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Origami structures with morphing behaviours and unique mechanical properties
are useful in aerospace deployable structures, soft robots and mechanical
metamaterials. Curved-crease origami, as one of the variants in the origami
family, has a curve that connects two vertices as a crease compared to the
straight crease counterpart. This feature couples the crease folding and facet
bending during the folding process, providing versatile design space of
mechanical metamaterials with tunable stiffness, multi-stability properties and
morphing behaviours. However, current design techniques are mostly for simple
geometries with intuitive construction, themodelling technique focuses on using
the conventional finite elementmethod, and the intrinsically complex geometries
make specimens difficult tomanufacture, which further hinders the development
of curved-crease origami structures. Thus, it is valuable to review the state-of-
the-art in curved-crease origami. This paper presents a review on the design
methodology, analytical methods, and applications of curved-crease origami
over the years, discusses their strengths, identifies future challenges and provides
an outlook for the future development of the curved-crease origami concept.
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1 Introduction

Origami structures, originally shown as an art form, have raised interest from scientists
and engineers over the years due to their versatile design space for various applications in
smart architecture [1, 2], deployable aeronautic/astronautic structures [3, 4], energy
absorption devices in automobiles [5], shape-morphing robots [6, 7], reconfigurable
metamaterials [8–12], foldable electronics [13–15], bio-medics [16–18], etc., at either
macro or micro scale. Origami transforms two-dimensional flat sheets into three-
dimensional structures by assigning mountain or valley crease patterns in the flat state
[19]. With intrinsic pattern design, various design configurations and unique properties
could be achieved, such as bistability [20–23], multistability [24, 25], negative Poisson’s
ratio [26–28], high strength-to-weight ratio [29–31], tunable bandgap [32, 33], high
deployable ratio [34, 35], and high energy absorption efficiency [36–38].

The folding behaviours of origami structures include developability (i.e., whether the
final origami configuration could be unfolded to the flat state), flat-foldability (i.e., whether
the origami configuration can be folded to a flat state), and rigid-foldability (i.e., whether the
panel of origami structure deforms during the folding process), are mainly determined by
the geometry of the origami. Therefore, understanding the geometric designs and
mechanical behaviours of origami structures is vital, emphasising the importance of the
crease pattern of the origami design. The crease pattern determines the topology of the
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structures and could be divided into two types: straight and curved
creases. Although various configurations with even complex
curvatures of origami structures could be achieved by folding
only straight creases [50], the design space for origami structures
is still limited. Folding a straight crease could be relatively
determinate once the mountain or valley crease is defined, as
there is only one crease line that connects two vertices. When
discussing curvature and origami, it is straightforward to
consider curved-crease origami. There are fundamental
differences between folding the straight crease and the curved
crease. The facets connected by the curved crease will always
have the bending motion to satisfy compatibility constraints, so
there is no rigid foldability when analysing the curved crease
origami. The coordinates of two vertices that are connected by
the curved crease could not be determined using the rigid foldable
analysis method as infinite in-plane curves could exist between them
[51, 52], and it often requires drastically different formulations when
simulating the curved-crease origami [53]. Analysing the folding
process of the curved crease origami structures could never be purely
geometric; the bending stiffness of the facet becomes an important
parameter, and folding one curved crease could simultaneously
trigger the folding motion of several adjacent facets [41].

While curved crease origami poses greater design challenges
compared to straight creases, it offers potential properties such as
enhanced mechanical stiffness, due to the consideration of facet
bending and arched curved creases and active control of the
buckling shape [54]. Further, compared to straight-crease
origami, its features include an infinite number of solutions and
versatile design space. For example, through thoughtful design,
curves and surfaces can be endowed with initial prestress,
thereby enabling self-folding or artificially controlled folding
sequences [41, 55].

The studies of curved-crease origami focus mainly on the folding
of a single-curved crease in the early years. It is worth noting that
metamaterials that combine mechanics, geometry, and topology
have emerged in recent years and have begun to attract attention
from not only artists but also engineers and scientists, leading to the
advancement of origami structures as a whole with excellent
mechanical properties such as tunable stiffness and
programmable stability [42]. While curved-crease origami
structures, as a variant of traditional origami, have interested
artists for several decades, the analysis methods of curved-crease
folding are underexplored, this is especially the case for the
methodology of simulating the folding process of curved-crease
origami, and practical applications of origami have been primarily
limited to straight creases [56, 57]. Therefore, it is important to
review the mathematics, design, and analysis methods that could
have covered the research in recent years, providing references and
outlooks for the development of origami structures in the future.
Based on this concept, we divided the review into kinematic and
mechanical methods, then the design and applications of curved-
crease origami. The kinematic method focuses on deriving the
constitutive relationship between the folded and unfolded states
under given assumptions of rulings, whereas the mechanical method
aims to derive the energy function using the defined variable under
kinematic constraints or the geometry of structures.

The layout of this review, as shown in Figure 1, is as follows:
First, the mathematics of curve folding is introduced, with current

work utilising similar methods to analyse origami-based structures
being reviewed. Then, the studies of design and analysis through
mechanical methods are captured, with the applications developed
over the years. Finally, a discussion and conclusion are given, and
the outlooks for future development are pictured.

2 Kinematic analysis methods of curved
crease origami

Folding origami is always one of the hot spots in the eyes of
mathematicians; even it could be used to solvemathematical problems
such as constructing π and solving the partial differential equations
[58, 59], another type of curved crease called “smooth fold” which
considers the model for the non-zero thickness of the origami
structures [60, 61]. However, this is not within the scope of this
review. Here, we first detail the differential geometric approach using
the concepts of the curvatures and the geodesic properties, as one of
the major methods that are used in the curved-crease origami
structure, and then several designs are reviewed.

2.1 Differential geometric approach

2.1.1 Curvature of surface
Before we dig into the concept of curved-crease origami, first the

concept of the curvature and folding of paper should be introduced.
We briefly introduce the concepts that are crucial for understanding
surface curvature in general and its relation to origami.

The principle curvatures of a given point on the surface, κ1 and
κ2, are the maximum and minimum values of all the normal
curvatures at that point, with the directions of corresponding
curvatures denoting the principle directions [62], as shown in
Figure 2. The principle curvatures and the direction normal
describe how the surface curves in the vicinity of that given
point, and on special occasions, when all these curves of
intersection are of equal curvature (e.g., a point on a sphere or a
plane), this is an umbilic point, and in this case, the principal
directions cannot be uniquely defined. Except umbilic, the
principle directions of other regular points are orthogonal. To
quantitatively determine the curvatures, two measures are given:
the Gaussian curvature K and the mean curvature H, as shown in
Eq. (1) and Eq. (2).

K � κ1κ2 (1)
H � κ1 + κ2( )

2
(2)

The Gaussian curvature was introduced in Gauss’s landmark
paper, which is considered to be the most important theorem in
differential geometry, and the names of points are determined as
parabolic, elliptic, and hyperbolic when the Gaussian curvature is
zero, positive, and negative, respectively. The mean curvature is an
extrinsic measure of the surface that is dependent on the
surroundings; on the contrary, the Gaussian curvature is an
intrinsic property of the surface that shows the property of the
surface and is independent of the surroundings [63].

The difference between these two types of curvature is
important, as a surface could have a zero Gaussian curvature but
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a non-zeromean curvature, which shows that a surface could remain
intrinsically flat while being intrinsically curved, i.e., bending flat
paper and warping it into a cylindrical shape. Because of this
property, the plane with zero Gaussian curvature is called a
“deployable surface,” since a flat plane could be bent into a
cylindrical or a cone shape without stretching, tearing and
gluing, the cylinder or the cone are both deployable surfaces with
zero Gaussian curvature. In other words, the Gaussian curvature, K,
is a bending invariant; for every point on the surface x, there is a
mapping that transforms a simple connected surface x to another

simple connected surface y that preserves the Gaussian curvature.
Surfaces that are related to this mapping that preserve the Gaussian
curvature are called isometric, one could refer to the work of Paul
[65] for a vivid visualisation. Callens et al. provided a comprehensive
review of the curvature of the surface regarding origami structures
[19]. So it is the same when one says that if a surface is locally
isometric to the plane, it is a developable surface (one cannot stretch
paper!). Such surfaces fall into the theory of Euler, where a
developable surface is a ruled surface, as shown in Figure 2E, the
ruled surface consists of a family of straight lines, which are called

FIGURE 1
Illustration of the structure of this review on the curved-crease origami designs. (A–C) The kinematic analysis methods, which could be categorized
by differential geometric approach [39], constructive geometric approach [40] and inverse geometric approach [41]. (D–F) The mechanical analysis
methods, which could be categorized by the analytical method [42] where the energy of the crease is identified by obtaining analytical expression, the
finite element method [43], and the bar and hingemethods [44]. (G–L) The designs and applications inspired by the curved-crease origami concept.
(G) Beautiful art forms using the curved crease origami [45]. (H) The curved crease origami in nature, the single cell could reach high extendability through
the curved crease origami design [46]. (I) The design of curved crease origami in the deployable structure where the foldingmotion is actuated by a thread
and the self-interacted crease pattern [41]. (J) The sandwich structure based on the curved crease origami foldcore in the impact-resistant device [47]. (K)
Design of the curved crease origami based on theMiura pattern, the “eggbox” pattern formechanical metamaterials [48]. (F)Design of the shield structure
for medical purposes inspired by curved crease origami [49].
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rulings. The rulings are tangent to the edge of regression. The rulings
of a developable surface are the envelope of a family of tangent
planes where all the tangent planes along the rulings of a developable
surface coincide. One can put a ruler (as the tangent plane along the
rulings) that envelopes a developable surface. In some cases, those
rulings are also called generators.

