,
where the thermal conductivity along a particular direction is
normalized to its normal state value at Tc along that direction. This
suppresses the intrinsic anisotropy present in the electronic structure
and accentuates the effect of order parameter anisotropy. Figures 3A–D
show κTc/TκN in the zero-temperature limit for theA1u + irB1u state as a
function of the relative reduction in the transition temperature δTc. For
a weakly disordered system, κ/T vanishes in the zero-temperature limit,
but as the disorder level increases and crosses Γth, κ/T|T→0 becomes
finite and reaches the normal-state value as the superconductivity
vanishes. For the A1u + irB1u state, κTc/κNT shows isotropic
behavior in the xy-plane. Note that for this state, the nodes are
always along the x̂ and ŷ axes at the same kz value. In contrast, the
B2u + irB3u state shows relatively weaker level anisotropy than a unitary
state. Figures 3E–G show κTc/κNT for the B2u + irB3u state, while
Figure 3H shows κTc/κNT for the unitary B3u state with nodes along the
x̂-axis. As shown in Figure 3E, with nodes in the yz-plane κyy and κzz
exceeding κxx, and this behavior reverses as the nodes move to the
xz-plane for the B2u + irB3u state, as depicted in Figure 3H. As the
value of r increases, the anisotropy also reduces, and for r = 1, the

superconducting state becomes fully isotropic, as shown in
Figure 3F. This is a special case, which has a four-fold
symmetric Δ−, leading to a very isotropic normalized thermal
conductivity along the three principal directions. As r becomes
larger than unity, the κxx starts to dominate.

Next, we look at the zero-temperature limit thermal
conductivity for the A1u + irB2u state for two different
impurity potential strengths. Figures 4A–D show κTc/κNT for
s-wave scattering phase shift tan−1 (2), and panels Figures 4E–H
show κTc/κNT for θs = tan−1 (5). κ/T|T→0 becomes finite above a
threshold disorder level, as in earlier cases. This threshold
scattering rate is smaller for the stronger impurity potentials.
This state has a minimum and maximum along the xz-plane, the
energy gap is small in the yz-plane, and a weak maximum exists
along the ŷ-axis in the xy-plane. This excitation energy spectrum
is reflected in the thermal conductivity. As κ/T becomes finite, the
in-plane anisotropy is very weak with a slightly larger value along
the x̂-axis as long as there is no node in the yz-plane. As the
impurity-induced quasiparticles overcome the minima along the
ŷ-axis, the thermal conductivity along the ŷ-axis starts to

FIGURE 2
Density of states: (A) shows the density of states (DOS) per spin for the A1u+ irB2u state for different values of themixing parameter r. The inset shows
the energy dependence of the DOS at low energies. A dashed line illustrating the DOS for the unitary B3u state is shown for comparison. (B–D) show the
variation in Δ− for different values of r in the xy, xz, and yz-planes, respectively. (E) shows the DOS per spin for the B1u+ irB2u state, and Δ− in the xy, xz, and
yz-planes is shown in panels (F–H), respectively.
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dominate. In the case of eight nodes, with four in the xy-plane
and another four in the yz-plane, the thermal conductivity is
always larger along the ŷ-axis. The ẑ-axis thermal conductivity
remains close to the x̂-axis thermal conductivity. For the A1u +
irB3u state, the thermal conductivity along the x̂-axis and ŷ-axis
shows the same behavior as κyy/T and κxx/T in the A1u + irB2u

state, respectively.
For the B1u + irB3u state, in the gapped phase, i.e., r< 1/

�
2

√
, the

spectral gap on the Fermi surface is small in the yz-plane and near
the ŷ-axis in the xy-plane, which leads to larger κ/T|T→0 along the
ŷ-axis, followed by the ẑ direction, as shown in Figures 4I–M, for
tan θs = 2 and tan θs = 5, respectively. As a set of four nodes appear in
the yz-plane, the relative anisotropy remains the same, as shown in
Figures 4J–N. This state also shows an elusive quadratic node for r =
1 along the ŷ-axis. Unlike the other states with linear point nodes,
for this case, κ/T|T→0 term remains finite along the nodes, and for
other directions, residual thermal conductivity remains 0 below the
threshold disorder level. This state shows linear DOS at low energies,
like superconductors with line nodes. Finally, the nodes appear in
the xy-plane for this state as r exceeds unity and remains closer to the
ŷ-axis, and thermal conductivity along the ŷ-axis becomes
dominant, while the other two directions show very similar κTc/
κNT. As r increases, the in-plane anisotropy decreases, and the x̂-axis
κ increases and becomes stronger along the ŷ direction in the r≫ 1
limit. For the B1u + irB2u state, the in-plane anisotropy found for the
B1u + irB3u state gets interchanged.