2.1.2 Ruled surface
Since the ruling is a straight line, a ruled surface is defined to

describe how a point on the straight line travels in space; specifically,
a ruled surface is a curved surface that is made by continuously
changing the location of a point on the straight line in space by one
parameter, as shown in Figure 3A. The point of the straight line with
a unit directional vector of e(s) travels along the parametric curve
P(s), so any position of the point X(s, t) on the straight line is
expressed as a parameterized form, as shown in Eq. (3):

X s, t( ) � P s( ) + te s( ) (3)
where t determines the position of the point on the straight line.
Hence, t and s are two parameters that represent the parameterized

form of a ruled surface. Note that not all the ruled surfaces could be
made with paper, as shown in Figure 3B. Detailed qualitative
properties of curved folding are shown in the work of Demaine
et al. [66], Liu et al. [67] and Mundilova’s dissertation [68].

2.1.3 Geodesic curvature and torsion
The study of curved-crease origami usually starts with

understanding the basic principle of folding a simple curved line
on paper. One of the first and most influential analyses of curved
crease origami structures was performed by Huffman, where the
local folding behaviour is examined by using Gauss’ spherical
representation [69]. The geometry of curve folding has been
further studied by Duncan and Duncan [70] and Fuchs and
Tabachnikov [64] using the differential geometric approach,
where the concepts of geodesic curvature and geodesics are used.

Geodesic curvature belongs to the world of intrinsic geometry.
Let us now consider a surface x with an in-plane curve ξ (the plane is
in blue colour, as shown in Figures 4A, B, the curvature vector of the
curve ξ at a given on-curve point P points from P to the centre of the
curvature of ξ, therefore, this vector could be manually decomposed

FIGURE 2
Illustrations of the principle curvature and the rulings. (A) At a given point P on the surface x, a plane that intersects of the surface x containing the
normal vectorN. When rotating about the normal vector at the given point P, infinite curves could be generated through the intersection of this planewith
the surface x, and themaximum and theminimum curvature among the generated curves are defined as the principle curvature. (B–D) Illustrations of the
surfaces with positive, zero and negative Gaussian curvatures [63]. (E) Demonstration of the rulings of a deployable surface: the tangent planes (in
the shape of a “ruler”) along the rulings remain co-planar [64].

FIGURE 3
The illustration of the ruled surface. (A) A ruled surface is a curved surfacemade by changing the location of a point on a straight line s, the direction
of the straight line e(s), so any position of the point X(s, t) on the straight line is expressed as a parameterized form of X(s, t) = P(s) + te(s). (B) The Gaussian
curvature of the ruled surfaces could be non-zero, which indicates that not all ruled surfaces could be made by paper (i.e., not all ruled surfaces are
developable).
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by projecting the curvature vector onto two orthogonal planes: the
normal plane of the curve ξ at the given point P that contains the
normal vector NP and the tangent plane of the curve ξ at the given
point P, as shown in Figure 4B. The curvature of the projected curve
on the normal plane denotes κn, while the geodesic curvature,
denoted κg, equals the curvature of the projected curve ξ on the
tangent plane at the given point. When the geodesic curvature is
zero, there is no projection of the curve ξ onto the tangent plane, so
the curvature of the curve ξ is identical to the normal curvature κn. A
curve with geodesic curvature being zero everywhere is called a
geodesic, and a geodesic connects two points on the surface with the
shortest distance. Since the normal vectors along the geodesic curves
now coincide with the normal vectors of the curves, there is an
infinite number of geodesic curves passing through every given
point on the surface (the readers are recommended to recall the

process of deriving the principle curvatures where the intersecting
curves could be generated by rotating the normal plane about the
normal vectors, and those intersected curves are geodesic curves).

As the geodesic curves are definitely in-plane curves due to the
definition, to describe a space curve, torsion is introduced here for
measuring the bending of curves. A nonplanar space curve exhibits
both curvature and torsion; the torsion of a curve describes the pitch
and the degree of non-planarity of the curve. For a curve lying on a
surface, it is general to use the geodesic torsion to measure the local
bending of this curve, which complements the normal curvature κn
and the geodesic curvature κg. The geodesic torsion of a given point at
a given direction on a surface curve equals the torsion of the geodesic
through that point in that direction. We could define a set of triple
orthogonal vectors at a given point of the curve on the surface, the
normal vector to the surface at the given point, n, the tangent vector

FIGURE 4
The geodesic curvature and the differential geometry of surfaces. (A) A curve ξ of surface x at a given point Pwith the normal vector of the given point
denoted as NP. (B) The geodesic properties of the curve ξ of surface x at a given point P. The geodesic curvature, κg is the curvature of the projection of
curve ξ on the tangent plane; the curvature of the projected curve on the normal plane denotes κn, the geodesic is the curve whose geodesic curvature of
on-curve points are zero everywhere. (C,D) The illustration of a set of triple orthogonal vectors to express the space curve. (C) On the inextensible
plane, the curve C divides the plane into S1 and S2 two regions, the straight line PG is the generator, the on-plane arc length of the curve denotes s, the
tangent vector is t. (D) The surface S1 deforms about the generator PG, and becomes a developable surface, the unit tangent vector and the unit normal
vector of the space curveC at the given point P denote t and n respectively. The unit binormal vector is derived by the cross product of the vectors u= t ×
n, thus forming moving triad vectors. (E) Another triad vector could be derived using the geodesic properties, the projection, C′, of the curve C on the
tangent plane at P.
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to the surface at the given point, t, and the geodesic normal vector u
(in some work, it is also known as the binormal vector and denoted
as b) which is the crossed product of the n and t, u = t ×n. The
changing rate of the normal vector n with respect to the arc length s
projecting on the tangent vector equals the normal curvature, while
the changing rate of the normal vector n with respect to the arc
length s projecting on the vector u equals the geodesic torsion tg,
hence, geodesic torsion complements both the normal and the
geodesic curvatures, yet note that it does not belong to the world
of intrinsic geometry.

2.1.4 Geodesic properties and curvature relations
Now, we will introduce the fundamentals of differential

geometry of curved folds from the work of Ducan and Ducan
[70]. As shown in Figures 4C, D, consider a curved crease line C
on the deployable surface, it divides the surface into two sections, the
line PG is the generator, and the left surface S1 bends along the
generator. Now, the curve C becomes a space curve, at a given point
P, the moving triad of vectors (the normal vector n, the tangent
vector t and the binormal vector b) could be determined. The space
curve C is determined by the principle curvatures κ(s) along the
curve s and torsion τ(s) using the Serret-Frenet formula:

dt
ds

� κn

dn
ds

� −κt + τb

db
ds

� −τn

(4)

Note that this description is independent of any surface that
contains the curve. However, with the assistance of a new set of
triad vectors N, t and u in the tangent plane, the geodesic
properties of the space curve could be described. As shown in
Figure 4E, at the on-curve point P, the tangent plane is in grey
colour,N is the unit normal vector of the tangent plane at the point
P, the unit vector u is in the tangent plane and it is orthogonal to
the unit tangent vector t. The projection of the space curve C at
point P is C′, then, the curvature of the C′ on the tangent plane, by
definition, is the geodesic curvature, κg of the surface curve, hence,
the geodesic curvature vector denotes κgu, the normal curvature of
the surface at point P is in the direction of the vectorN, which is κN,
the changing rate of the rotation of the normal vector N along the
curve is the geodesic torsion denotes τg. The geodesic properties
could be related using the Bonnet-Kovalevsky formulae, as shown
in Eq. (5):

dt
ds

� κgu + κNN

du
ds

� −κgt − τgN

dN
ds

� −κNt + τgu

(5)

As shown in Figure 5, at a point P in any surface, the normal
curvatures in two orthogonal directions, 0 and 1, corresponding to
the maximum and the minimum values of principle curvatures, κ0
and κ1 exist, the geodesic torsions, by definition, are zero in these

directions. For the other direction xwith an angle of γwith respect to
P0, the properties are given by Euler’s formulae as follows.

κNx � κ0 cos
2 γ + κ1 sin

2 γ

τgx � 1
2

κ0 − κ1( )sin 2 γ
(6)

therefore, as the direction of y is orthogonal to the direction x (κ0 sin
2γ

+ κ1 cos
2γ), there are invariants from Eq. (6), as shown in Eq. (7):

κNx + κNy � κ0 + κ1 � 2 × κmean

κNxκNy − τ2gx � κ0κ1 � κGauss
(7)

where κmean and κGauss denote the mean curvature and the Gauss
curvature respectively. As shown in Figure 5A, the surface S1
deforms about the generator PG and becomes a deployable
surface (cylindrical shape), PG is a principle direction with the
normal curvature κ0 = 0. In the tangent vector of t with an angle of γ
to the direction of PG, the normal curvature and the geodesic torsion
are found from Eq. (6), these could be further represented by aMohr
circle diagram (as shown in Figure 5C), the point T stands for the
geodesic curvature κg and the normal curvature κN at the given point
P in the tangential direction t.

Three curvatures, the geodesic curvature κg (describes the
tangent plane curvature, i.e., the planar layout of the fold curve),
the normal curvature κN (describes the degree of out-planarity
relating to the current surface curvature in a tangential direction
to the geodesic curvature) and the curvature κ, are related in the
Eq. (8) using Meusnier’s theorem.

κn � κgu + κNN (8)

this relates the curvatures to the fold angle 2ω, the torsion of the
space curve τ, the changing rate of the fold angle with respect to the
arc length dω/ds and the geodesic torsion τg using the theorem of
Bonnet as follows (the proof is given in [70]), as shown in Eq. (9).

τ � dω/ds − τg (9)

the relations are derived to form the compatibility conditions under the
assumptions that, for the two surfaces S1 and S2 sectioned by the fold
curve, at any shared point, the normal curvatures of the surfaces have the
samemagnitude but opposite sign; the changing rate of the folding angle
with respect to the arc length on two surfaces has the same magnitude
but opposite sign, as shown in Eqs (10) and (11), respectively.

κN,2 � −κN,1 (10)
dω1/ds � −dω2/ds (11)

Then, the relationship between the geodesic torsion and the
changing rate of the fold angle with respect to the arc length is shown
in Eq. (12).

τg,2 � τg,1 − 2dω/ds (12)

Now, the normal curvature of the surface is obtained by the
orientation angle between the tangent vector and the generator γ, and
the principal curvature κ1 fromEq. (6), as shown in Eq. (13) and Eq. (14).

κN � κ1 sin
2 γ (13)

τg � κ1 cos γ sin γ (14)
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The fold angle of the on-curve points then forms the relationship
between the curvature of the curve and the geodesic curvature κg, as
shown in Eq. (15).

sinω � κg/κ (15)

Here, it is explained how the curvature properties of a surface
influence the folding process and the resulting shape, which is
crucial for designing structures with specific mechanical
properties. It is important to determine the distribution
assumptions of the ruling lines on both sides of the crease, so the
distribution of these virtual creases could physically satisfy the
minimized energy condition of the surface.

2.1.5 Case study of differential geometric approach
By now, the derivations of the differential geometric approach to

curved folding have been completed. When analysing the curved-
crease origami, the given conditions are important. Two special
degenerative cases were considered.

Case I: the folded curve remains planar after the folding;
Case II: the folding angle along the curve is the same.
These two conditions are exclusive to each other, which leads to

the varying folding angles in Case I and the folded curve being a spatial
curve (non-planarity) in Case II. The geodesic torsions of both
surfaces τg,1 = −τg,2 in Case I and τg,1 = τg,2 in Case II. Since the
tangential vector t is known, the generators on both sides of the curve
are now determined through Mohr’s diagram. Note that it is exactly
because the generators specify the developable geometries of both
surfaces. As shown in Figures 6A, B, the folded curves and their
corresponding generators. To conclude, folding along a curved crease
satisfies the developability of the sheet, a curved-folded origami

consists of developable surfaces (i.e., a cylinder, a cone, or a
tangent developable to a space curve) sectioned by the curve crease.

Several studies have extended the research on curved-crease
origami using the differential approach. Demaine et al. developed
basic tools for curved-crease origami in terms of the definitions and
theorems in a mathematical way; specifically, the studies of
definitions of rulings and smooth folding are comprehensively
investigated, and they provided proof of five high-level properties
in terms of the rule segments [72]. Tachi [71] used a discretized form
to analyse the curved-crease origami structures; hence, the non-rigid
curved-crease origami could be simulated like a rigid origami
structure with at most one degree of freedom. The differential
geometric equations are expressed in the form of a matrix, which
facilitates the use of the differential geometric properties in the
analysis of the mechanical behaviours in the later studies, as shown
in Eq. (16), as shown in Figures 6C, D.

dt/ds
dn/ds
db/ds

⎡⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎦ � 0 κ s( ) 0
−κ s( ) 0 τ s( )
0 −τ s( ) 0

⎡⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎦ t s( )
n s( )
b s( )

⎡⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎦ (16)

where the normal vector n, the tangent vector t and the binormal
vector b are defined in the same way above, note that this is the
matrix form of Eq. (4). Based on the above studies, Honda et al. [73,
74] provided proof that for a given pair consisting of a crease and
crease pattern, there are four distinct non-congruent curved folding.

The differential geometric method above, which is a conventional
approach, could be seen as Eulerian from the perspective of
continuum mechanics. From the deformed configuration of the
structures, one identifies kinematic relationships and constraints
(i.e., the dihedral angles between adjacent tiles, the distance

FIGURE 5
The geodesic properties and the Mohr’s diagram. (A) The surface S1 deforms about the generator PG and becomes a deployable surface (cylindrical
shape), PG is a principle direction with the normal curvature κ0 = 0. (B) In the tangent vector of t with an angle of γ to the direction of PG, the normal
curvature and the geodesic torsion could be further represented by a Mohr circle diagram in (C). (C) The Mohr circle diagram for the invariants formed by
the curvatures on the surface at the given point in the given direction that is at an angle of γ to the principle direction PG, the point T stands for the
geodesic curvature κg and the normal curvature κN at the given point P in the tangential direction t.
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FIGURE 6
(A,B) Illustrations of folding an inextensible paper using (A) co-linear generators and (B) generators reflecting at the same angle. (C,D) Illustrations of
curved folding in the matrix form of Eq. 4 given by Tachi [71]. (A) Case I: The folded curve is an in-plane curve. (B) Case II: The generators are equally
inclined to the tangent, which is analogous to the light rays emanating from the centre of the source; the folding angle is the same everywhere on the
curve, and the folded curve is a non-planar curve. (C) the crease pattern before folding. (D) The triad of a given point P on the curve C with the arc
length s. The folding angles of both patches connected by the curve C are ω.

FIGURE 7
Illustrations of the basic curved folding pattern [40]. (A–F): single curve, aligning curves, aligning rotated curves, tucking, folding cones, and folding
back at straight lines.
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between vertices), and then derives the relationship between these
objects [75]. This could be further described from the perspective of
the Lagrangian, where the relationship between the crease pattern in
the flat reference configuration and the deformed configuration is
built in a dynamic case, the work of Liu and James [76] has developed
this Lagrangian method in the curved tile origami.

2.2 Constructive geometric approach

The constructive geometric approach, as implied by the name, is
designing the origami structures using the geometric properties of the
folding from the crease pattern; this method is also called analysis. In

analysis, the specific crease is designed first with certain constraints,
and the shape is then analysed after folding the pattern. Several studies
demonstrate various curved-crease origami designs by designing the
curved-crease pattern, and these designs are mainly shown as a form
of art [40, 77, 78]. Here, we briefly introduce the curved-crease design
using a constructive geometric approach.

2.2.1 Building zero Gaussian curvature
Ignoring any in-plane deformation of a flat sheet, the Gaussian

curvature remains zero at each point regardless of arbitrary folding
processes, ensuring that the resulting three-dimensional structure is
developable. With this premise, we can skillfully design creases to
realize our targeted three-dimensional shapes. Jun Mitani has

FIGURE 8
Illustrations of curved folding of developable surfaces. (A,B) mirror reflection technique and designs by Mitani [79]. (C) The use of the mirror
reflection technique on a conic surface does not alter the intrinsic Gaussian curvature [71]. (D) A design method for all types of developable surfaces into
cylinders and cones [82]; figures from the top to the bottom are the basic type of developable surface folded into a cylinder, a cone and an example of a
generalisation of Huffman’s tessellation of the plane, respectively. (E) The “end arc addition rule” proposed by Gattas and You [83] for designing the
curved-crease cladding. From the left to the right, the figures demonstrate the axis intersection with end arc addition of the smallest-radii end arcs and
intermediate end arcs.
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introduced an innovative design approach that leverages a series of
fundamental curved folding patterns [40], just as shown in Figure 7.
By tessellating these basic units, a plethora of captivating three-
dimensional forms can be crafted, showcasing the beauty and
versatility of origami-inspired design.

Mirror reflection is a traditional method to design the crease
pattern of both the straight and the curved crease origami structures
[79]. Here, a variety of research methodologies are demonstrated, as
shown in Figure 8. The mirror reflection technique in the origami
design does not alter the intrinsic curvature of the surface [71], so the
differential equations for developable surfaces still hold when using
the mirror reflection technique.

Another technique is to design the curved-crease origami by
discretizing the non-rigid origami into a rigid origami. Tachi [80]

showed the discretized method could be extended to tessellated,
cylindrical, and cellular structures, as the condition of flat-foldability
originating from constant-angle folding is satisfied. The non-twisting
property of the deployable surface makes sure that the adjacent rulings
could form a planar quadrangle. Thus, it is feasible to discretize a
curved folded surface and approximate it with a planar-quadrilateral
(PQ) mesh. Later on, Tachi [81] showed that when the curvature and
torsion functions are given, a space curve could be defined, and this
method could be used for the geometric construction of the tubular
structure. The curved folded tube origami structure under the
discretized method shows a single-DOF rigid folding motion.

Similarly, Zhang et al. [84] investigated the problem of
discretizing the curved developable surfaces that satisfy the
equivalent surface curvature change discretizations using the Gauss

FIGURE 9
Three cases to show the design evolution process that starts from a single unit cell [67]. (A) Curved tile origami generated by translation groups. (B)
Curved tile origami generated by circle groups. (C) Curved tile origami generated by conformal groups.