3.2 Finite T electronic thermal conductivity

Now, we look at the temperature evolution of the normalized
thermal conductivity for the nonunitary states. At very low

temperatures, the elastic scattering by the impurities is the
main mechanism of relaxation. However, as the temperature
increases, the inelastic scattering also becomes important,
which we discuss in the subsequent section. Apart from the
electron contribution to thermal conductivity, phonon thermal
conductivity can also become significant. Here, we focus on
electronic thermal conductivity and the effect of impurity
scattering on it and the effect of underlying spectral nodes on
the anisotropy in the thermal conductivity. As shown in Figure 1,
the thermal conductivity shows a weak maximum as a function of
temperature at very low temperatures along the nodal directions.
There is no evidence for such a feature in the experimental
measurements [7, 34]; therefore, we set θs = tan−1 (5) for the
rest of our discussion (see Supplementary Material for the weaker
impurity scatterers). We first consider the A1u + irB1u state,
which shows very isotropic residual thermal conductivity, and
the thermal conductivity remains isotropic as a function of
temperature, as shown in Figures 5A–D. For the clean system
with δtc = 0.02, at very low temperatures, the thermal
conductivity remains negligibly small, and as the temperature
increases, κ/T increases T2 at very low temperatures. This
behavior is observed for both nodal and gapped systems. Note
that in superconductors with point nodes, there are very few
states available at the Fermi energy, as shown in Figure 2. For
dirtier systems such as δtc = 0.15, there are sufficient quasiparticle
states at the Fermi level to provide nonzero thermal conductivity,
which is depicted in Figures 5E–H. At low temperatures, κ/T
remains independent of temperature, and as it increases, once
more, quasiparticles become relevant for transport as the
temperature increases.

Next, we consider the A1u + irB2u state, which shows
enhanced thermal conductivity along the ŷ-axis. The zero-

FIGURE 3
Residual thermal conductivity. Zero-temperature limit κTc/κNT for the A1u + irB1u in (A–D) and for the B2u + irB3u state in (E–G) for various values of
mixing parameter r. (H) shows κTc/κNT|T→0 for the unitary B3u state. The s-wave scattering phase shift is θs = tan−1 (2) for all the panels. The number of
nodes Nn is indicated for each case.
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temperature trends in anisotropy continue as the temperature
increases, as shown in Figure 6. For δtc = 0.02, κ/T is close to
0 and increases as temperature increases beyond a critical
value. For the gapped case (r < 1) and for the x̂-axis nodes
(r = 1), κ/T is slightly larger than that in the other two
directions, but as the temperature increases, the other two
directions begin to increase and dominate because the
temperature overcomes the gap minima in the yz-plane. For
r > 1, there are four point nodes that move toward the ŷ axis,
and it is reflected as a larger κ/T along the ŷ-axis. For r>

�
2

√
,

four more nodes in the yz-plane make κ/T along ŷ and ẑ
directions larger than that in the x̂ direction. For dirtier
systems, thermal conductivity becomes finite and T-
independent at very low temperatures, as in the earlier case,

but the anisotropy remains similar to its zero-temperature limit.
For A1u + iB3u, the behavior of x̂ and ŷ directions gets
interchanged (see Supplementary Material).

Next, we consider the B2u + irB3u state, which is one of the FM
nonunitary chiral states. For this state, there are four point nodes
in the yz-plane for r< 1/

�
2

√
, and for r>

�
2

√
, there is a set of four

point nodes in the xz-plane. Figure 7 shows the thermal
conductivity as a function of temperature, and as expected, κ/
T along the nodal directions dominates. For r < 1, the thermal
conductivity is enhanced along the ŷ and ẑ directions, and as r
increases, the system becomes gapped with enhanced thermal
conductivity in the ŷ and ẑ directions, but the anisotropy
reduces. The state r = 1 shows completely isotropic behavior,
and as r exceeds unity, this state shows a x̂-axis-dominated