Frontiers in Physics frontiersin.org10

Song et al. 10.3389/fphy.2024.1393435

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2024.1393435


map (to investigate the normal curvature change of the curved
surface). After the discretization, the adjacent surface normal
vectors could be derived under developability constraint. The
Gauss spherical curves of different developable surfaces are set up
under the Gauss map. The whole process contains two steps. First,
spatially curved surfaces are mapped to spherical curves. Each point
on the spherical curve represents the normal direction of a ruling line
on the curved surface. This leads to the curvature discretization of
curved surface being transferred to the normal direction discretization
of spherical curves. Second, the Gauss map is linked back to the
normal curvature of the developable surfaces by the error analysis.
These developable curved surfaces are discretized into planar patches
to acquire the geometric properties of adjacent ruling lines, hence, the
geometric properties and constraints of the curved folding such as fold
angle, folding direction, folding shape, and foldability are derived.
This method is applicable to analysing curved folding on any generic
developable surface.

Gattas and You [83] proposed a new method for generating and
parametrizing rigid-foldable, curved-crease geometries from Miura

derivative prismatic base patterns. First, the ellipse is created, and
then the curved crease is subdivided into straight-line segments.
Through these two-step constructive geometric methods, a curved-
crease Miura pattern could be generated based on the Miura-base
pattern, and further, the curved-crease configurations of tapered
Miura, Arc, Arc-Miura, and piecewise patterns are generated. Later
on, Gattas [85] proposed a generative design method to specify a
shape grammar (which comprises a shape and rules) for the
assembly and interaction of geometric elements. The method to
generate piecewise cylindrical surfaces based on curved-crease
origami surfaces was presented, and the grammar utilises a
parametric arc shape and end-tangent continuity condition for
recursive shape addition and arc assembly. This “end arc
addition rule” provides a design technique for the practical
construction of curved-crease cladding.

Mundilova [82] investigated the smoothly deformed
developable surfaces in a mathematical method, instead of using
the traditional methods to form the approximations such as
discretizing the surfaces or optimising for developability and

FIGURE 10
Illustrations of the case study of the analytical methods of designing curved-crease origami structures. (A) The overcurved shapes that could be
found in daily life: (a1) Foldable tent, (a2) foldable football gate, (a3) foldable laundry basket and (a4) curved-crease origami art form [95]. (B) Two types of
concentric pleated folds, the open one and the closed one, with a saddle-like and a helical shape, respectively [99]. (C) A demonstration of how to fold an
overcurved structure [95], this work also highlights an interesting question that the overcurved ring is in an odd number. (D) Folding of curved shells
along a crease, the “pop-through” effect of the curved facet could be understood by an osculation of the partial surface along the fold [100]. (E) The
illustration of the “Elastica” curve, which is the elastically-deformed shape of a slender beam [55, 101]. (F) The illustration of an elastic neutral stable
structure [98].
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isometry to a given patch, the proposed method could explicitly
provide a smooth description of the obtained surfaces and their
developments. Although the limitations are that it, unfortunately,
cannot prevent surfaces from self-intersecting and crease curves
from escaping to infinity, the proposed method gives simple
formulas for the parametrization of crease curves. Using the
properties of the geodesic and the ruled surface, design methods
for all types of developable surfaces into cylinders and cones
are provided.

2.2.2 Building non-zero Gaussian curvature
Folding along the curved crease on the developable surface

cannot change the intrinsic curvature of the surface. However,
there are still two approaches identified that could alter the
global intrinsic Gaussian curvature using the curved-crease
origami technique: the curved-crease couplet [86] and folding
along the concentric curve crease, which mostly could be
categorized as the constructive geometric approach.

Curved-crease couplets were first proposed by Leong [86], which
stands for combining pairs of curved and straight creases to create 3D
origami with either positive or negative intrinsic Gaussian curvature
that has been used by origami artists. Mitani proposed a design
method and the software to generate the curved-crease pattern that
could derive an origami structure with a rotational symmetric
configuration [87]. Appropriate flaps are placed in between the
polygonal faces to represent non-zero Gaussian curvature surfaces.
The basic idea is to fold a flat sheet that could warp around the target
object (a cylinder or a cone), and the extra parts are folded to form a
flap, it is different from the design of Resch’s pattern, where the folds
are hidden within the geometry [88]. A flap consists of a straight
crease and a piecewise straight crease, which could be seen as a curved
crease; hence, this forms a kind of curved-crease couplet. The
proposed method mainly designs 3D origami structures with
cylindrical and conical shapes. Later, Mitani proposed another
method that could design 3D axisymmetric objects, the concept of
“flap” evolved as the new feature of the method had 3D tucks with a
triangular cross section [89].

Concentric pleating is folding the concentric shapes with the
assignment of the mountain or valley of the crease pattern so that the
geometries with negative Gaussian curvature are shown. This is the
second technique that changes the global intrinsic curvature. As
previously discussed, the flat sheet is a zero Gaussian curvature
surface; hence, it cannot be folded into a non-zero Gaussian
curvature surface. However, this could be realized when non-
rigid folding is considered. By using the differential geometric
constraints for the developable surface, Dias et al. showed that
when the sheet is isometrically deformed everywhere except
along the concentric fold itself, a relationship of constant
curvature and oscillatory torsion is derived for a high stiffness of
folds, whereas relatively softer folds result in oscillatory curvature
and torsion with broken symmetry of the buckled shape [90]. Still,
these works remain a field that is primarily reserved for artists.

2.3 Inverse geometric approach

The inverse approach, as opposed to the constructive geometric
approach, is often a reversed design process, where the shape of the

design is set up first, and the geometric constraints are used to
determine the crease pattern and the generators. It is also called the
synthesis. Mosely provided an inverse design method to solve the
question of folding two developable surfaces from a single sheet of
paper with a curved crease [91]. Since the developability constraint is
too strong and there are only four types of developable surfaces that
have been discussed, this limits the study to only a single crease
through this analytical method.

Another type of design and analysis method that belongs to the
inverse design category is the optimizationmethod. By giving both initial
and final configurations, Kilian [41] proposed amethod that changes the
problem from selecting the target actuation strings for the actuation of the
self-folding curved-crease origami to complementary conditions. This
method is similar to the ground structure method [92], the target
configuration could be optimized and derived by a topology
optimization. The challenge would be converting the research
question to an optimization function and applying constraints. Still,
this remains a promising future direction for analyzingmore complicated
curved-crease origami structures. Currently, much research focuses on
inversely finding the straight crease pattern to achieve target functionality
or configuration using data-driven methods [93]. The challenge is to
provide a grid system for searching, and there is no universal analytical
method for the curved-crease origami to conduct constructive geometric
approach. The kinematic constraints of curved-crease origami largely
depends on the properties of the curves themselves, which is object
sensitive, (i.e., currently, one needs to define the geometries of the folded
curves first, and then this mostly falls into the constructive geometric
approach again). Inverse design methods for the curved-crease pattern
remain unexplored. Hence this remains possible for future work on the
inverse design of crease patternss that could be folded into the desired
configurations.

2.4 Group orbit tessellation approach

Considering that many origami structures are tessellated to
create periodic and repetitive geometric features, a ‘group orbit
procedure’ has been proposed for the design of such specific
structures [67], as shown in Figure 9. More specifically, origami
structures are obtained by repeated application of an Euclidean
group to an origami unit cell. One key of this process is that the
element of an Euclidean group preserves isometries, and another is
that the unit cells match with each other at creases.

The foundation of group orbit procedure strats with an element
of the group, which can be written as

a � A|b( ) (17)
where A ∈O(3) represents rotation and b ∈ R3 represents translation,
as shown in Eq. (17). The action of a group element a on a point
x ∈ R3 is defined as a(x) =Ax + b. Another concept for this procedure
is the Abelian group. If the group is abelian (i.e., the group action
satisfies the commutative property), the matching at creases of the
entire structure can be guaranteed under the action of the group
generators. By applying this method, one can design different
structures by choosing different parameters for A and b which
characterize the geometric transformations such as translation,
rotation, and scaling. The general process of creating an elegant
curved crease origami structure can be divided into four steps:
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1. Selection of Unit Cell: Choose a reference unit cell containing
internal creases, which will be acted upon by the elements of
the group.

2. Application of Group Elements: Apply the group element a =
(A|b) to the reference unit cell, generating the structure via
a(Xi) = A(Xi) + b.

3. Ensuring Compatibility: Ensure that deformations at creases of
adjacent unit cells are compatible, implying that boundaries of
neighbouring unit cells match precisely after folding in both
reference and deformed domains.

4. Structure Construction: Construct the entire structure through
the iterative application of group actions. If the group is
discrete, the structure will close perfectly without gaps.

For each group, detailed algorithms are provided, including
locating reference creases, deformed creases, unit cell construction,
and application of group operations. The introduction of conformal
groups allows for the inclusion of scaling in the design, which is
particularly useful for simulating growth patterns in nature (e.g., shells
and horns). The design methodology with conformal groups is similar
to helical and circle groups, but scaling factors need to be considered.
Curved origami structures designed via the GroupOrbit Procedure not
only possess excellent geometric properties but can also have their
stored energy calculated using Kirchhoff’s nonlinear plate theory,
which is crucial for understanding the mechanical behaviour of the
structures. It provides a powerful tool for designing complex curved
origami structures, leveraging symmetry and repetitiveness to generate
structures. Karami et al. [94] also adopted similar methods, primarily
focusing on the application of curved creases in the Miura origami
tessellation pattern, and extending the aforementioned construction
method to curved creases α with arbitrary profile functions f.

3 Mechanical analysis of curved
crease origami

The mechanical analysis of curved-crease origami focuses on
studying origami structures from the perspective of a structural
engineer, where the energy, the equilibrium of structure, the
compatibility constraint of the fold, the bistability or multistability,
the “snap-through” effect of the structure. It is certain that none of the
questions above could fall beyond the scope of mathematics of the
differential geometric approach in the previous section. Still, the
intention here is to address the analysis method, the modelling
technique and the formulation of the energy function, providing a
reference for the future development of curved-crease origami in the
field of engineering. Here, Figure 10 displays related research studies,
mainly explaining a case study on the analytical methods for designing
curved-crease origami structures.

3.1 The analytical method

3.1.1 Minimum energy method
Due to the geometric complexity and the variety of the designs,

researchers often use analytical methods to build their own models
to describe the research question. Inspired by the ring-shape designs
that are buckled or folded in tridimensional saddle shapes such as

overstrained bicycle wheels, released bilayered microrings and
strained cyclic macromolecules, Mouthuy et al. [95] proposed an
analytical model using the minimization of the energy method of
overcurved rings to capture the shape and buckling behaviour
quantitatively. Here, the overcurvature O is defined by the
contour length L and the curvature of the ring in the planar
shape κ, O � L

2π κ> 1, and the bending energy is quantified by the
geometry of the overcurved shape.

Regarding the energy method that applied in the compliant
mechanism, there is another interesting topic intrigued by curved-
crease origami or curve folding: elastic neutral stability. An elastic
mechanism in neutral equilibrium is defined to only deform without
load if the necessary energy for deformation is already stored in the
system and redistributed upon reconfiguration [96]. This unique
property was investigated by Guest et al. [97]. Since it requires the
energetic state of the structure to remain unchanged during a
deformation mode, the neutral stable mechanism features a
continuous equilibrium as its behaviour resembles the fascinating
class of statically balanced structures [98].

3.1.2 Discretization and continuum mechanics
For certain specific structures, especially those with periodic or

fractal characteristics in origami, it is possible to first obtain the
deformation coordination relationship of the basic unit through
discretization methods, and then derive the continuum equation
for the entire structure. Dias et al. [99] developed recursion
equations to describe the three-dimensional shape of concentric
pleating, where folds have been inscribed. Using the differential
geometric equations detailed in the previous section, the
continuum equations (valid in the limit of vanishing spacing
between folds) and the energy of the structures are derived, and
the smooth surface intersecting all the mountain folds is described.
Multiple folds are considered in their study, but the relationship
between two consecutive folds needs to be predefined first. They
explored the methods of designing the concentric pleated folds.
Two types of folds are considered: closed concentric folds form a
saddle-like configuration (which is also demonstrated in Section.
2.2) and open concentric folds result in helical shapes.

The bending facet during the folding of curved crease origami
could trigger interesting effects such as the “snap-through” effect,
where the facet could change its configuration swiftly during the
deformation, or the “pop-through defect” [102, 103], where the
local deformed vertex changes its equilibrated position and
creates a self-locking effect or bistability of the fold. For thin
materials, curvature and mechanics are intimately connected to
each other. Inspired by the swift “snap-through” effect, Bende
et al. [100] introduced the design rule to explain how to generate
the snapping transitions on arbitrary surfaces. This design rule is
independent of the material system and the length scale. When
the curved surface is deformed to another position by a “pop-
through” effect, it could be understood that the partial surface
osculates along the fold (defined to have zero normal curvature
κN) about a certain angle ψ, and the type of the curved surface is
determined by the Gaussian curvature and further determines the
curvature properties along the fold. Through the geodesic
properties, the bending energy is derived using the mean
curvature of the shell near the fold. The finite element method
is used to validate the case study.
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3.1.3 Gauss map method
Similar to the discrete method, the Gauss map method is an

efficient tool to analyze the shell damage mechanism and bistable
creased strips [104, 105]. As shown in Figure 11, the normal vectors
of a closed contour in the vicinity of a given point could be
transformed into a unit sphere. The Miura-patterned origami in
unfolded state, the planar configuration has zero Gaussian
curvature, after the transformation, the overlapping unit normal
vectors form a zero surface area, indicating zero Gaussian curvature.
After folding the miura pattern, the unit normal vectors of 4 surfaces
transform into the Gauss map, unit normal vectors trace out arcs of
great circles on the unit spherical surface, with lengths equal to the
relative dihedral angles between the facets across hinge lines (the
length of C in Figure 11D equals the dihedral angle ϕ12 between S1
and S2, as the radius of the unit sphere r = 1), the enclosed surface is
formed by two same-area surface, but following the sequence from
n1–n4 forms a clockwise and a counter-clockwise surface in
Figure 11D, which gives a net-zero surface, indicating that
bending does not change the metric of the sheet, the Gaussian
curvature will remain zero at (nearly) all points on the folded sheet
[106]. The signed area enclosed by these arcs Γ′ is equal to the
angular defect at the vertex, which measures the solid angle and,
hence, the Gaussian curvature of the vertex P. The Gauss mapping
technique involves generalising an arbitrary number of hinge lines,
which become the generators of a developable surface as the number
increases. It is capable of describing the kinematics of a hinge and
facet model, which forms a discrete version of the bistable creased
strip. Walker and Seffen [104] studied the creased strip problem. By
discretizing the single vertex on the strip into several sectors and
deriving the energy function of both regions separately through the
analytical method, the energy function could be solved by getting the
minimum energy and the net zero Gauss mapping constraint.
Although the limitation of this work is that the discrete model
that is based on the Gauss map only predicts the final shape of real
sheets well for small deflections, large deflections are often observed
in experiments [107]. Still, this creased strip with a hole structure
with bistability could be used as part of a multistable structure for
future applications.

3.1.4 Elastica curve method
As opposed to the discretized method, Lee et al. [55, 101]

presented an analytical geometric construction method for
curved-crease origami by combining a 1D elastica solution for
large elastic bending deformation with a straight-crease origami
projection andmirror reflection process; the proposedmethod could
accurately capture the principal curvature and developability
characteristics of the surfaces of the elastically-bent curved-crease
origami. Also, by defining the conditions for the appearance of
distortion (distortion will occur in the primary surface if secondary
pattern creases are parallel to primary pattern rulings), the
multistate origami, defined as the structure that could achieve
multiple design configurations or objects, could be designed
[108]. Elastica curves are the elastically-deformed shapes of a
straight, slender beam; therefore, the analytical solution of the
“elastica” curve could be derived; however, when used as the
curved-crease of the origami, the curved-crease unit cell
constructed would have a surface with non-zero Gaussian
curvature. Still, this construction technique can generate an

equilibrated minimum-energy surface [55]. The compliant
folding behaviour of an “elastica” curved-crease origami
metamaterial is studied in Ref. [109]. When using the “elastica”
curve to build the curved-crease origami metamaterials by
tessellating a single unit cell, due to the definition of the curve, it
could not be differential at the shared node of two adjacent curves.
Since the analytical solution of the “elastica” curve could be derived,
the energy function could be generated through methods detailed in
Refs. [110, 111]. For a given in-plane curve, such as the case of
“elastica,” with the analytical expression f = y(x), the curvature of the
in-plane curve could be given by structural mechanics, as shown in
Eq. (18).

κ � y″ x( )
1 + y′ x( )( )32 �

M

EI
(18)

where y′(x) and y″(x) are the first and second derivatives of the curve
function, respectively, with moment and flexural rigidity values
denoting M and EI [55]. Then, the energy function could be
written as Eq. (19):

U � EI

2
∫

s
κ − κ′( )2 ds (19)

where s is the arc length of the curve, and κ and κ′ are the curvatures
before and after the deformation at the given point along the curve.
The elastica surface generation method in a later experimental and
manufacturing study can be concluded to be an effective surface
design method to specify the actual shape of an elastically-deformed
curved-crease surface [112]. Using a similar method to calculate the
energy of the curved-crease origami and the geodesic property that
the curve remains in-plane if the folding angle at any given on-curve
point is the same, various researchers derive the energy of the
structure by deriving the analytical form of the in-plane (after
deformation) curve and integration. Sun et al. [42] provide the
analytical form of the energy of the curved-crease origami
metamaterials. Du et al. [113] proposed analytical models based
on differential and integral methods for predicting the compressive
stiffness and strength of curved-crease origami foldcores made of
composite material, and a three-dimensional failure mechanism
map was constructed, where the buckling theory of cylindrically
curved plates will be used to estimate the critical stress. This study
shows that the dominant failure mode of the curved-crease origami
foldcores changed from buckling to crushing under the compressive
loading condition. Note that the analytical form of the sandwich
structure with curved-crease foldcore is first derived.