FIGURE 4
Residual thermal conductivity: (A–H) show κ/T in the zero-temperature limit normalized to κN/T at Tc as a function of relative Tc reduction δtc for the
A1u + irB2u state for different values of the mixing parameter r. The s-wave scattering phase for (A–D) is θs = tan−1 (2) and for panels (E–H) is θs = tan−1 (5).
For the B2u+ irB3u state, κTc/κNT|T→0 is shown for various values of parameter r for the s-wave scattering phase shift θs= tan−1 (2) in (I–L) andwith θs= tan−1

(5) in (M–P). The number of nodes Nn is indicated for each case.
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thermal response, as the nodes reappear in the xz-plane. The
anisotropy remains qualitatively same as the temperature
increases. Finally, we consider the B1u + irB3u state, which is
another possible FM nonunitary state that shows enhanced
thermal conductivity along the ŷ direction, as shown in
Figure 8. Here, the anisotropy changes significantly as the
temperature increases. At low temperatures, the ŷ-axis
dominates due to its vicinity to the point nodes; however, as
the temperature increases, κTc/κNT increases along the x̂
directions. This happens because at lower temperatures, the
lower-energy branch of the quasiparticle excitations

�������
ξ2k + Δ2

−
√

dominates, which has more quasiparticle states along the ŷ
directions, but at higher temperatures, the

�������
ξ2k + Δ2

+
√

branch of
the quasiparticle excitations begins to contribute, which, for this
state, has minima along the x̂-axis. The overall anisotropy for this
state is relatively less compared to other states, except those that
show fully isotropic behavior as a function of temperature or
disorder. For the B1u + irB2u state, κ/T along the x̂ and ŷ
directions gets interchanged by the anisotropy shown by the
B1u + irB3u state.

3.3 Inelastic scattering effects

As mentioned in the previous section, at very low temperatures,
i.e., T ≪ Tc, the elastic scattering from impurities is the only
mechanism that determines the scattering rate. However, at

higher temperature, inelastic scattering from a bosonic mode
is possible. We consider a simple scenario where there is a
dispersionless bosonic mode that couples with the fermions
with an effective coupling constant gfb. We further assume
that the coupling does not depend on the spin degree of
freedom of the fermion. The lowest-order self-energy for the
fermions reads

Σin iωn, k( ) � g2
fbT∑

m,q

G iωn − iΩm, k − q( )D iΩm, q( ). (30)

Here, D is the bosonic Green’s function and ωn and Ωm are the
fermionic and bosonic Matsubara frequencies, respectively.
After performing the Matsubara summation, we obtain

Σin ω( ) � −g
2
fb

2π
∫∞

−∞
dx∫∞

−∞
dy

N y( )D′′ x( )
x + y − ω − iη

coth βx/2( ) + tanh βy/2( )( ).
(31)

Here, the real part of the self-energy contributes to mass
renormalization, and the imaginary part modifies the scattering
rate, which is a function of quasiparticle energy and temperature.
Noting that UTe2 has very high effective mass, we ignore the real
part of the self-energy. The imaginary part of the self-energy is

Σ′′in ω( ) � −g
2
fb

2
∫∞

−∞
dxN ω − x( )D′′ x( )

× coth βx/2( ) + tanh β ω − x( )/2( )( ), (32)

FIGURE 5
A1u + irB1u: Thermal conductivity normalized to its normal state value at Tc for A1u + irB1u shown as a function of temperature normalized to Tc for
scatterers with tan θs = 5 for δtc = 0.02 from (A–D) and for δtc = 0.15 in (E–H) for various values of mixing parameter r.
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where D′′(x) ≡ x/(x2 +Ω2
0) is the bosonic DOS and Ω0 is the

characteristic energy scale associated with the bosonic mode. In
the context of UTe2, we expect Ω0 ≫ Tc; therefore, we approximate
the bosonic DOS as D′′(x) ≈ x/Ω2

0. In the zero-temperature limit,
Σ′′in ∝ωn+2, where the DOS for the superconducting state behaves
like ωn at low energies. For linear point nodes, Σ′′in ∝ω4, and for
quadratic point nodes or line nodes, it behaves like ω3. Similarly, in
the static limit (ω → 0), the imaginary part of the inelastic self-
energy reads

Σ′′in ω � 0, T( ) � −2g2
fb∫∞

0
dx

N x( )D′′ x( )
sinh βx

. (33)

Since the thermal response integrand is peaked at ω = 0, we only
retain the temperature dependence of the inelastic self-energy at
ω = 0. At very low temperatures, the inelastic scattering rate
behaves likes T4 for the point nodes and T3 for the line nodes in
the static limit. This is sufficient to understand the qualitative
effect of inelastic scattering. The prefactor in Eq. 33 is fixed by the
value of the inelastic scattering rate at Tc.