In practice, many applications are constrained to situations in
which origami structures are made from assemblies of flat, rigid
plates connected by hingelike creases. In such situations, the
geometric configurations and the kinematics are fully determined
by the crease network, while the structural response is a result of the
crease network and the crease mechanics. By contrast, when
considering the elastic response of the plates (i.e., bending,
stretching, and twisting), a variety of new behaviours may
emerge. In this case, the elastic response of the structure is
determined by the competition between the flexural stiffness of
the panels and the torsional stiffness of the creases. This raises
interest in studying the mechanical properties of origami structures,
the frustrated shaping [114], where the effective curvature of the
deployed origami structures in equilibrium could be reached by a
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crease pattern, and the effects of crease stiffness and sheet thickness
on mechanical behaviour [115].

3.2 The finite element method

With the development of the computer, a large portion of work
could be solved using computer-aided software. Mierunalan [39]
revisited the work of Duncan and Duncan [70] and proposed a non-
linear geometric elastic numerical model to predict the shape of
curved crease origami with complex extended curved crease
networks. By understanding the key features of curved creases
through differential geometry and experiments, the proposed

method is capable of capturing hinge-like crease mechanics
without applying the complex plastic material model. The finite
element methods with two modelling techniques in ABAQUS were
investigated and compared, as shown in Figure 12. The first one is
the connector hinge method, where the crease is singular and the 2-
noded 3D connector element (CONN3D2) is used for each pair of
nodes on the corresponding creases, which simulates the mechanical
behaviour of the rotation of the crease, and the *COUPLING
constraint is applied. The second approach is the thermal
approach (which is also used in an earlier Ref. [107]), where the
crease is considered non-singular and two options are possible. (c1):
The plate is divided into three parts: two plates and the crease region
in between. The width of the narrow slice of the crease region w is

FIGURE 11
Demonstration of the Gauss mapping. (A) The Miura-patterned origami in an unfolded state, the planar configuration has zero Gaussian curvature.
The normal vectors denote n1, n2, n3, and n4 of surfaces S1, S2, S3, and S4, respectively. All the normal vectors transform into the unit sphere, and the
enclosed surface formed by a closed, oriented contour connecting the endpoints n1–n4 sequentially is the Gaussian curvature. (B) All the unit normal
vectors are overlapping, so the enclosed surface is zero. (C) In theMiura-patterned origami in a folded state, after transforming the normal vectors to
the unit sphere, the enclosed surface is (D) a net-zero area surface, indicating zeroGaussian curvature. (E) For a given point P, the enclosed area by Γ has a
negative enclosed area after the transformation (as the curve Γ′ in (F) is in reverse direction), which indicates the negative Gaussian curvature.
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twice the plate thickness t, as informed by [116]. A thermal gradient,
ΔT, is applied through the thickness of the plate. Only the crease
region is allowed to expand by specifying a linear expansion
coefficient and zero expansion coefficient elsewhere; and (c2)
instead of a region, the crease is simulated through a line, and
the temperature gradient ΔT is applied through the thickness of the
plate along a set of nodes along the crease line, with the finite width
of the crease accounted for by ABAQUS by default. The mesh size of
the elements, though required fine-tuning, approximates the
thickness of the plate, t, as shown in Figure 12.

For finite element (FE) numerical modelling techniques, each
method has its own functional advantages and disadvantages [39].
Under the condition of a non-closed curved folding, the connector
hinge was more computationally efficient; under the condition of a
closed loop curved folding, the temperature method showed more
efficiency in modelling. Therefore, the modelling techniques should
be considered when using them to model curved creases. Still, the
cases that have been studied were all quite simple. When it comes to
a more complex model, the comparison of the advantages of
different modelling techniques could still remain unknown, as
the contact and interaction conditions need to be considered.

Hu et al. [117] proposed an FE model through 3-node triangles
and 4-node quadrilaterals with translation degrees of freedom
considered only. Since the bending deformation could be
considered in the T3 model, a corotational constraint is applied
in Q4 to quantify the bending deformation. The proposed methods
of quantifying the bending deformation in Q4 and the derivative of
the fold angle are implemented in commercial software ABAQUS

using two user-defined element subroutines. Together with the

built-in 3D membrane elements, they realize the simulation and
analysis of origami in an FE environment. It is worth noticing that
the code for the subroutines is kindly provided in their work.

The finite element (FE) method has been used in much research
to provide validation of the model [118]. Thai et al. [43] developed
the FE method through LS-DYNA and applied this to simulate the
robotic folding process. The methods are quite similar to the
connector hinge model. Most methods fall into the range of the
three modelling techniques mentioned above.

3.3 The bar and hinge model

The origami structure always has a special link to the bar and
hinge model, as the bar and hinge model provides a relatively
simplified version of how a 2D shell member mechanically
behaves by only using the 1D member. Schenk and Guest [119]
first proposed the use of the bar and hinge model to simulate origami
structures, and over the years, there have been several derivative
methods that are related to the bar and hinge model, such as
compliant crease bar and hinge model and particle bar and hinge
model [53], which makes origami structures share similarity with
tensegrity structures as deployable structures [92], where tessellated
tensegrity structures might have an origami dual. Figure 13
illustrates the process of constructing the bar and hinge model,
from the basic unit to the discretization of the entire curved surface
structure. The basic idea is to change the bending deformation
behaviour and the in-plane behaviour of the facet to the axial
elongation and the rotational mechanical behaviour of the bar

FIGURE 12
Illustrations of the modelling techniques using the finite element software ABAQUS [39]. (A) The reference configuration. (B) In the connector hinge
method; the crease is simulated using the two-noded 3D connector element (Type: CONN3D2) of Join + Rotate type, with the *COUPLING constraint
applied. (C) Thermal gradient method: (c1) The plate is divided into two plates and the crease region in between, the thermal gradient ΔT is applied
through the thickness of the plate. (c2) Instead of a region, the crease is simulated through a line, and the temperature gradient ΔT is applied through
the thickness of the plate along a set of nodes along the crease line.
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and the hinge, so the energy at the system level could remain
equivalent. The use of the bar and hinge model not only gives a
simplified model to simulate the complex facet behaviour but also
provides an analysis method for studying the “pop-through” effect or
topology optimization [120]. In this section, we briefly review the bar
and hinge model for analysing the curved-crease origami structures.

Zhang et al. [121] proposed a method that can control the folding
path with the nodal coordinate; instead of analyzing the model based
on the fold angle, the model based on the nodal coordinate is derived.
The deforming path is obtained using an algorithm based on the
generalized inverse theory, hence, it provides a kinematic analysis
method for the folding mechanism of origami. Although this method
is similar to the bar and hingemodel, instead of the hingemember, the
model is only modelled in terms of the bar member. Still, it could
provide the reference for the folding motion of the origami structure,
and the simulation method for the curved-crease origami is to model
it in a way that is similar to the discretized method, the curved-crease
becomes several connected piecewise straight lines.

Based on the initial “Node 4Bar 5 (N4B5)” bar and hingemodel, this
method has been developed over the years by various researchers. Filipov
et al. proposed an upgradedN5B8model to simulate themodel in amore
accurate manner; Woodruff and Filipov [122] extended the model and
applied it to the curved-crease origami in a similar way to the discretized
method, the bars are grouped by their functionalities into the in-plane
bar, the bending hinge, and the folding hinge, with the details of the
numerical modelling technique providing in Ref. [123], and the
experiments carried out to validate the model in Ref [44, 124]. Wo
and Filipov [125] studied the multi-stability of the Kresling-based
origami using the bar and hinge model. The method to convert bar
members to shell members, so that the stiffness and the energy of the
system are the same, is proposed. What is also interesting is that there is
another stable state through the “pop-up” of the valley creases. Chen et al.
[126] investigated the multi-stability of the hexagonal origami hypar by
combining a group-theoretic approach through the bar and hingemodel.

In a similar manner to the discretized method, the Virtual Crease
Method (VCM) [127] is proposed to add virtual creases to simulate
the large-bending deformation, yet the reason that this method is not
catogrized in the constructive geometric approach in Section. 2.2 is
that the derivation of the rotational stiffness of the real crease and the
virtual crease could provide a reference for the bar and hinge method:
the rotational stiffness of the real creases is obtained by conducting an
experiment on a creased shell under compression, and the rotational
stiffness of the virtual crease is derived to be proportional to bending
stiffness per width under the assumption that the shell deforms into
an arc with a uniform radius of curvature, and so the bending strain is
constant throughout the entire shell.

Essentially, the energy in the bar and hinge model is derived
from the elongation of the bar, the bending deformation of the hinge
and the folding motion along the creases. Hence, the energy
expression of the bar and hinge model could therefore be written as:

Utotal � 1
2
∑
i

kiaxialδ
2
i +

1
2
∑
j

kjbendingθ
2
j +

1
2
∑
p

kpfolding ϕp − ϕp
R( )2
(20)

where kiaxial is the axial stiffness of the ith bar member, kjbending is the
bending stiffness of the jth rotational hinge member for simulating
facet, and kpfolding is the bending stiffness of the pth rotational hinge
for simulating crease member. δi is the elongation of the ith bar, θj is

the rotational angular displacement from the initial state of the jth
hinge, and ϕp is the rotational angle of the pth hinge, with ϕpR
denoting the initial position of the hinge.

3.4 Mechanical analysis: discussion

The core idea of the mechanical approach is to discretize
continuous structures based on kinematic relationships and then
to make reasonable assumptions about the deformation of the
discretized elements (such as bars and hinges or shell elements),
thereby determining the elastic potential energy of the entire system.
The displacement field is then determined through the principle of
minimum energy. In this sense, both the finite element method and
the bar and hinge model actually follow this philosophy. However,
for curved origami, each has its own limitations. The FE model
makes it hard to predict the kinematics of the whole origami
structures due to the complicated boundary condition and the
coupling effects of the facet bending and the hinge rotation,
making the analysis difficult to converge. Although the bar and
hinge model could provide a computationally efficient method
compared to models whose models use 2D shell elements, one
major challenge would be how to effectively describe the mechanical
behaviour of a 2D shell member to the combination of several bar
and hinge members in an equivalent manner, i.e., there will always
be room for error when one tries to spread forces across a triangular
panel into one bar. Determining the equivalent stiffness of the bar
and hinge model remains the challenge. Besides the experimental
method to derive the rotational stiffness of the crease line by Wang
et al. [127], Feng et al. [128] derived the equivalent stiffness of the
crease using the elastic/plastic plate theory. Nevertheless, this still
provides a promising analytical tool for curved-crease origami,
especially when the complexity of the structure is upgraded to
the system level and when the stiffness matrix and the
mechanism of the structure are of interest for investigation.

4 Design and application

In the colourful world of origami structures, origami has been
applied in various fields due to its versatility in the aspects of
geometry, pattern, material, and mechanisms [129, 130]. Chen
et al. reviewed the origami design methods and mentioned the
kinematics and bifurcation behaviour of the origami structures, but
only the straight-crease origami structures were reviewed. The
development of the curved-crease origami structures is still
underexplored [131]. Over the years, curved-crease origami
structures have been applied in many fields. In this section, the
applications and the design of the curved-crease origami
are discussed.

4.1 Structural design and metamaterials

Miyashita et al. [132] designed self-folding layered materials
based on complex three-dimensional curved-crease structures, and
the manufacturing process and the actuation methods are
investigated. By changing the curvature of creases to regulate the
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folding angles, design and modelling techniques are derived and
applied to fabricating propeller blades. The research questions of
self-folding are demonstrated in this work: (1) predict the folding
angle of a curved crease accurately; (2) avoid the self-locking and
achieve a final functional structure after the self-folding process of
curved creases; (3) a method to actuate the device after it has been
self-folded to demonstrate functionality. Since self-folding is a
technique that was recently developed to aim at the rapid
manufacture of structures by the folding of many small and
complex creases, the application of self-folding here showed
promising potential for curved-crease origami applied to mini-
robots and actuation devices, as the successful triggering of one
active curved crease could actuate the adjacent facets due to the
coupling effect from the facet bending. Other self-folding methods
include drawing black ink lines as actuating hinges on the shape
memory polymer [133]. Tahouni et al. [134] presented a material
programming approach based on self-shaping curved folding to
create curved crease origami structures that could self-assemble
from flat into a 3D folded state under actuation. The digital 3D-
printing fabrication process using shape-changing materials and a
computational design workflow for the geometric crease pattern
are proposed.

Deng et al. [135] utilised the system-level stretchability of the
origami folding to design the curved display in electronics. They
demonstrated the design and fabrication of curved displays by
optimizing 2D origami patterns for target 3D shapes using
origami tessellation. The bending energy in facets is minimized
using the optimization algorithm. The finite element method was
employed to design 2D origami tessellations for the desired surface
topography. Origami-based curved displays for typical
nondevelopable surfaces (i.e., spherical and hyperbolic
paraboloids) are manufactured. The pre-folding in origami
structures acts as a geometric imperfection, which reduces the
initial buckling force and increases the average overall reaction
force. The origami derivative structure has much-improved
energy absorption characteristics [136], enhanced buckling
propagation capacity [137], and the ability to predetermine
buckling mode [54] than traditional tubes; hence, they show
great potential in energy-absorption devices and pipelines.
Vergauwen et al. [118] proposed a method for the design and
fabrication of pliable structures based on curved-line folding; the
work provided a detailed finite element modelling method. They
demonstrated the factors that could affect the fabrication of the
physical model, and they have identified that the translation of the
curved crease into a smooth working flexure hinge remains one of
the big challenges. Nelson et al. [138] proposed an origami-inspired
sacrificial joint through the compliant mechanism; although it
utilises rigid origami, it opens up the possibility for curved-crease
origami, as curved-crease origami could offer a more versatile design
space to create regions of high and low stiffness and the proper
alignment of compliant flexures in folded mechanisms.

When the curved-crease origami is applied to the sandwich
structure or metamaterials, the shape of the curved crease enables
smoothness and continuity in one direction, making them potential
energy absorption devices. Xiang et al. [139] reviewed the energy
absorption ability of the origami-inspired structure and material,
which gives a clear connection between the energy absorption
capacity and the geometry and material of the origami structures.

They also point out the importance of understanding the behaviour
of the folds and their relationship with the failure modes; other
future avenues could be the limited research on the dynamic
properties of the origami structure, the design of graded origami
structures, and the limited understanding of the energy absorption
capacity of the bio-mimic origami structure inspired by nature, such
as an insect’s wing, leaves, and durian shell. Deng et al. [47] studied
the low-velocity impact behaviour of the composite sandwich
structure with curved-crease origami foldcore, and showed that
they have better performance numerically and experimentally.
The origami-based foldcore is designed not only for planar
sandwich structures but it could also be designed in a cylindrical
shape, with the constraints of foldability and developability of the
curved-crease foldcore being considered [140].

The versatility of the design space and the capability of
manipulating the stiffness of curved-crease origami make it
achievable for various functionalities such as tuning motion,
saving energy, and delivering high power, as shown in Figure 14.
Zhai et al. [141] designed a curved-crease origami to accomplish in
situ stiffness manipulation covering positive, zero, and negative
stiffness by activating predefined creases. The method is similar
to curve-folding of cylindrical surfaces and has been used for
applications such as grippers, tunable stiffness cubes and
multistage robots. Furthermore, curved-crease origami structures
have shown significant potential in improving and optimizing the
mechanical performance of materials. A carbon fibre-reinforced
composite foldcore based on curved-crease origami reduces the
abrupt changes in the fibre direction, hence avoiding the wrinkle
of the fibre composite material, as opposed to the straight-crease
counterpart. The adoption of curved creases enables smoother
guidance of structural deformation and buckling [113]. By
designing pre-embedded creases, the process of compression and
buckling in energy-absorbing tubes can be controlled. The buckled
shapes can be precisely described as an elastica minimum bending
energy surface [54]. These applications demonstrate the advantages
of utilizing curved origami in the design of metamaterials and meta-
structures. Compared to straight creases, curved creases offer a
larger design space and richer mechanical performance,
providing a more diverse range of potential applications for
future engineering scenarios. In recent studies, the kinematics
and actuation of intrinsically curved folds (ICFs) have also been
found to gain potential for designing developable structures [142].
The elementary way to form intrinsically curved folds is to stitch
together along the curved boundaries of two flat sheets, as shown in
Figure 14E. Unlike origami folds, the curved fold is not bending
isometric of flat sheets, combining different curvatures (positive or
negative) of the curved boundary features interesting behaviours, the
essential kinematic feature of ICFs is that fold angle dictates
curvature and vice-versa. Thus, the bending mechanism of the
symmetric positive fold trading curvature could form simple
mechanisms where a small actuator controlling the fold angle
could be used to manipulate the fold’s curvature.

There are studies that are not limited to the numerical design
method and focus on the practical techniques related to curved-
crease origami. Cui et al. [112] investigated the manufacturing
method of the curved crease origami beam structure. Sargent
et al. [143] examined the processing methods of PET material
sheets on the crease properties of origami mechanisms; they
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found the stiffness could be altered by the heat processing, and the
temperature of processing was the primary factor in determining the
force response. Other applications could be found in arc footbridge
[144], metallic column [145].

4.2 Cross-disciplinary applications

The applications listed above primarily focus on robotics,
aerospace engineering, and flexible electronics. Due to the design
flexibility of origami structures, there is already a significant amount
of research on origami and curved origami in these fields. Here, a
broader perspective is provided to explore the potential applications
for interdisciplinary of curved crease origami, as shown in Figure 15.
For instance, the mathematical and mechanical principles of curved
creases can be applied to DNA helices. Franquelim et al. [146]

demonstrate the design of various DNA origami structures to
simulate the three-dimensional characteristics of the BAR protein
family and investigate these structures’ abilities in membrane
shaping and transformation. Xie et al. [147] explore the
adjustment of the bending and twisting properties of DNA
origami structures through mechanical design and chemical
modifications. In the field of architectural design, large-scale
variable structures present promising development prospects for
future urban construction. Some studies [148] have already
employed discretization methods to design surface parameters for
these structures. In medical device design, curved origami structures
can serve as an entry point for designing microstructures, such as in
heart stents [149]. Compared to straight creases, curved origami
structures offer a more rounded design, reducing vascular damage
and enabling faster self-folding responses, thus exhibiting better
deformation performance. In the field of biomimetics, inspired by

FIGURE 13
Illustrations of the case study of the bar and hinge model of designing origami structures by [121]. For simulating the curved-crease origami, one
could discretize the curved line into piecewise straight lines. (A) Illustration of the basic idea of the bar and hinge model, the facet is triangulated, and a
diagonal rotational hingemember is placed to simulate the bending deformation of the facet, and the folding motion along the crease is also replaced by
a rotational hinge. (B) The bar and hinge method works by representing a creased, thin sheet using 3 elements: in-plane bars, bending hinges, and
folding hinges. (C) The top row shows four photographs of paper, curved-crease origami constructed using a laser cutter and hand folding, and the
bottom row shows the corresponding bar and hinge representations.
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origami structures, researchers have conducted design and research
on insect wing structures. Houette et al. [150] modelled an
approximate curved surface of insect wings based on the Miura-
ori pattern and explored how a single vein actuator could deploy this
surface. Mintchev et al. [151] designed a novel origami structure
with dual stiffness characteristics, composed of pre-stretched elastic
membranes (similar to the soft resilin joints in insect wings) and
rigid tiles (similar to the hard cuticle in insect wings).