Figure 9 shows the effect of inelastic scattering on the
electronic thermal conductivity. We show the results for two
cases as the rest of the cases are qualitatively similar. The first row
of Figures 9A–D shows the normalized thermal conductivity for
the A1u + irB2u state, which shows enhanced thermal conductivity
along the ŷ-axis. Note that the normal state thermal conductivity

includes the inelastic scattering. We fixed the value of r at 1.2,
which leads to four point nodes in the xy-plane. The primary
effect of inelastic scattering is the formation of a peak below Tc.
This peak appears first for the directions that have larger thermal
conductivity, as shown in Figure 9A for δ = 0.02. As the system
becomes dirtier, the peaks get smeared, as depicted in Figure 9B
for δtc = 0.15. If the strength of inelastic scattering increases, the
peaks also strengthen, as shown in Figure 9C, and it may survive
in dirtier systems, as illustrated in Figure 9D. Similar trends
continue for the other states as well. Figures 9E–H show the
normalized thermal conductivity for the B1u + irB3u state, which
shows the same qualitative behavior as a function of disorder and
inelastic scattering strength. However, this state shows a
nonmonotonic variation of anisotropy, and the peaks for
different directions remain quite close to each other.

4 Summary and concluding remarks

We studied low-energy quasiparticle excitations and thermal
transport for the single-component and two-component pairing
states allowed by the irreducible representations of the D2h point
group symmetry, which is relevant for the orthorhombic UTe2
crystals. Since D2h has only one-dimensional representations,
the four single-component pairing states corresponding to the

FIGURE 6
A1u + irB2u: Thermal conductivity normalized to its normal state value at Tc for A1u + irB2u shown as a function of temperature normalized to Tc for
scatterers with tan θs = 5 for δtc = 0.02 from (A–D) and for δtc = 0.15 in (E–H) for various values of mixing parameter r. The dashed lines show the
normalized thermal conductivities for the B2u state with the same impurity parameters.

Frontiers in Physics frontiersin.org11

Mishra et al. 10.3389/fphy.2024.1397524

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2024.1397524


FIGURE 7
B2u+ irB3u:Thermal conductivity normalized to its normal state value atTc forB2u+ irB3u shownas a functionof temperature normalized toTc for scatterers
with tanθs = 5 for δtc = 0.02 from (A–C) and for δtc = 0.15 in (D–F) for various values of mixing parameter r. The dashed lines show the normalized thermal
conductivities for the B2u state in (A,D) and for the B3u state in (C,F). The impurity parameters are the same for the single-component superconducting states.

FIGURE 8
B1u + irB3u: Thermal conductivity normalized to its normal state value at Tc for B1u + irB3u shown as a function of temperature normalized to Tc for
scatterers with tan θs = 5 for δtc = 0.02 from (A–D) and for δtc = 0.15 in (E–H) for various values of mixing parameter r. The dashed lines show the
normalized thermal conductivities for the B2u state with same impurity parameters.
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irreducible representations cannot break the time-reversal
symmetry and describe unitary triplet pairing states.
Therefore, we also considered the pairing states that are
combinations of two of the four irreducible representations
using a single mixing parameter r. We examined all six two-
component superconducting states as a function of r on a
cylindrical Fermi surface, which describe either gapped states
or states with spectral point nodes depending on the value of the
mixing parameter. The spectral point nodes are not necessarily
the zeros of order parameters, but they are the points on the
Fermi surface hosting quasiparticle excitations. The spectral
nodes are identical to the gap nodes in the case of single-
component or unitary states. These six states can be divided
into AF or FM categories depending on the Fermi surface
average of the Cooper pair spin moment, which vanishes for
the AF states and remains finite for the FM states. Except for the
A1u + irB1u state, all other states are chiral on the cylindrical
Fermi surface as the average angular momentum of the Cooper
pairs remains finite.

After introducing the single-parameter model for the two-
component states, we calculated the effect of impurity scattering
within the self-consistent T-matrix approximation. One of the
new findings is the spin-dependent impurity scattering rate for
the chiral states. This happens due to finite quasiparticle spin
densities for the chiral states. This can be interpreted as
accumulation of magnetization near the impurity sites and

this leads to qualitative changes in the quasiparticle excitation
spectrum. For the two-component states, the nodes are
accidental, not symmetry-imposed, like the single-component
states, and the spin-dependent self-energy or the impurity-
pinned magnetization can change the position of the spectral
nodes. In principle, the removal of spectral point nodes by
impurity scattering is possible in the chiral superconducting
states, but we have not found such an effect for the cases that
we considered. Next, we calculate the thermal conductivity using
the Kubo formula for the thermal–current response function.
Due to spin-dependent impurity self-energies, the thermal
conductivity significantly differs from the thermal conductivity
reported for the unitary states. We examine the thermal transport
for all the single- and double-component states that are possible
for the D2h point group.