Another potential application is LCEs (Liquid Crystal
Elastomers). LCEs are promising soft matter-based active
materials due to their two-way shape-memory capability, fast and
large-amplitude shape morphing, and intrinsic programmable
liquid crystal (LC) mesogenic alignment [152]. They combine the
orderliness of liquid crystals with the reversible deformation
capability of elastomers. The liquid crystal moieties in this

material can form an ordered arrangement under specific
conditions (such as temperature, solvents, etc.), endowing the
material with anisotropic properties. By cleverly positioning the
triggers, controllable folding patterns can be imparted to the
material. There have already been some related studies: McBride
et al. [153] developed a developable Miura-fold actuator that unfolds
and retracts through heating or light stimulation; Hu et al. [154]
designed a jumping actuator based on a three-leaf panel fold
structure. However, studies of LCEs combined with curved crease
origami are still unexplored. In fact, due to the deformation of
curved crease origami being a coupling of facet bending and crease
buckling, this more complex deformation mode, combined with the
controllable deformation capability of LCEs, will greatly expand the
design space for potential soft robots, intelligent mechanisms, and
smart materials.

FIGURE 14
Structural design and applications (A) The self-folding propeller design by Ref. [132]. (B)Gripper design by Zhai et al. [141], the coupling effect of the
folding and the facet bending enables fast actuation. (C,D): The curved-creased origami designs enable smoother guidance of structural deformation and
buckling, and avoid the kink at the intersecting point of the creases, this is especially the case for structures that are made from fibre-reinforced
composites. (C) The sandwich foldcore design inspired by curved-crease origami [113]. (D) Foldable energy-absorbing tubular structures using pre-
embedded curved-crease origami patterns [54]. (E) The study of the kinematic features of combining different curvatures of intrinsically curved folds
(ICFs) [142]. (e1): Bending mechanism of the symmetric positive fold trading curvature vs. fold angle and the simple mechanism is used for a
corresponding paper grabber design. (e2): Experimental tensile strength measurements for the different types of folds with either positive or negative
curvatures of the curves at the boundaries. (e3): (i) Paper model that is formed by stitching 2 strips with asymmetric geodesic curvatures κg and (ii) the
resulting ICF has a curved ridge with non-zero torsion.
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5 Discussion and conclusion

This paper reviews the analysis methods of curved-crease
origami (i.e., the kinematic and mechanical analysis methods),
the corresponding applications, and the design. The basic
principle to describe the curved crease is detailed in the
differential geometric approach analysis section; these become the
fundamental kinematic tools for the analysis of origami structure
along the creases, whereas the inverse geometric approach is

reviewed to find the curved crease that could achieve the target
function of the final design. The mechanical analysis methods are
divided into three aspects: the analytical method, the finite element
method, and the bar and hinge model method, with each of the
methods being critically discussed. Finally, the design and
applications inspired by the curved-crease origami are shown.
The essence of curved-crease origami ensures that there is always
a combination of the effects of facet bending and the rotational
stiffness of creases. The origami structures are investigated, whether

FIGURE 15
Applications of cross-disciplinary. (A1) DNA origami structures that simulate the BAR protein, which can be seen as curved creases [146]. (A2) The
bending and twisting behaviour of DNA origami structure [147]. (B1) Approximate curved surface of insect wings based on theMiura-ori pattern [150]. (B2)
Pictures of a Brachythemis contaminata and of its hindwing nodus. Blue and Red indicate resilin and cuticle [151]. (C) Origami Structure that models an
architecture [148]. (D)Heart stents based on the origami waterbomb pattern [149]. (E1) A structure of LCEs based on theMiura-ori pattern, which can
deform through light exposure and thermal stimulation [152]. (E2) Jumping actuator based on a three-leaf panel fold structure [153].
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in a discretized way, so the model could degenerate to the rigid
origami, or in the bar and hinge model, so the kinematics or
mechanism of the origami structures could be derived. Here, we
offer several key themes for future challenges from our perspective.

5.1 Approximating intrinsically
curved surfaces

Approximating intrinsically curved surfaces with the prescribed
fold and cut curved-crease patterns directly corresponds to the final
3D shape, and no additional deformation is required after folding.
The conventional method for straight-crease origami is to design the
origami tessellations in their unfolded states and then deploy them
to the 3D configurations that fit the intrinsically curved surfaces.
Since there are infinite solutions for the curved crease line that
connects two vertices, designing curved crease origami that could fit
the complex configuration remains a challenge. The inverse design
method, as one of the potential methods that could solve the
problem, remains unexplored. Future applications could be the
design of sandwich structures that approximate the complex
shape of panels [155], searching the crease pattern of the curved-
crease origami using the additive algorithm [156]. A recent study
[142] has also pointed out the future directions for intrinsically
curved folds (ICFs) to trace an arbitrary 3D space curve in its
equilibrium state or the ICF-inspired morphing structures that
enable transformation between multiple space curves through
angular actuators along its length, which is also the results from
the fascinating coupling effects from the crease folding and
facet bending.

5.2 Folding motions and paths

Despite many recent developments in deployable structures, the
folding sequence and control over the folding creases make self-
folding a challenging task. This is especially the case for the curved-
crease origami [133]. Folding a single crease could lead to the
bending deformation of the curved facet, which might further
trigger the actuation or the “snap-through” effect of the adjacent
facet. This intrinsic complexity, as one of the inherent natures of
non-rigid origami, might require a larger force to actuate the hinge
rotation. One could ask whether there is a triggering actuation
mechanism that could lead to a “chain-reaction” effect of the
actuation of the curved facets. Further, the actuation sequence or
changing the definition of mountain/valley crease could lead to the
self-locking state of curved-crease origami. With most of the work
investigating straight-crease origami, using sequential self-folding to
include self-locking mechanisms based on curved-crease origami
could be highlighted as a potential future direction [157, 158].
Recent work has been focused on the actuation method using
light [133], string [41] or heat-sensitive self-folding technique
[132]. The main technique is to design the method to actuate the
crease of the origami structures. Those studies also highlight one
interesting future direction of “staged folding sequences,” i.e., the flat
surface can be physically actuated by cycling through a set of
predefined “keyframe” surfaces. Another interesting future work

would be increasing control accuracy and versatility, where the
individual string could be controlled through multiple actuation.

One recent study has identified two folding motion paths
between unfolded and folded states [76]. Although comparing
the paths does not fall within the scope of that research, the
question arises: how many motion paths could be formed
between the initial reference unfolded configuration and the final
folded configuration? Is there a method that could form the
multistable curved-crease origami by applying the rotational
hinge to the structure so that the energy landscape is altered,
similar to the method in Ref. [159]?

5.3 Generalised analytical method

Most of the analysis methods for curved-crease origami
structures are based on differential geometric design, yet there is
a lack of a general method that could be used for curved-crease
origami. Currently, there are Eulerian and Lagrangian methods,
where both methods are based on the differential geometric
approach. The former method is used in the small domain,
whereas the latter method shows potential to be used in the large
domain with certain restrictions [76]. However, these methods use
isometric mapping as the necessary condition to derive the
relationship between the deformed and undeformed shape, where
the Gaussian curvature is preserved; also, the deformed curve after
the folding is assumed, where certain information, or the “priori,” is
required. This could add errors to be considered for practical
engineering applications.

Recently, the work on Gauss mapping has shown the potential to
be used as a tool to solve the curved crease problem [104]. Although
the work has mainly focused on the f-cone (i.e., the foldable cone
with a single vertex connected by straight creases), this analytical
method could capture the bistable and snapping mechanical
behaviours. By incorporating the elastic-plastic material
behaviours caused by the constant folding [160], the localised
effect could be captured. Yet the method has not been used for
curved-crease origami, which provides one potential direction for
the analytical method.

5.4 Tunable mechanical properties

The facet bending property of curved-crease origami structures
that generate the “snap-through” effect could lead to the bistability,
or multistability of the structure, which enriches the design space
and could be used to design various applications. This mechanically
bistable property could be used for the development of
programmable and multistable mechanical metamaterials [102,
161], shape-morphing structures [48, 162], tunable metamaterials
[163–165], graded stiffness metamaterials [166], deployable
structure with properties of hyperextensibility [46], foldability
[167, 168], capability of curved surface [169]. However, the
curved-crease designs are still underexploited, and future avenues
could include further development of these applications to use the
curved-crease origami to explore more enhanced and functional
structures and metamaterials.
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The versatility of curved-crease origami makes the design and
analysis challenging yet promising for the applications of multi-
functional structures. The current methods are in various degrees,
but there are still interesting research questions in this area that
await to be solved.
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