We have considered a single band with a cylindrical Fermi
surface in our theoretical calculations. The quantum oscillation
experiment reports two cylindrical Fermi surfaces, where one is
an electron-like and the other is a hole-like Fermi surface with
comparable effective masses [35]. However, we expect our
analysis to be valid for a two-band system as well because
interband scattering is always pair-breaking due to odd-parity
order parameters. The impurity will renormalize the
quasiparticle energies, and there will not be any off-diagonal
impurity self-energy. Therefore, multiple bands will lead to a
higher impurity scattering rate; this should not affect the

FIGURE 9
Effect of inelastic scattering: (A–D) show the temperature dependence of normalized thermal conductivity for the A1u + irB2u state for r = 1.2. (E–H)
show the temperature dependence of the normalized thermal conductivity for the B1u + irB3u state. The imaginary part of the inelastic self energy at
T � Tc0 and relative reduction in Tc are indicated in each panel. For brevity, we denote Σ′′in(T � Tc0) as Σ′′T�Tc0 The s-wave scattering phase is tan−1 (5). The
relative reduction in Tc is indicated in each of the panels.
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anisotropy of the thermal transport. There are also some
speculations about a closed Fermi surface near the Z point;
therefore, we also considered a spherical Fermi surface (see
Supplementary Material). The key qualitative difference is the
possibility of nodes along the ẑ-axis and strong thermal
conductivity along that direction; however, there are no
experimental data available to support that scenario.

Based on our thermal transport study and some recent
experimental data, we can identify some states that could
possibly describe the gap structure in UTe2. Definitive
conclusions are not possible at this time due to a lack of
sufficient direction-dependent data on the newer samples, but
we can make some qualitative statements and rule out some
states. For the A1u + irB1u state on a cylindrical Fermi surface,
the normalized thermal conductivity shows isotropic behavior
as a function of impurity scattering in the zero-temperature
limit and in its temperature dependence for a fixed disorder
level. The limited data that are available for the thermal
conductivity indicate weak in-plane anisotropy, but not
absolute isotropic behavior [7]. The thermal conductivity
measurements obtained by [34] claim a fully gapped
superconducting state. In contrast, another independent
thermal conductivity measurement obtained by Hayes et al.
shows evidence for point nodes without finding any residual
thermal conductivity in the zero-temperature limit [8].
Therefore, the absence of finite zero-temperature limit
thermal conductivity in high-quality samples is not sufficient
to rule out point nodes. Other probes such as the field
dependence of specific heat suggest a superconducting state
with nodes closer to the ŷ-axis [36]. The superfluid density
measurement indicates stronger low-energy quasiparticle
excitations along the ŷ directions and weakest along the
x̂-axis [29]. The relative anisotropy in the penetration depth
measurements is weaker than that in the single-component
states. We find that the A1u + irB2u, B2u + irB3u state with a
dominant B2u component and the B1u + irB3u state show
stronger quasiparticle excitations along the ŷ-axis. The B1u +
irB3u state shows a change in anisotropy as a function of
temperature, which can be used to distinguish it from the
other two states. This state also shows a quadratic point node
for r = 1, which shows linear DOS at low energies; hence, it can
also be ruled out. The two ferromagnetic states show higher
thermal conductivity along the ŷ direction than the B2u state,
which has point nodes along the ŷ-axis.

As mentioned earlier, the phonon thermal conductivity could
be significant, especially in the low Tc samples. At very low
temperatures, the scattering of phonons from defects dictates
the phonon mean free path, and hence the phonon thermal
conductivity [37–39]. Phonon thermal conductivity is expected
to be insignificant in the high-quality samples due to the low
concentration of defects. Therefore, a systematic measurement of
thermal conductivity along all three directions in the samples
with high residual resistivity ratios is highly desirable. One
common feature among all these superconducting phases is

zero κ/T in the zero-temperature limit in clean samples. For
sufficient disorder, even point nodal states acquire a very small
residual κ/T, which would require very careful low-T
measurements to detect.
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